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Abstract

Power has recently evolved as a potentially useful measure
of computer network performance in that it suggests an appropriate
operating point for simple nets. In this paper we elaborate on the
observation that the average number in system is an invariant
which defines the maximum power point, is a measurable quantity,
and which can therefore serve as a flow control variable (for exam-
ple, in a window flow control scheme). We show this invariance
first for a series network of queues (Poisson input and constant ser-
vice time) with arbitrary loads and then for a parallel configuration
of M/G/1 systems (arbitrary service time distribution for each
parallel branch) but with identical loads. We also show how these
exact solutions may be extended as approximations to other queue-
ing configurations.

1. Introduction

How does one select an “‘appropriate’” operating point for a
computer communications network? This seemingly simple ques-
tion does not have a straightforward answer. Indeed, what is meant
by the word ‘‘appropriate”? Furthermore, the modeling and
analysis of computer networks draws upon techniques from many
fields (e.g. queueing theory, optimization theory, networks and
graphs, information theory), and one is faced with many different
issues involving routing, topological design, flow control, etc. Vari-
ous performance criteria such as delay, line cost, buffer size,
throughput, and efficiency may be studied. Different physical net-
works (conventional wire, packet radio, satellite, local nets, etc.)
lead to different models and emphasis. For example, recent work
on multi-access protocols for one-hop satellite and packet radio nets
emphasizes throughput (protocol capacity) as the major perfor-
mance criterion of interest [1].

In this paper our interest is the tradeoff between
throughput and delay inherent in the choice of a system operating
point. One might expect that the more traffic (messages, packets)
allowed into a network the higher the throughput (in congestion-
prone systems, this need not be the case [2]1) — but also the higher
the delay. We choose to analyze this tradeoff using the notion of
power introduced by Giessler et al [3] and subsequently studied by
others [2,4,5,6,71. When the network is operated at the max-
imum power point, we show below that the analysis leads to a value
for the average number in system which is invariant under scaling
of line capacities in some cases and invariant under distribution of
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message length (service time) in other cases. This value of the
average number in system is easily calculated for the simple net-
works we consider, and may be implemented under a window flow
control scheme [81.

The structare of this paper is as tollows. After a descrip-
tion of the notation used (which follows that of [9] and [10]1) we
review the previous work on power. Next a series network with
constant message length (e.g., a path in a virtual circuit network) is
analyzed. Finally a parallel configuration is studied (e.g., a packet
switch with numerous outgoing channels where the average number
represents buffer size or window size). Several special cases for
certain network parameters are considered and a general discussion
follows. It is seen that the results obtained may be used to approxi-
mate known M/M/1 power results.

Now for the queueing theoretic notation. We first set
A = total arrival rate of messages to the network.

We always consider the arrival process to be Poisson. Also in the
simple networks considered here we assume messages are not
blocked or lost (e.g. infinite buffer capacity, no noise on the lines
and no possibility of collision as in packet radio networks), and thus
throughput is synonymous with the traffic applied to the system.
We next set

T = T(\) = average total time spent in the network by a message
which is the sum of

W = W(\) = average total waiting time (on queues)
spent in the network by a message
and

X = average total service time of a message.

(That is, X is the total time a message spends in transmission on all
channels in its journey through the net.) Thus 7 = W +X. Finally
we set

N = average total number of messages in the network.

We also will use Little’s result [11] which relates several of the
above quantities, i.e., N = AT

These various network parameters are composed of
corresponding quantities for each of the message channels in the
network. We let N, A, T;, W,, X, be the values for channel /.
The service time for a message on the ith channel, X;, may be
expressed as the average length of a message, 5, in bits, divided by
the capacity of the ith channel, C,, in bits per second. That is,
X; = b/C;. Thus the variation in service time at the /th channel
occurs due to the variation in message length. We also define the

utilization (efficiency) for the ith channel as p; = A X.
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2. Review Of Power

A performance measure combining throughput and delay
into a single function is the notion of power introduced in [3]. This
is simply defined as

PO\ = 2.1

A
T
One might consider that an appropriate operating point for a net-
work is to choose that value of A which maximizes power. Klein-
rock showed in [2] that for P(3) a differentiable function of A,
power is maximized for a value of A where

dr

by i TO). (2.2)
Thus the optimum power point defines the “‘knee” of the T(\)
curve. That is, it occurs at that value of A where a straight line
through the origin in the (A, T(A)) plane is tangent to the T'(A)
curve. {In fact, T(A) itself need not be a convex function of A in
order for this last statement to hold; namely, in the case where
more than one tangent line can be found, maximum power will
occur for that tangent line which makes the smallest angle with the
horizontal axis.)

