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The Benevolent Bandit Laboratory: A Testbed for
Distributed Algorithms
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Abstract—We describe the design, implementation, and use of a dis-
tributed processing environment on a network of IBM PC’s running
DOS. Temporarily unused PC’s can be accessed by other users on the
network to perform distributed computations. An owner of a PC need
not be aware that the machine is being used during idle times; the ma-
chine is immediately returned when the owner begins to work again.
In addition, some degree of computation resiliency is provided in this
unreliable environment. If a PC is part of a distributed algorithm and
is reclaimed by its owner, the system finds a replacement node (if pos-
sible), resends the affected code to the new processor, and restarts it.
Thus, a distributed computation is able to proceed despite a set of tran-
sient processors. A discussion of system performance, distributed ap-
plications, and fault tolerance is included. In particular, performance
improvements are demonstrated by applications like parallel merge sort
and a distributed search solution to the eight puzzle.

I. INTRODUCTION

URING this decade, we have witnessed the rapid
proliferation of personal computers and worksta-
tions. Computing environments have moved away from
traditional time sharing, where one large mainframe serves
an entire organization and users gain access to it through
terminals, toward environments where each user has a
personal computer or workstation connected to a local area
network. A 1984 survey by the International Data Cor-
poration showed that the U.S. installed base of IBM MIPS
in personal computers was ten times that installed in IBM
mainframes (3030,3080,3090,4300 series). If non-IBM
equipment were included, and if we made the survey to-
day, one would expect a much greater difference between
these two figures, showing that the raw PC computing
power is tremendous. Yet most of these PC MIPS are
badly underutilized (what is your PC doing right now?).
This situation was understandable as long as the PC
was, indeed, a personal computer; however, many of
these PC’s are now connected together via local area net-
works (LAN’s) and, as such, now comprise a system.
Thus, we now have the opportunity to recapture those un-
used MIPS. Although these new PC-LAN’s are seem-
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ingly more practical for an environment where small scale
tasks such as word processing are performed, there is pre-
cious little sharing of resources. The major problem is the
distribution of processing power. By moving away from
time sharing, we have effectively moved from a central
server system with a large capacity to many independent
systems each with a much reduced capacity and smaller
arrival rate of jobs; Kleinrock has shown [8] that this leads
to an inefficient use of resources. For example, consider
the task of sorting a large database. With a mainframe,
the task is trivial, although it may be delayed if the system
load is heavy. By contrast, in a networked PC environ-
ment the task usually runs on a single PC. The job would
take many hours depending on its size, especially if it
cannot fit into the memory of the PC in its entirety. Com-
pounding our frustration with the job’s slow execution is
the realization that additional idle processing power of
other PC’s lies unused while the owners are off doing
something else.

The aforementioned problems led us to create a system
in which temporarily unused PC’s can be accessed by
other users on the network to perform distributed com-
putations. The owner of the PC need not be aware that
the machine is being used during idle times; the machine
is immediately returned when the owner begins to work
again. It is this notion of transparency to the owner of a
PC that led us to call our system the Benevolent Bandit
Laboratory (BBL), since PC CPU cycles are ‘‘stolen’’ in
a benevolent fashion and then the PC’s are returned to
their owners upon request. Another motivation for the
construction of the system was the need for a testbed for
distributed algorithms. Much current research is directed
toward designing distributed algorithms, but many of
these algorithms go untested because distributed systems
are unavailable. The BBL system is a low cost solution to
this problem. The network, developed originally for file
sharing, was already in place, we simply created software
to allow the network to support distributed processing.

