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Abstract

This paper proposes a set of techniques to restore the
regularity of a Boolean n-cube network in the presence
of node failures, and algorithms to effectively route
messages among the surviving nodes. An analytical
model to evaluate the degradation of a damaged net-
work is also presented.

One way to restore the regularily of a damaged
Boolean n-cube network is by simply disabling the
nodes with more than one bad neighbor. The remain-
ing network is called a “1-degraded subnet.” A very
simple optimal-path routing algorithm, which reguires
each node to know only its neighbor’s status, is devel-
oped for such a subnet. Since many nonfaulty nodes
may have to be disabled in construcling a 1-degraded
subnet, we further develop a heuristic algorithm to re-
store the network’s regularity by constructing a “sub-
net connected with optimal paths (SCOP),” where only
a few nodes must be disabled. The routing algorithm
used in 1-degraded subnets also works for SCOPs. To
preserve the processing power of the network, we also
propose a two-level hierarchical fault-tolerant routing
scheme without disabling any nodes.

1 Introduction

A major problem in designing a multiprocessor sys-
tem is to construct a reliable interconnection network
which provides efficient routing of messages among pro-
cessors. Recently, the Boolean n-cube network (also
known as the hypercube network) has become a widely
accepted interconnection architecture due to its topo-
logical properties as discussed, for example, in [1]. Sev-
eral research and commercial systems built on this type
of interconnection are now available [2].
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The success of the simple routing algorithms [3] used
in Boolean n-cube networks is based on the networks’
regularity properties. Although an interconnection
network is usually operated in a well-protected envi-
ronment, faults may occur. When some nodes or com-
munication links fail, the regularity of this “damaged”
network is destroyed and the routing algorithm may
no longer be applicable. To build a reliable multipro-
cessor system, the presence of fault-tolerant routing to
ensure successful communications between any pair of
nonfaulty nodes is essential. Moreover, since the chan-
nel speed of an interconnection network is very high,
the amount of time that a node can afford to spend in
making routing decisions is severely constrained. It is
important to have the routing algorithm as simple as
possible and hardware realizable.

To successfully route messages in a damaged
Boolean n-cube network, either the surviving nodes
or the messages must be equipped with information
about the locations of the faults. Several algorithms
requiring each node of the network to know only the
status of its local components (links and nodes) have
been presented in [4, 5]. However, the limitation of
these approaches is that either the total number of
faulty components is very restricted (e.g. less than
n) or the number of hops traversed by a message may
grow without bound. These problems can be solved by
providing each node with more information and having
it compute a “safe” route for each message. Algorithms
that require each node to know the global status of the
network have been reported in [6]. One can even as-
sume the surviving part of the network has an arbitrary
topology, in which case each node maintains a routing
table as used in networks such as the ARPANET (7, 8].
However, as the network grows in size, the amount of
storage space and time needed to maintain and update
these routing tables become prohibitive [9}.

Since a number of faults in a richly-connected
Boolean n-cube network may not destroy its entire reg-
ularity, the routing algorithm may take advantage of



the remaining topological regularity. Chen and Shin
[10] developed and analyzed a set of fault-tolerant rout-
ing algorithms based on the depth-first search princi-
ple. In their algorithms, each message contains a tag
to keep track of the path traveled so far to avoid vis-
iting a node more than once. To tolerate more than
n — 1 faults, a more complicated procedure is required
to guide backtracking whenever a message reaches a
dead end. Thus, the length of the packets is variable
and the computation overhead is not trivial. To further
guarantee that every message is routed to its destina-
tion via a shortest path, every node must be equipped
with nonlocal status [11].

In this paper, we begin with a queueing model to
evaluate the degradation of a damaged Boolean n-cube
network with node failures. We then develop a set of
techniques to restore the regularity of the network, and
algorithms to effectively route messages among the sur-
viving nodes. Our algorithms work under any number
of faults as long as the network remains connected.