Using equation (2.2), Kleinrock showed in [4] for any
M/G/1 system, that

N =1. (2.3)

Here we use the convention that the superscript * indicates that the
variable in question has been maximized with respect to power.
Thus equation (2.3) indicates that if the input rate A to an M/G/1
system is chosen so_as to maximize power P()), then the average
number in system N* at this point \* is equal to 1. This agrees
with the reasoning that the proper operating point of the deter-
ministic D/D/1 system is exactly when N" = 1. It also can be
shown that the server utilization at maximum power for M/G/1 is

P pu—— (2.4)
1+vV (1 +9)/2 ’

where v is the coefficient of variation of the service time distribu-
tion (recall that v is simply the ratio of the standard deviation to
the mean service time).

Using the independence assumption [12] a message path in
a network can be modeled as a series of independent M/M/1
queues (with &'4 1/u). Kleinrock showed in [2] that for such a
series with M channels and equal channel capacities, then

N'= M (2.5)
In fact the optimal choice of A" occurs when p; = 1/2 (e.g. where
N=1/02%) = uC/2). Also N'=1 for i=1,...,M. This

model of a message path in a computer network was further exam-
ined by Bharath-Kumar in [5]. He found that for such a path hav-
ing arbitrary channel capacities

NS M 2.6)

with Kleinrock’s “‘keep the pipe full” result of equation (2.5) hold-
ing when all capacities are equal.

In these results we already see invariant properties of the
average number in system at maximum power. For example, equa-
tion (2.3) shows an invariance with respect to service time distribu-
tion, while equation (2.5) shows an invariance with respect to scal-
ing of channel capacities. No other system variable shows such
invariance. In the next two sections we introduce other simple net-
works and again emphasize such invariance properties in our ana-
lyses.

3. The M/D/1 Series Network

We choose to model a message path in a computer network
as a series of M queues where, unlike the M/M/1 model discussed
above, the length of a message remains constant as it traverses the
path, this being a more realistic assumption (see Figure 1).

Figure 1 The M/D/1 Series Network

Note that the various channels need not have the same capacities.
With Poisson arrivals the first node in the system is simply an
M/D/1 queue. However, the subsequent nodes in the path are
more complicated queueing systems (there is a dependence
between the output process of one node and the input process of
the next node). This model was extensively analyzed by Rubin
[13]. He showed that the distribution of waiting time for the total
system is identical to that for an M/D/1 queueing system with
arrival rate A and service time equal to the maximum of the indivi-
dual service times at the nodes. Using Rubin’s result we establish
the following theorem in [14].

Theorem 1
For the M/DII series network, power is maximized when
_ M C_.
N'=% e 3.1
=1 G

Note that this expression does not involve A* and is invariant under
scaling of channel capacities.

Let us express this important equation in another way
which will lead to an interpretation which is intuitively pleasing.

Foreachnode i=1,...,M set C; = a,;C,;, where o; > 1. Then
M Crn L U
El G —Elo‘i

and so we may write Theorem 1 in the form

= E1
N =5 —. 3.2
=1 ‘
Thus the slowest channel (capacity C,;,) contributes 1 to the aver-
age number in system while a channel which is o > 1 times faster
than the slowest channel contributes 1/a <1 to this average
number. This is similar to the “keep the pipe full’”’ result of Klein-
rock mentioned above. Also note that the average number does
not depend on the order of the individual capacities C;, but only on
their values. For example, if the first channel is the slowest, no
queueing takes place except at node 1. If the last channel is the
slowest, queueing may take place at various nodes. Thus the indivi-
dual values of N for i =1, ..., M do depend on the order of the
capacities. But in all cases we have the invariance for the fora/
number, i.e.,
— M
F=3yL
=19

Also clearly we have the same upper bound as for the M/M/1
series network, namely,

N*< M. (3.3)
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M/M/1 M/D/1

Average Number In Average Number In

Node Queue Server | System Queue Server System
1 1-p p* 1 M(1—p 0* M1 —p%) +p*
2 1-p* o 1 0 o o
3 1-p* o 1 0 o o
M-1 I—p" p" 1 0 p" ph
M L—p” o 1 0 p p’
Total | M(1~p%) | Mp* M M(1~p" | Mp® M
Table 1