Although other loosely coupled distributed program-
ming environments exist [2]-[7], [16], none incorpo-
rates the notion of benevolent CPU stealing. The only
system we know of which is designed specifically to run
on a low cost network of PC’s is from the University of
Wollongong [6]. It uses a number of Macintosh com-
puters linked together through the AppleTalk network.
The main limitation of that system is the network’s low
rate of data transmission. At best, the data transfer capac-
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ity of the network is 200K bytes /s. This proved to impair
the usefulness of distributing computations, since com-
munication overhead was so high. The other distributed
environments are composed of more powerful machines
(workstations, servers, mainframes) running multitasking
operating systems (primarily UNIX). Naturally, this leads
to more complicated process management. Of these sys-
tems, only a few address the issue of crash recovery. Ca-
brera et al. [3] present the idea of a personal Process Man-
ager (PPM) to relay information about node failures and
to reestablish internal consistency. The PPM does not ap-
pear to manage resilient computations. In other words,
the system will not transfer a computation to another host,
at least not in this implementation. It does, however, try
to combat certain failure modes by establishing a crash
coordinator site to assist with temporary irregularities.
Another approach to crash recovery is discussed in [5];
replicated processes or shadow copies are used to provide
a high degree of failure transparency. Each process exists
in multiple invocations across different workstations. Of
the copies, one is considered the principal shadow. If the
principal shadow fails, one of the other shadows takes
over as the principal.

II. THE ENVIRONMENT

The BBL system was developed to provide an environ-
ment for distributed processing on IBM PC-AT’s running
DOS 3.1 and connected together via an Ethernet. The net-
work of approximately 100 PC-AT’s was already avail-
able at UCLA. A unique feature of BBL is its ability to
find idle processors and use them without the knowledge
of the owner of the PC. The owner experiences no dis-
cernible delay when using the machine after an idle pe-
riod. The owner of the PC runs a special shell designed
to emulate DOS and to allow BBL access to the machine
during the idle time. Another salient feature of the BBL
system is its ability to replace processors which are part
of a distributed computation, but which are reclaimed by
an owner. Thus, the computation may proceed with a set
of transient processors. When this happens, the system
finds another idle processor (if possible), resends the af-
fected code to the new processor, and restarts it. The sys-
tem provides the means for restoring state to this new pro-
cessor, but it is partially under the control of the user/
programmer. Since the BBL operating system cannot
know what defines the state of a particular application,
the user writing the application code must handle some of
its restoration. The alternative is to save the entire mem-
ory space and registers of the user’s process and attempt
to restore this state to another PC. Since each PC may be
configured differently, a process may not be able to be
restored in the same memory location. The PC’s and DOS
do not support virtual memory mapping, so this solution
was ruled out.

III. SysTEM DESIGN

BBL consists of four independent modules of code. The
module that resides on every PC in the network, the Node

Manager (NM), detects when the machine goes idle and
registers it with the BBL system. The central resource co-
ordinator, running on a dedicated machine, which keeps
track of available PC’s, is called the Resource Manager
(RM). The code which allows a user to interact with the
idle PC’s is actually two modules on one machine, the
User Interface and the Process Manager (Ul/PM). The
User Interface provides the link between the user and the
BBL system. The Process Manager is the lower level
communication module responsible for the run-time op-
eration of the system and for the administration of the
user’s algorithm processes when a user is running a dis-
tributed computation. A UI/PM machine is dedicated to
a single user, although several users may be using the BBL
system at once. Each of these modules will be described
below. The logical interconnection between the modules
is shown in Fig. 1. A more detailed description of the
system can be found in [14].

A. Node Manager

The Node Manager is designed to run as a shell on top
of DOS and emulate its operation. Normally, a PC is con-
figured to automatically execute the NM when the system
boots. The Node Manager’s purpose is to benevolently
steal a machine from its owner after the machine has been
in the idle state for a given number of seconds. A PC is
said to be in the idle state when the PC is displaying a
DOS prompt, waiting for the owner to type a command.
The length of time after which a machine is considered
idle, or available for BBL use, is simply a selected param-
eter which is passed to the NM program. While the NM
shell waits for the owner to type commands, it decrements
a timer. If the owner completes a command by hitting the
return key, the timeout counter is reset and the NM passes
the command on to DOS for execution. If the timer ex-
pires, the NM registers itself with the Resource Manager
indicating it is free for use. The NM then waits to be as-
signed to a specific user’s distributed computation. After
being assigned to a user’s UI/PM, it waits for messages
from the Process Manager which contain code to execute,
possibly an input file, and addresses of other nodes in-
volved in the distributed computation.

If a key is hit at any time while the NM has control of
the PC, the NM notifies the RM (if it is still in the RM’s
pool of available nodes) or the PM (if it has been assigned
to a user) that it is going down and immediately returns
to processing commands from its owner. The owner does
not notice any delay, since the overhead for processing
the context switch is imperceptible.