We restore the regularity of a damaged Boolean n-
cube network by disabling the nodes with more than
one bad neighbor. The remaining network is called a
“l-degraded subnet.” We then develop a very simple
routing algorithm for such a 1-degarded subnet. With
this algorithm, each node only needs to know the status
of its neighbors, and every message is routed to its
destination via an “optimal path” (to be defined).

Though the 1-degraded subnet can easily be con-
structed in a distributed manner, many nonfaulty
nodes may have to be disabled. We develop a heuristic
algorithm to construct a subnet in which every pair of
surviving nodes are connected with at least an “opti-
mal” path. In this paper, such a subnet is called a
SCOP (Subnet Connected with Optimal Paths). We
show that only a small number of nonfaulty nodes will
be disabled. The optimal-path routing algorithm for a
1-degraded subnet also works in a SCOP. Some simu-
lation results are presented and compared with a lower
bound we develop.

To fully preserve the processing power of the net-
work, we further develop a two-level hierarchical fault-
tolerant routing scheme without disabling any non-
faulty nodes. With this approach, a non-optimally
connected network is decomposed into a set of clusters
such that every cluster forms a subcube with the same
property as a SCOP. Each node maintains a small rout-
ing table in which every entry of the table corresponds
to a destination cluster. Messages are first routed to
their destination clusters by use of these routing tables.
After a message has arrived at its destination cluster,
it is then routed to its destination via an optimal path.
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Figure 1: A Boolean 4-cube network with node faults.

2 Preliminaries

A Boolean n-cube network consists of 2" nodes, each
addressed by an n-bit binary number from 0 to 2" —1.
(See Figure 1, where faulty nodes are drawn as black
dots.) Nodes are interconnected in such a way that
there is a bidirectional link between two nodes, say i
and j, if and only if |i — j| = 2* for some integer k from
0 to n — 1; in this case, we say that these two nodes
are linked together in dimension k. For example, in
a Boolean 4-cube network, nodes 1000 and 1010 are
linked together in dimension 1. It can be seen that by
removing all the links in any particular dimension, a
Boolean n-cube network is separated into two (n — 1)-
cube networks.

Every “subcube” in a Boolean n-cube network can
be uniquely addressed by a string of n symbols drawn
from the set {0, 1, X}, where X is a don’t care symbol
(10]. For example, in a Boolean 4-cube network, nodes
0001, 0011, 0101 and 0111 form a subcube addressed
by 0XX1. A node is itself a subcube.

The Hamming distance between any two nodes is
defined as the number of bits which differ between their
addresses. The length of a path from one node to an-
other is defined as the number of links on the path.
An “optimal path” between two nodes is a path whose
length is equal to their Hamming distance. A node
might not be able to communicate with another via
an optimal path in a damaged network. For exam-
ple, in Figure 1, node 0110 cannot communicate with
node 0101 via an optimal path. However, they are able
to communicate with each other via the path through
nodes 1110, 1100 and 1101. This path is called a short-
est path since, among all the possible remaining paths
between these two nodes, its length is minimal.

Routing algorithms for Boolean n-cube networks
can be found, for example, in [3]. Let the header (ad-
dress portion) of a newly generated message be the
exclusive-OR of the message’s source and destination
addresses. Every one-bit in the header corresponds to a
valid dimension over which the message can be sent one
hop closer to its destination. When a message is sent
over a valid dimension, the corresponding one-bit is



changed to zero. Here, the selection of a possible valid
dimension for transmission can be adaptive to traffic.
A message reaches its destination when its header con-
tains only zeroes. It is clear that, with this algorithm,
all messages are routed to their destinations via their
optimal paths. However, this routing algorithm cannot
work for such a damaged network as shown in Figure
1 since all the optimal paths between nodes 0110 and
0001 are blocked.
In this paper, we make the following assumptions:

¢ The remaining network is connected.

o Since nodes (or processors) are more complex than
links and therefore have higher failure rates, we
assume only node failures. To consider a link fail-
ure between two nonfaulty nodes, one may disable
one of these two nodes. In [12], our algorithms are
extended to consider link failures.

e Each node knows the status of its neighboring
nodes.

o A node cannot transmit a message to a faulty
neighboring node.

e Messages are only destined for nonfaulty nodes.