Other optimized variables of interest for the M/D/1 series
net include \*, 7%, P"and p] for i =1, ..., M. These are given
in [14]. In particular we have

S Pax = (3.4)
4N
Equal Channel Capacities
Assuming C;=C for i=1,...,M and thus p;, &p,
Theorem 1 gives
N'=M (3.5

This is the same result as Kleinrock obtained for the M/M/1 tan-
dem [2]. Also equation (3.4) yields

o _V2IM
L Wy v

which compares with the value of p" = 1/2 mentioned above for
the M/M/1 series net with equal channel capacities. Thus values of
other variables (", p*, T7) differ between the M/M/1 and M/D/1
series models as do the individual node average numbers N,
i=1,...,M. It is all the more amazing that the expression

N" = M is invariant for both service time distributions.

(3.6)

Table 1 shows the differences in the values of various
optimized variables for the two systems. This table graphically
illustrates that, although N™ = M for both series networks, the
behavior of the two systems at optimal power is quite different.
Noting that p* = 1/2 for the M/M/1 series network, and that

*

2M . .
= ——=== for the series network with constant message
W,y &

length, we obtain the optimized values shown in Table 2. We see
from Table 2 that in the M/M/1 tandem, each of the M channels
contributes exactly 1 to the average number (for any value of M).
In the M/D/1 series net with equal capacities there is no queueing
at nodes / = 2, ..., M (all queueing occurs at the first channel).
In fact for the M/D/1 tandem, as M — oo, then p* — 1 (almost 1
in each server) and also the number in queue at the first node
M(l—_p*) - oo, As the table indicates, other system variables
(p*, N/, etc.) differ greatly for the two models, but in both cases

N'= MO

M/M/1 M/D/1

Average Number In Average Number In

Node | Queue | Server | System Queue Server System
, 1 1 1 M oM M+2M
2 2 1+V2M | 14V2M | 1+V2M
) 1 1 . 0 aM_ o _aM
2 2 1+V2M | 1+V2M
1 1 N2 M VoM
3 5 5 1 0 ——

1+V2M | 142 M

ViM | M

1 1 p

M-1 = = 1 0 | e
2 2 1+v2M 1+V2 M

M L L I 0 NIM o N2M

2 2 1+V2M | 1+2M
M M M M~N2M

Total — — M — ] - M
2 2 1+vV2M | 1+V2M

Table 2

4. The M/G/1 Parallel Network

This network model is for a parallel configuration of M
message channels, where channel / has capacity C,. The input to
the system is again Poisson with parameter A. The message length
distribution is arbitrary. Probabilities 0 < p<lfori=1,...,M

M
are given (3 p; = 1) which determine the channel a newly arrived
i=1
message chooses. Thus each channel / acts as an M/G/1 queueing
system with Poisson input rate X, = p,x, i =1, ..., M (see Fig-
ure 2). We wish to find that value of A\ which will maximize the
power of this parallel system. It can be shown [14] that the follow-

ing equation relates various optimized variables, namely

*

3

i=1 I*Pl

1-Nl=0. “.D
-%)

Let us exploit equation (4.1) to obtain various results about N".
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Figure 2 The M/G/1 Parallel Network
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Case I: M/M/1 Parallel Network

Assume all M channels are modeled as M/M/1 queueing
systems {exponential service). Then it is well-known that

—. p;
N A

i

= - i=1... M
1—p;

Thus equation (4.1) becomes

or
N = f;ﬁj* - f[ﬁ,*]z. 4.2)

(Note: this expression also appears in [5] as part of the M/M/1
series analysis.) From this equation we see

vl M_* M reE) T ¥ N7 M et vEd
N=3N = Z_)l[N, +[N, ~[N, ]2]] - ;[1—1+2N, —[N[ }2]
or
N = M—)A:l[l-ﬁ,*]? 4.3)

This immediately yields
Theorem 2

For the MIMII parallel network, the average number in system
at maximum power satisfies

N < M. 4.4)

This is the same bound mentioned above for the M/M/1 tandem.
Case 11: Equal Loads (arbitrary service time distributions)

We now assume that all M channels have equal loads, that
is, p;=p; ép for i,j € {1,... ,M}. This is similar to the series
assumption of equal capacities, since in that case the assumption of
equal capacities is equivalent to the assumption of equal loads
(same input rate A for all channels). Our point of departure is
again equation (4.1). Since p; Ap*for i=1,..., M we may
write that equation in the form