Packets are used to exchange information. The user
code sends packets by specifying a destination node’s vir-
tual id (vid). Each node in the computation is addressed
by a vid, so user code need only deal with vids and never
physical addresses. When one node replaces another, it
receives the ‘‘dead’” node’s vid. In this way, replacement
is transparent to the user code. The NM is responsible for
the translation of a vid into a physical address. The NM
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Fig. 1. System diagram.

is also responsible for providing all the functions that the
user code may need in order to perform a distributed com-
putation; these include, but are not limited to, initializa-
tion routines, communication primitives, and file opera-
tions which allow the NM’s to read from and write to files
on the PM’s disk. Since the NM is designed to run exe-
cutable files, the majority of the user code can be com-
piled and tested outside the BBL environment. Only when
the bulk of the code is debugged is it necessary to run the
distributed computation on the BBL system. Essentially,
everything except communication between different pro-
cessors can be pretested.

B. Resource Manager

The Resource Manager is a dedicated machine respon-
sible for keeping track of available PC’s in the network.
When a PC becomes available, the RM receives a mes-
sage indicating this fact from the NM running on that PC.
The Resource Manager then adds this node to its pool of
free nodes. The RM uses this pool to allocate nodes to
users who make specific requests about the number of
nodes needed and the minimum amount of memory needed
per processor (to hold the downloaded code). The RM
responds by sending a list of physical Ethernet addresses
to the User Interface/Process Manager. The RM is able
to support an arbitrary number of users of the BBL sys-
tem, provided of course that there are sufficient idle PC’s
to fulfill all the requests.

One drawback to this design it that the RM is a dedi-
cated machine that does nothing but handle resources for
BBL. A method to eliminate the RM from the system
would be to allow each UI/PM to “‘find’’ its own idle
PC’s. This would eliminate the RM altogether, but would
add complexity to the UI/PM, especially if the system
continued to support multiple users. In this case, when a
new user wanted to run a distributed computation, the Ul/
PM process would need to contact other currently running
UI/PM’s and ‘‘beg’’ for hoarded nodes. By centralizing
the Resource Manager, each PM need only go to one lo-
cation to find free nodes, and the RM can provide equi-
table sharing of resources between multiple users.

C. User Interface

The user interface serves as the link between the user
and the BBL system. It is intended to aid in the manage-
ment of the distributed application. A command language
allows the user to logically configure the system for run-
ning the distributed algorithm, to alter the environment
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during runtime, to query the system about the state of the
computation and system resources, to observe output, to
run the BBL debugger, etc.

The Ul requires the user to select an algorithm from an
already established algorithm library. The algorithm li-
brary contents are listed in the file, ““info.bbl,”’ where
each line refers to an individual algorithm configuration
file (e.g., “**.alg”’). For instance, one line in the library
file refers to “‘BACH.alg,”’ a distributed music program
that plays a Bach composition on several PC’s. The
“* alg”” file (e.g., ‘BACH.alg’’) contains the details
about the specific algorithm: a description of the program,
the number of separate code segments it contains (in this
case, a conductor code segment for synchronization, and
two separate code segments that will actually play differ-
ent notes, voicel and voice 2), the names of the code seg-
ment executable files, the minimum and maximum num-
ber of machines on which each code segment should run
(the conductor must only run on one machine, while each
voice should run on at least one machine), the names of
any parameters to be passed to the executables, and finally
the name of any input files to be redirected to the execut-
ables.

In the original version of the Ul, the algorithm envi-
ronment was initialized through the use of an algorithm
configuration file plus lengthy interactive questioning from
the UL. With the addition of debugger options, the setup
of an algorithm environment became even more elabo-
rate, if not more complicated. Accordingly, we expanded
the configuration file to allow the user to provide all the
necessary information, thus eliminating the lengthy inter-
active setup. For more information about the configura-
tion file format, default assumptions, and the debugger
see [1] and [13].

Once the algorithm environment is set up and the al-
gorithm information is downloaded to the participating
NM’s, the Ul runtime commands become enabled.
Among other things, they let the user dynamically add
nodes to or delete nodes from the algorithm, change log-
ical link information in the topology, suspend and resume
the algorithm execution, reset the environment, and ulti-
mately exit from the BBL system.