3 Degradation of Networks with Node
Faults

In this section, we present a simple queueing model
to evaluate how much a network is degraded by node
faults. In many cases it is likely that the failure rate of
multiprocessor systems is very small. Let each node fail
independently with probability p. We also assume that
the arrival of input messages to each node follows a
Poisson process with a rate of A messages per unit time;
message lengths are random and drawn independently
from an exponential distribution. Since a link survives
if and only if both nodes at its ends survive, we have

Prob[A link survives] = (1 - p)*.

Figure 2 shows a Boolean n-cube network with a
“cut” in its third dimension. The expected number of
surviving links crossing any dimension is given by

27 (1-p)% 1)
We further assume that messages are uniformly des-
tined to all other surviving nodes in the network. Thus,

A . . .
a = traffic intensity from a given source

to a particular destination
A

»(1-p)-1.
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Figure 2: A cut in dimension 3. (Surviving links cross-
ing the cut are shown as heavy lines).

From Figure 2 we note that every message which
is generated from a node in the left subcube which is
destined to a node in the right subcube must travel over
one of the surviving links in order to cross the “cut”.
If a message travels along an optimal path between
these two nodes, the message must travel across the
“cut” exactly once. We further assume that the traffic
crossing this “cut” is perfectly balanced. The average
number of surviving nodes in each subcube is 2"~(1 —
p). Each will send o units of traffic to every other
surviving node in the network. Thus each node will
send a[2"~!(1—p)] units of traffic across each cut. Since
there are 2"~!(1 —p) nodes in each subcube doing this,
and traffic is balanced on each link, we have

p = Traffic load per channel (2)
27-—1 1-~- 2
[ 2n-1((1 —ng?a ®
A
T 2(1-p) -2 @

Here, the channel is unidirectional. Obviously, this
model yields an optimistic bound.

We apply Kleinrock’s Independence Assumption [8]
which is often used in the delay analysis of communica-
tion networks. This assumption states that each time
a message is received at a node within the network, its
transmission time is chosen independently from an ex-
ponential distribution. We assume the mean transmis-
sion time of a message equals one unit of time. Thus,
each channel is modeled as an M/M/1 system with
Poisson arrivals at a rate A/[2(1 — p) — 2!™"] and with
an exponential service time whose mean is one unit of
time. In order for this system to be stable, we require
that p < 1, that is,

A<2(1—-p)-2""" (5)
We define

+ = Throughput of the network,



then we have
7 = A2*(1-p) (6)
< 22"(1-p)-1j(1-p), (M

where 2[2%(1 —p) —1](1 ~p) is clearly the mean network
communication capacity. The mean message delay is
then given by [8]

M

T 1 e
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where M is the number of surviving channels in the
network (M = 2""1(1 - p)?2n). Thus,

_ n(l —p)
T= 2(1-p) 21" — ).

(8)

We further obtain the following approximations for

n>>1.
A

PR oi-p), ©
v < 2"(1 - p)?, (10)
and (1 |
~_Ml-p)
To21-p) = A (1)

In Figure 3 we show the mean message delay ob-
tained from our optimistic model for a Boolean 4-cube
network with two different failure rates. We also ran a
flow deviation program [14] to find the minimal achiev-
able delay. We find that our assumptions are appro-
priate if failure rates are small.

Moreover, in most queueing systems, two perfor-
mance measures, response time and throughput, com-
pete with each other. Typically, by raising the
throughput of the system, which is desirable, the mean
response time is also raised, which is undesirable. Here,
we combine the throughput and the mean message de-
lay of the network into a single measure, power, which
is defined as follows [13].