M
(oK) -0
1_[) ie=]
and so
M —_
2 (1-57) =0
i=1

or
M—*
SN =M
i=1

Hence, regardless of the service time distributions at the individual
nodes, the equal load assumption gives

Theorem 3

For the equal load MIG/I parallel network, power is maximized
when

N'= M. (4.5)

(Note: the special case M = 1 gives Kleinrock’s result that N'=1
for M/G/1.) Here again we see invariance with respect to service
time distribution. There is also an invariance with respect to load
scaling similar to the invariance with respect to scaling of channel
capacities for the M/D/1 series net.

Other system parameters are derived in [14]. Of interest is

. JH
VM T M (40,02

Here »; is the coefficient of variation of the service time distribu-
tion for channel /. In general, the values of the average number at
the individual nodes N,-* will depend on the service time distribution.
But amazingly, these quantities always add in such a way so as to

force the total number N* = M.

(4.6)

In the case of equal coefficients of service time variation at
the M nodes we can say more. We first express N,* by the
Pollaczek — K hinchin mean-value formula as (recall that p; = p*)

— "2
A Gy P ) @7
2(1—p" '
Assume now that v,2 =2 for i=1,...,M (which is certainly

true if all service time distributions are of the same type). Under
this additional assumption equation (4.6) gives

*

B 1
T o+

Also by equation (4.7) we clearly have
NI =N fori,jell, ... M}

and so

Thus by Theorem 3 we conclude
Corollary 4

For the MI/G/1 parallel network with equal loads and equal
coefficients of service time variation

N'=1 i=1....M 4.8)

5. Discussion

One of the difficult problems encountered in the design and
analysis of computer networks is the issue of flow control. The
comprehensive survey of Gerla and Kleinrock {8] describes the
current “‘state-of-the-art” in this area. These authors state the
main functions of flow control as:

1. prevention of throughput degradation and loss of efficiency

due to overload

2. deadlock avoidance

3. fair allocation of resources among competing users

4. speed matching between the network and its attached users
From the extensive literature on flow control we also mention the
book edited by Grange and Gien [15] which contains the proceed-
ings of a recent symposium devoted solely to the subject.

As mentioned earlier, the M/D/1 series network of section
3 may be used to model a virtual circuit in a packet network. A
window flow control scheme is often used with virtual circuits. Our

— M C_.
result that N =3, M (equation (3.1)) may therefore be used

i=1 i
as the window size setting for this path. This number is easily cal-
culable, and uses only local path information in the sense of Jaffe

[6].

The above M/D/1 expression for N* may also be used as
an approximation for the average number in system at maximum
power of the M/M/1 series model with arbitrary capacities. As
explained in [5] the calculation of N* for the M/M/1 tandem
involves the complexity of finding roots of polynomials. We have
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numerically calculated values for average number in system for the
M/M/1 series model with up to 100 channels and various combina-
tions of capacities. We have compared the results to values
obtained by operating the M/M/1 tandem at a window size given
from the M/D/1 equation (3.1). The error in value of power was
found to be small, although other system parameters had larger
error in some cases. The best cases were those with fewer channels
(as one might expect) and those with one slow server and all the
rest fast (the bottleneck case). This is pleasing because the bound
N*< M (as shown above for M/D/1 and given in [5] for M/M/1)
can be quite bad. For example, an M/M/1 series network with one
slow channel and all the other M — 1 channels say 8 (>> M) times
faster than this channel has.a value for the average number in sys-
tem which is close}:wto 1 {nowhere near the bound of A). But the
M/D/1 value of 3~ = 1+ M=

=1

L= 1 as expected. Thus equa-

tion (3.1) may be used as an approximation to the M/M/1 tandem.

We have seen that the average number in system for cer-
tain simple networks operating at maximum power is a quantity that
exhibits invariances in several ways and is numerically quite easy to
evaluate. Unfortunately the models studied do not take into
account interfering traffic. When more complicated networks are
considered, it appears that maximizing global power may be
difficult. Examples of networks have been given in which power
cannot be maximized using only local information [6] or in which
power is not a concave function {71, But the beautiful results
obtained for N* in the simple networks above may perhaps be used
as the basis for approximations to other nets (as in the use of the
M/D/1 series net to approximate the M/M/1 series net).
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