D. Process Manager

The Process Manager coordinates the application pro-
cesses owned by the user. It also provides the low-level
communication needs of the UL It handles requests be-
tween the UI and the RM, as well as between the Ul and
the NM’s. As mentioned previously, the Ul and the PM
co-reside on a single node. One UI/PM node exists for
each user running distributed algorithms on the system.

After the RM allocates nodes to the Ul, the PM be-
comes responsible for keeping track of each node’s phys-
ical address. These addresses are transparent to the Ul and
consequently to the user and the user’s algorithm. In-
stead, the Ul identifies each node via a virtual id. The PM
keeps track of the mapping between physical addresses
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and vids. The PM shares the mapping with the NM’s since
the NM’s provide this same translation for the user’s al-
gorithm. This address-to-vid mapping is especially im-
portant in the event that a node is taken away from the
algorithm by its owner. When this occurs, the PM tries to
locate a replacement node. If a replacement is found, the
PM assigns it the vid of the node being returned to its
owner. The PM then notifies the necessary NM’s of the
new physical address for that vid. Since the user’s algo-
rithm only deals with vids, it is shielded from ever having
to know about such changes. If no replacement is found
and the failed node is deemed a critical node, the execu-
tion of the algorithm is aborted. Otherwise, the algorithm
continues with one fewer node.

The reaction of the PM to node failures depends on how
the user sets up certain system parameters. The user can
set up both a replacement strategy and notification strat-
egy; whether or not to replace a failed node with a new
one, and whether or not to notify the algorithm about this
activity. Naturally, the PM’s job is more complicated
when the user wants replacements to be found. In this
situation, the PM tries to locate an idle node among its
supply of allocated nodes. If all its active nodes are being
used by the algorithm, then it must look to the RM’s pool
of resources for additional nodes.

IV. PERFORMANCE

In order to test the performance and utility of the BBL
system, we have analyzed its operation in a variety of dif-
ferent circumstances. One simple measure of performance
is the communication throughput between two commu-
nicating user processes in the BBL system. Another in-
dicator of performance is the speedup achieved by appli-
cations running on the system. We examine parallel
versions of merge sort and IDA*, a search algorithm used
to solve the eight puzzle.

A. Communication Throughput

One performance measure of our system is the com-
munication throughput between two nodes running a dis-
tributed algorithm. To test the throughput, we wrote two
programs, one which transmitted packets, and another
which received them. We experimented with different
sized packets and produced the plot in Fig. 2.

As can be seen from the plot, the maximum throughput
is limited to slightly under 200 kbits /s. The Ethernet is a
10 Mbit /s medium. Why then do we see only 1,/50 of
the maximum throughput? A major loss of throughput is
due to the use of a stop-and-wait protocol with a “‘large”’
turnaround time at each processor. Since the boards which
connect the PC’s to the Ethernet only have one packet
buffer, every arriving packet must be read off the board,
examined, and then acknowledged if necessary. Although
the actual turnaround time is difficult to measure, a time
of 0.03 s will give, roughly, a channel utilization of 0.02,
or a factor of 50 reduction from maximum throughput
[15]; since we observe a factor of 50, we suspect that 0.03
s is a good estimate. This is where most of our throughput
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Fig. 2. Measured throughput versus message size.

is lost, since our overhead is fairly high. We must bear in
mind, however, that this is the channel throughput for one
set of communicating processes. With several processes
communicating, we are able to utilize the channel more
efficiently. Specifically, when running five pairs of com-
municating processes, the total throughput is 1 Mbit or
five times that of a single pair. In addition, other non-BBL
processors are exchanging messages over the same net-
work, thus utilizing a portion of the total capacity.

B. Merge Sort

One application we have coded for the BBL system is
the parallel merge sort. One node in the network (vid 0)
generates a random list of n data elements (16 bit inte-
gers). By checking its communication links, it determines
P, the number of nodes that will participate in the sorting
operation; it then partitions the data into P equal size lists
and transmits one list to each of the other P — 1 proces-
sors. Each of these processors sorts its data using an n log
n sort and, depending on its vid, either waits to receive
data or sends its data to another processor. All waiting
processors receive data and perform a merge operation
before sending the data on to still another processor.
Eventually, the final step involves merging two lists of
size n/2 at processor 0. For example, with P = 4, node
zero sends messages of size n/4 to the other three pro-
cessors. Each of the four processors sorts its part. After
sorting, node one sends to node zero, and node three sends
to node two. Nodes zero and two each perform a merge
operation. Finally, node two sends its sorted data (/2
data elements) to node zero which performs a merge op-
eration to finish sorting the list. We show a timing dia-
gram in Fig. 3.