Throughput of the network
Mean message delay

Power =

A system is said to be operating at an optimal point
if the power at that point is maximized. For n >> 1,
we find that power is maximized when A = 1 —p which
is equal to half the maximum allowed throughput per
node, as found in [13].
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Figure 3: Minimal achievable delay of a Boolean 4-cube
network with two different failure rates.

4 Routing in 1-Degraded Subnets

A network is said to be k-degraded if every surviving
node in the network has at most k “bad” (to be dis-
cussed) neighbors. A damaged network can easily be
made k-degraded in a distributed manner as follows:
Every surviving node (or nonfaulty node initially) has
a list which gives the status of its neighboring nodes.
Every surviving node checks its list and disables itself
if it has more than k¥ “bad” neighbors; in this case, it
must inform all its surviving neighbors of the change
in its status. Every surviving node keeps updating its
list until it disables itself or the disabling process stops.
Here, during each step of the iteration, the “bad” nodes
include all faulty nodes and all nodes which have been
disabled in previous iterations. We call the remaining
network a “k-degraded subnet.”

We now present a very simple adaptive routing al-
gorithm for 1-degraded Boolean n-cube subnets. This
algorithm requires each node to know only its neigh-
bors’ status. We let neighbor _status be an n-bit binary
number in which a bit is set to one if its correspond-
ing neighbor is surviving. Otherwise, the bit is reset
to zero. This routing algorithm is shown in Figure 4,
where “&”” is a bit-wise AND function. We note that,
with this algorithm, every message is routed to its des-
tination along an optimal path.

The proof that this routing algorithm works for 1-
degraded Boolean n-cube subnets is as follows: If a
node receives a message with more than one one-bit in
its header, the node surely can find a valid dimension
(or channel) to transmit the message. If the message
has only a single one-bit in its header, then the corre-
sponding neighbor must be surviving. Otherwise, the
assumption that messages are only destined for surviv-
ing nodes is violated.



‘When a message is received,

if (header =0)
Send the message to the local processor.

else
valid_channels <- header & neighbor_status.
Randomly select & 1-bit from valid_channels.
Change the selected 1-bit in the header to 0.
Send the message over the selected channel.

Figure 4: The optimal-path routing algorithm for 1-
degraded subnets

% Surviving Nodes

Figure 5: Percentage of surviving nodes in the 1-
degraded subnets.

This approach works well in the situation where a
whole cluster of nodes has been “bombed out.” As an
example of such spatially correlated faults, one may
consider a power-supply failure which disables the en-
tire cluster of nodes supported by it.

The disadvantage of this approach for 1-degraded
subnets is that, in a large Boolean n-cube network
with moderate failure rates, since every node has a
large number of neighbors, the probability that a node
has more than one bad neighbor can be large. As a re-
sult, many nodes may have to be disabled; hence, the
computational power of the system is significantly re-
duced. Figure 5 shows, for networks of different sizes,
the percentage of nodes that remain after the disabling
iteration settles down, given that nodes initially fail in-
dependently with a given probability.

5 Construction of a SCOP

In this section, we develop a heuristic algorithm to
construct a subnet where every pair of surviving nodes
is connected with at least one optimal path (or we say
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every pair of nodes is optimally connected). We call
such a subnet a SCOP (Subnet Connected with Opti-
mal Paths). We show that our routing algorithm for
1-degraded subnets works in such a subnet.

In a Boolean n-cube network, a node and its k neigh-
bors can uniquely identify a Boolean k-subcube, where
0 < k < n. We note that such a subcube is the small-
est subcube containing the node and its k neighbors.
For example, in a Boolean 4-cube network, the node
0110 and nodes 0100 and 0111 can identify the subcube
01XX. Moreover, any two nodes which are k hops away
in distance can also identify a Boolean k-subcube.

We assume there is a central control unit that col-
lects information from every surviving node of the net-
work and makes decisions about how to disable a node.
Here is a heuristic algorithm for constructing a SCOP:
We let Listfi] be a check-list which contains all sur-
viving nodes with i bad neighbors. Again, the “bad”
nodes include all faulty nodes and all nodes having
been previously disabled. Nodes on Listfi] have higher
priority for disablement than any other nodes on the
list with smaller :. That is, the node with most bad
neighbors (worst connection) has the highest priority
of being disabled.