Fig. 4 shows the total time to sort lists of size 4000,
8000, 16 000, and 32 000 data items with one to nine pro-
Cessors.



FELDERMAN et al.: BENEVOLENT BANDIT LABORATORY

0 L[] Sort ] s,
1 Sort M
4
2 Sort z"s[ ™
3 Sort l;

12.495 sec

TX = Transmit data
M ij = Merge lists from processor | and |
Sort = Sort list of data

Fig. 3. Four node merge sort timing diagram (32 000 data items).

30 -
20+
Total
Time to Sort
(Sec)
32000
10
v 16000
8000
4000
0 T T T T T T T T
1 3 4 5 6 7 9

Number of Processors

Fig. 4. Total time versus number of processors (merge sort).

The corresponding speedup graph is given in Fig. 5.
The speedup is measured with respect to sorting the entire
list on one processor with an n log n sort (no merges). In
general, we would expect the speedup to increase with P
and to be best where P = 2%,

To understand these results better, let us compare them,
not to linear speedup, but to the theoretical maximum
speedup using this version of merge sort. Since there are
two sources of imperfect speedup, namely, the algorithm
itself and the architecture it runs on, we attempt to isolate
the contribution of each. Specifically, we compare our re-
sults to that for a parallel merge sort where communica-
tion is free with zero delay; this eliminates any loss due
to the architecture. We simulate these results by making
approximations for the time to sort a list of data, using
the fastest available sorting routine, and the time to merge
two lists of a given size. We ran tests on independent (non-
BBL) PC’s to gather data for the time to sort a list of
intergers and the time to merge two sorted lists. From the
measured data, we created the following linear approxi-
mations to the actual time to perform the various parts of
the algorithm. All of our approximation formulas are of
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Fig. 5. Speedup versus number of processors (merge sort).

the form Y = mX + b. T.(n) is the time for communi-
cating a list of size n, T,(n) is sorting time of a list of
size n. T,,(n) is the merging time of two lists with com-
bined size n, and n refers to the number of integers (data
elements).

T.(n) = m.kn + b,
m. = 0.00004036  (seconds/byte)
b, = 0.0051134 (seconds)
k=2 (bytes /integer) (1)
T(n) = my(n log, n) + b,
m; = 0.00006862 (seconds /integer)
b, = 0.248614 (seconds) (2)
T,(n) = m,n + b,
m,, = 0.00004015  (seconds /integer)
b,, = 0.001549 (seconds). (3)

Using the above approximations, we compare our em-
pirical results to results we would obtain for an ideal sys-
tem with no communication overhead. For simplicity, ini-
tially assume that P = 2* and n is the total size of the list
to be sorted. Further assume that n is evenly divisible by
P. The total sorting time is determined by the total time
used by processor zero. It is the one that generates the
random data, parcels it out, and is the place where the
final merge takes place. We ignore the time to generate
the list of integers. Neglecting communication, processor
zero will first sort a list of size n /P, followed by a series
of merge operations where the total number of items being
merged is of the following format: 2n/P, 4n/P, 8n/P,
-+, Pn/P. That is, processor zero will perform log, P
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merges where the ith merge is of size 2'n/P. Using our
approximation formulas, the total time spent merging data
at processor zero when P = 2% is

log2 P
M =b,log, P + m, (’—' > 2">
P i=1
2n(P — 1
= b, log, P + m,, % (4)

When P is not a power of 2, the number of merges per-
formed at processor zero is | log, P . The total size of
merges performed is dependent on P, and we do not have
a closed form expression for it. Using these formulas, we
can approximate the running time of a parallel merge sort
in the absence of communication overhead. In Figs. 6 and
7 we compare the empirical results to the approximation
above for 32 000 data items (which showed the largest
difference). The curve labeled ‘‘BBL’’ is the actual mea-
sured time on the BBL system. The curve labeled *‘Init
comm’’ is the approximate total time to complete when
we include only the cost for initially distributing the data.
The curve labeled ‘‘No comm’’ is the approximate total
time to complete the sort without adding any time for
communication. We see that communication overhead is
a significant portion of the total running time of the al-
gorithm, especially when the number of nodes and the
data set is large. As the number of processors increases,
the time to sort and merge the data decreases, but the
amount of time spent on communication increases. The
relative cost of communication versus processing deter-
mines the optimum number of processors to use for a par-
ticular data set.

We now present a lower bound on the total time to sort
a list of size n on P processors using the parallel merge
sort algorithm defined above. We use the approximations
discussed earlier, and the fact that we must distribute the
data initially.

T=(P-1) < S b(.> (initial communication)
n n :
+ mr<; log, ;) + b, (sorting)
2(P -1
+ % nm, + b, log, P (merging).

(5)

We differentiate this expression with respect to P, and ob-
tain the expression which must be satisfied by P* to min-
imize T for this algorithm on our system. That expression
is shown below.

dT n m; n
PP <2(m(. + m,) — 2 (10g2 3 + 1>>
bm
+ =" 4 b = 0.
Pina T b=0 (6)
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Fig. 6. Total time versus number of processors (32 000 elements).
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Fig. 7. Speedup versus number of processors (32 000 elements).

Unfortunately we cannot solve for P*, so we do it nu-
merically. In Fig. 8, we plot P* versus n, the number of
data elements. For example, P* = 36 for 32 000 data
items.

C. Search: The Eleven Puzzle

Another application which was ported to the BBL sys-
tem is a parallel search algorithm used to solve the eight
puzzle. The algorithm is due to Powley [12] and is a par-
allel version of IDA* [9]. The eight puzzle is a typical
example of a search problem and, as stated by Korf [10],
““‘consists of a 3 X 3 square frame containing eight num-
bered square tiles and an empty position called the
‘‘blank.’” The legal operators slide any tile horizontally
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or vertically adjacent to the blank into the blank position.
The task is to rearrange the tiles from some random initial
configuration into a particular desired goal configura-
tion.”” The object of the search is to find the optimal set
(i.e., minimal number) of moves to solve the puzzle.

The eight puzzle runs too quickly on a single machine
on the average, so parallelizing it yields no valuable in-
formation. A larger version, the Fifteen Puzzle (4 X 4),
however, can take up to 100 h to solve on a single PC.
Therefore, to collect data, we ran the IDA* algorithm on
a 3 X 4 puzzle which we call the Eleven Puzzle.

Our algorithm consists of two parts, a coordinator and
any number of search processes. When run on one pro-
cessor, only the coordinator searches for the goal. When
run on more than one processor, the coordinator runs on
one node and a search process runs on each of the other
nodes. When P > 1, the coordinator does not search be-
yond an initial threshold (a few nodes). Therefore, we
only begin to see speedup when P = 3. This is clearly
inefficient, but, for simplicity, we ported the algorithm
from an application on an Intel Hypercube, where the ar-
chitecture makes a coordinator desirable. Additionally, it
is possible that some processors complete searching be-
fore others. Without dynamic communication between
processors to share workload, we could not see linear
speedup. However, this simplified version was sufficient
for our needs. Interestingly enough, the conversion of the
coordinator and search process code to the BBL system
took less than 2 h to complete. This was due to the mod-
ular structure of both the eight puzzle program and the
BBL system. As a result, modification was limited to
small communication modules and not to the bulk of the
search code.

We ran tests on ten different puzzies and averaged the
speedup to produce a single plot. Since we have acknowl-
edged that the coordinator performs no valuable search
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Fig. 9. Speedup versus number of search processes for the 11 puzzle.

function, we plot the speedup only looking at the number
of search processes available. This is simply one less than
the number of processors and will produce a shifted
speedup curve. We plot this curve in Fig. 9. We see a
relatively good speedup as compared to perfect speedup.

Other applications coded for the BBL system include
matrix multiplication, linear programming, traveling
salesman, and two-player game tree search.