We choose a node, say node j, from the highest pri-
ority non-empty check-list, and simply find the small-
est subcube containing node j and all its bad neighbors
(e.g. in Figure 1, node 0110 and subcube 0XXX). It is
clear that without routing through the links outside the
subcube, node j cannot communicate with any other
surviving nodes of the subcube. If the total number of
surviving nodes in the subcube is more than 2, node
j is disabled. If the number of surviving nodes in the
subcube is exactly 2, we choose to disable either one of
them (See [12].). Otherwise, node j is safe at this mo-
ment and is removed from the lists. A safe node may be
brought back to the check-lists if any of its neighbors
is disabled. The algorithm stops when every surviving
node is safe. Figure 6 illustrates a resulting SCOP for
the sample Boolean 4-cube network as shown in Fig-
ure 1. In [12], we show the number of surviving nodes
of the SCOPs obtained from our heuristic algorithm is
very close to the number of surviving nodes achievable
by an exhaustive search.

We now prove the optimal-path routing algorithm
we developed for 1-degraded subnet works for a SCOP.
If the destination node of a message is k hops away
from the node where the message is currently resid-
ing, the current node should have k valid dimensions
to choose from. Since the k-subcube identified by the
current node and the destination node is optimally
connected, the current node must be able to find at
least one valid dimension to transmit the message.
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Figure 6: A SCOP of the Boolean 4-cube as shown in
Figure 1.

% Surviving Nodes

Figure 7: Percentage of nodes remaining in the SCOPs.

Thus, if every subcube is optimally connected, then
the optimal-path routing algorithm works.

Figure 7 shows the percentage of nodes which re-
main in the SCOP, given that nodes initially fail inde-
pendently with a given probability. Comparing this
with the percentage of nodes which remain in the
1-degraded subnet, we find the number of surviving
nodes is dramatically increased. In Figure 8, we com-
pare these two disabling schemes by showing the per-
centage of surviving nodes in a Boolean 8-cube net-
work.

It is very difficult to analytically evaluate the per-
formance of arbitrary networks in a dynamic traffic
environment. In this paper, routing in the SCOPs
is extensively simulated. To verify the effectiveness
of our routing algorithm, for each failure pattern, we
also ran a flow deviation program to find the minimal
achievable delay. These results are also compared with
the optimistic bound obtained in Section 3. Figure 9
shows, for different input rates, the mean message de-
lay in the SCOPs of a Boolean 6-cube network. The
results with 95% confidence shown here were from 100
randomly generated patterns, each containing 6 faulty
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Figure 8: Comparison of percentage of surviving nodes,
n=8.
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Figure 9: Mean delay of the SCOPs of Boolean 6-cube
netowrks. Each network has 6 faulty nodes.

nodes. We find that the mean message delay is very
close to the minimal achievable bound, which is also
very close to the optimistic bound.

6 Two-level Hierarchical Routing

In this section, without disabling any nonfaulty
nodes, we restore the regularity of a damaged Boolean
n-cube network by decomposing the network into a set
of clusters such that every cluster forms a subcube with
the same property of a SCOP (i.e. every pair of the
surviving nodes of a cluster is connected with at least
an optimal path). A two-level hierarchical routing al-
gorithm, which requires every node to maintain a small
routing table, is then developed.



node | bad dimensions
0000 12

0001 13

0101 01

0110 012
1011 13

Table 1: Bad dimensions for each surviving node with
more than one bad neighbor.

6.1 The Two-level Network Decomposi-
tion

A non-optimally connected Boolean n-cube network
is decomposed into a set of clusters as follows. For all
the surviving nodes which have more than one bad
neighbor, the central control unit counts the number
of bad links in each dimension. The central control
unit then chooses the dimension having the most bad
links and cuts the network into two clusters along this
dimension. Each of these two clusters is an (n — 1)-
subcube. A subcube must be further decomposed if
not every pair of surviving nodes of the subcube is
optimally connected.