V. RESTORATION AND RECOVERY

We implemented two distinctly different programming
approaches for handling node failures during the execu-
tion of a distributed algorithm. A node failure occurs when
the owner of a machine reclaims it during the operation
of a distributed algorithm. The first approach is exhibited
in a Token Passing program. Its philosophy is to try to
allow the execution of the user program to complete ex-
ecution before returning the PC to its owner. When run-
ning this distributed program, several nodes are logically
connected in a unidirectional ring. The first processor be-
gins execution by printing its vid on the PC screen in a
very large font. After clearing the screen, it sends a mes-
sage (token) to its neighbor. Each processor waits for the
token, prints its vid once it receives the token, then passes
the token on. If a key is hit on some processor, that pro-
cessor simply tests whether or not it has the token; if so,
it simply forwards it to the next node before returning
control of the PC to the owner. If the node does not have
the token, it simply terminates. A replacement node can
therefore make assumptions about its program state when
it begins running. There is no need for it to query any
kind of dedicated fault-handling node or to ask for assis-
tance from any of its neighboring nodes.

In contrast to this is the second approach used by the
distributed Music demo. It makes no attempt to complete
execution of the task at hand before the PC is reclaimed
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by its owner. Instead, a newly started replacement node
checks with a central, coordinator node which informs it
about its current place in the computation. In this algo-
rithm, nodes reclaimed by their owners simply terminate
by notifying the PM. Each replacement node, when it
starts execution, checks with a ‘‘conductor’” node. The
conductor responds with a time and location in the music
where the replacement node should start playing.

The tradeoff between these approaches is the delay to
the PC owner versus the complexity of the recovery
scheme. If a distributed algorithm has very little process-
ing to do before it can complete, then the first approach
is acceptable, provided the delay in returning the PC to
the owner remains imperceptible. Otherwise, the second
approach or one similar in nature would need to be em-
ployed. A drawback, however, is that the first approach
is not protected against hard node failures, while the sec-
ond approach is. If, for instance, a node crashes, the state
information is unrecoverable and the algorithm will be
unable to run correctly. But hard node failures are rare
and would kill a sequential algorithm anyway.

VI. Security ISsuEes

Unfortunately, using DOS and IBM PC’s limits the
amount of security we can provide the owner of a PC.
Because DOS is single-tasking, there are no restrictions
on the operation of a process. The entire memory space
is accessible to a process as are all peripherals (i.e.,
disks). Without herculean effort, we cannot discover that
the user code is operating maliciously. One option, not
yet explored, is to modify the user code compiler to pre-
vent operations like disk reads and writes. Unfortunately,
a clever programmer could circumvent these precautions.
With the current version of BBL, owners must trust the
honesty of the users of the system. Work is continuing in
this area.

Skeptics of the BBL system have voiced concerns about
the sometimes private nature of PC’s. PC owners are not
always willing to make their machines readily available
for public use. Some owners store confidential data on
their machines, while others just make a point of not shar-
ing their personal computers with anyone else. The ques-
tion arises whether anyone will allow their machines to
be accessed by a BBL-like system. Fortunately, some
similar work at Carnegie-Mellon University indicates that
users do not go out of their way to add their machines to
the pool of resources (by running BBL-like software), but
if their machines automatically run BBL-like software,
they make little effort to remove them [11].

VII. CONCLUSIONS

In summary, the BBL system is an operational low cost
distributed processing environment. It upholds the unique
policy of borrowing idle PC’s in a network and then of
benevolently returning these machines to their owners
when requested. It makes an effort to simplify the task of
programming in a distributed system. And, it shows that
networked PC’s are a viable computing resource. While

the PC environment was suitable for the development of
BBL, it was not without its limitations. Most notably, the
lack of multitasking made the implementation difficult.
Our performance results indicate that the environment is
best suited to algorithms with few communication needs,
since BBL is a ‘‘large-grained’’ distributed processing
system; at some point, communication overhead out-
weighs the benefits of distributing the algorithm in the
first place. Therefore, computation intensive tasks are in
their element running under BBL.

Note: IBM, AT, and DOS are registered trademarks of
International Business Machines Corporation. Unix is a
registered trademark of AT&T. Macintosh is a trademark
of Mclntosh Laboratories, Inc., licensed to Apple Com-
puter, Inc. AppleTalk is a registered trademark of Apple
Computer, Inc.
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