Again, as an example, let us examine the Boolean
4-cube network with 5 faulty nodes as shown in Figure
1. Clearly the network is not optimally connected. In
Table 1 we show, for each surviving node with more
than one bad neighbor, the dimensions along which
its neighbors are bad. In this example, dimension 1
has the the maximum number of bad links (i.e. 5).
We decompose the network along dimension 1. As a
result, the network is separated into the following sub-
cubes: XX0X and XX1X. In this case, both of these
two subcubes are optimally connected. The two-level
hierarchical structure is shown in Figure 10.

6.2 Routing in the Two-level Hierarchical
Network

Messages must first be routed to their destination
clusters. Every surviving node maintains a cluster
routing table with one entry for each destination clus-
ter. Each entry gives the address of a destination clus-
ter, the best outgoing channel for that cluster, and a
relative weight (usually delay is used as the weight).
Any algorithm (e.g. the ARPANET-like algorithm)
can be used to maintain the cluster routing table.

When a node receives a transit message, if the des-
tination node of the message does not belong to the
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Figure 10: A two-level hierarchical structure of a 4-
cube network with 5 node faults as shown in Figure
1.

cluster in which the node resides, the message is sent
to a neighbor based on the node’s cluster routing ta-
ble. Otherwise, the message is routed to its destination
node using the routing algorithm for 1-degraded sub-
nets. To exploit the possible multiple paths from one
node to another in a cluster and balance the network’s
traffic, the message is sent along a most lightly loaded
channel in its destination cluster. We may further im-
prove the performance by providing multipath routing,
where each entry of the routing table gives multiple
choices of outgoing channels.

6.3 Discussion

This hierarchical routing approach has the following
advantages:

¢ No good links or nodes are eliminated. The pro-
cessing power of the nonfaulty part of the network
is fully maintained.

o The size of the routing table is significantly re-
duced from the ARPANET-like routing table. In
[12], we show that the number of clusters gener-
ated by decomposition cannot exceed the number
of faulty nodes in the network.

e The optimal-path routing algorithm for 1-
degraded subnets works for each cluster.

e The number of hops traversed by a message is
bounded.

e The increase in the mean path length caused by
hierarchical routing is typically very small {12].



7 Conclusions

In this paper, we first developed a queueing model to
evaluate the degradation of a damaged Boolean n-cube
network with node faults. We next developed an adap-
tive fault-tolerant routing algorithm for 1-degraded
subnets. This algorithm is very simple; it makes rout-
ing decisions based only on the node’s local status.
This algorithm routes every message to its destination
via an optimal path.

We further exploited the remaining regularity of
a damaged Boolean n-cube network and developed a
heuristic algorithm to construct a subnet (i.e. SCOP)
in which every pair of surviving nodes is connected
with at least one optimal path. We showed the al-
gorithm used in a 1-degraded subnet also works for a
SCOP. Only a small number of nonfaulty nodes must
be disabled. The performance of the optimal-path
routing algorithm in SCOPs was studied. We found
the mean message delay is very close to the minimal
achievable bound.

To preserve all the nonfaulty nodes in the net-
work, we also developed a two-level hierarchical rout-
ing scheme. A damaged Boolean n-cube network is
decomposed into a set of clusters; each of them is
a SCOP. Every surviving node in the network is re-
quired to maintain a small routing table. A two-level
hierarchical routing algorithm has also been developed.
This approach maintains the network’s rich connection
without disabling a single nonfaulty node. In [12], we
show that the probability of routing a message to its
destination via a shortest path is very high and that the
increase in the mean path length caused by hierarchi-
cal routing is very small. More simulation results are
being collected and some other performance measures
such as the mean delay, the throughput of the network
and hot spot problems are also being evaluated.
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