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Abstract: This paper extends the applicability of exact analysis of the 
GSPN model by providing methods to improve the time and space com- 
plexity of both state space and structural level reduction. For state space 
level reduction, we maximize the concurrent firing of immediate transi- 
tions. For structural level reduction, we minimize the number of gener- 
ated replicas for timed transitions by using branch and bound techniques 
to create concurrent replicas that simulate the firing of the timed transition 
followed by the simultaneously firing of multiple immediate transitions. 

1 I n t r o d u c t i o n  

State space level reduction techniques eliminate vanishing markings by concur- 
rently firing multiple immediate transitions in a single state space transition 
[1, 4]. Structural level reduction techniques eliminate immediate transitions, the 
source of vanishing markings, by iteratively creating replicas of a timed transi- 
tion to simulate the firing of the timed transition followed by the firing of an 
immediate transition [2, 6]. 

This paper provides data  structures and algorithms to extend the applicabil- 
i ty and to efficiently implement both state space and structural level reduction 
of the GSPN model. With respect to state state space level reduction, we rely 
on knowledge of the given marking, as well as the GSPN structure, to maximize 
the concurrent firing of immediate transitions. In addition, we develop efficient 
algorithms to generate the concurrent transition firing combinations and their 
corresponding firing probabilities. With respect to structural level reduction, we 
avoid the generation of redundant replicas by applying state space level reduction 
techniques at the structural level to generate concurrent replicas which simulate 
the firing of a timed transition followed by the concurrent firing of multiple im- 
mediate transitions. In addition, we use branch and bound techniques to both 
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avoid the generation of infeasible replicas and permit  efficient determination of 
the feasibility of generated replicas. 

The remainder of the paper is organized as follows: Section 2 defines the data  
structures to  represent the GSPN model. Section 3 and Section 4 develop the 
algorithms for state space and structural level reduction, respectively. Finally, 
Section 5 provides concluding remarks. 

2 D a t a  S t r u c t u r e s  for the  G S P N  M o d e l  

We assume the reader is familiar with the structural level definition and basic 
properties of the GSPN model. The parameters in the formal eight-tuple are 
standard GSPN notation as defined in [3]. 

GSPN~(P,T,H(.) ,  W-(.),  W+(.), wH(.), Mo, A(.)). 

We restrict the GSPN model to include only two priority levels such that  imme- 
diate transitions have priority over timed transitions. The notat ion W-(p,t) ,  
W + (p, t), and WH(pl t) denotes the multiplicity of place p in the input, output,  
and inhibitor functions of transition t. When appropriate ,  we employ a vector 
representation for a bag such that  each vector component equals the correspond- 
ing bag multiplicity. Boldface type distinguishes the vector representation of a 
bag. If no inhibitor arc exists from place p to transition t, then the multiplicity 
of place p in the inhibitor bag of t is infinity. An inhibitor arc with weight in- 
finity is equivalent to the absence of an inhibitor arc. We adopt the infinite arc 
weight representation to facilitate the use of bag operations. 

In this section, we provide data structures to represent the structural level 
specification of the GSPN model. These data structures support  the implemen- 
tation of both state space and structural level reduction. Either a directed graph 
or a bag represents each component of the formal GSPN tuple. 

2 . 1  R e p r e s e n t a t i o n  o f  D i r e c t e d  G r a p h s  a n d  B a g s  

We represent a directed graph with an adjacency list for each node in the graph. 
Let G = (V, E)  be a directed graph with the set of nodes V and set of arcs E.  A 
node w is in the adjacency list of a node v if and only if there exists a directed 
arc from v to w. 

We represent a bag B of a set S with a variable length ordered K-tuple  
((nk,Xk) : 1 < k < K < ISI). The elements in S are assigned an arbitrary 
numerical ordering and each variable xk indexes a set element. Each variable 
n k specifies the multiplicity in bag B of the set element indexed by xk. The 
ordering of the list requires the index Xk to be less than the index Xk+l. We use 
the ordered tuple to represent the input, output,  and inhibitor functions of a 
GSPN. For an inhibitor function, the absence of a place in the tuple represents 
a multiplicity of infinity for that  place in the corresponding bag. 
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The power set of a bag is the set of all subbags. Both state space and 
structural level algorithms defined in Section 3 and Section 4 require the de- 
termination of which subbags in a given power set satisfy application specific 
feasibility constraints. 

2 .2  T r e e  R e p r e s e n t a t i o n  f o r  a P o w e r  S e t  

A tree structure representation of the power set facilitates the use of branch and 
bound techniques to avoid enumeration and examination of  infeasible subbags 
in a given power set. Each node of the tree represents a subbag in the power set. 
The root node of the tree is at level zero and represents the empty set. The path 
from the root node to any given node defines the subbag corresponding to that 
node. Specifically, the arc label from level k to level k + 1 on the path specifies 
the (k + 1)st ordered pair in the tuple that represents the subbag corresponding 
to the given node. 

To perform a BFS generation of a power set tree for a bag B, a branching 
function defines the outgoing arcs of a generated node. Specifically, let the tuple 
{(nl, Xl)(n2, x2) �9 �9 (nk, Xk)} represent the subbag associated with a generated 
node u. The branching function creates a node v and a directed arc with label 
(nk+l,Xk+l) from node u to v if and only if xk < xk+l <_ ISI and the mul- 
tiplicity nk+l is less,than or equal to the multiplicity in the bag B of the set 
element indexed by xk+l. This branching function both ensures each node in the 
tree represents a subbag in the power set and avoids the generation of multiple 
instances of the same subbag. For each generated node, the evaluation of ap- 
plication specific feasibility constraints determines the feasibility of the subbag. 
Likewise, the evaluation of an application specific bounding function determines 
if all subbags in the subtree rooted at a generated node are infeasible, thereby 
avoiding the generation of identified infeasible subtrees. A good bounding func- 
tion should prune a substantial number of nodes in the power set tree, while 
maintaining an efficient evaluation at each generated node. 

2 .3  G r a p h i c a l  R e p r e s e n t a t i o n  o f  I m m e d i a t e  T r a n s i t i o n s  

We represent the set of immediate transitions by a directed graph which por- 
trays a partial order among transitions with respect to their enabling conditions. 
We assume the trivial restriction that the GSPN contains no source immediate 
transitions. 

2.3.1 Structural Enabling Cover Relation 

The structural enabling cover relation provides sufficient structural conditions 
for the enabling of one transition to dictate the enabling of another transition. 
Transition ti is a structural enabling cover (SEC) for transition tj if and only if 
the input function of tj is a subbag of the input function of t~, and the inhibitor 
function of ti is a subbag of the inhibitor function of tj. For example, given the 
GSPN in Figure 1, t~ is a structural enabling cover oft1. The SEC relation is a 
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transitive, antisymmetric, reflexive relation that provides a partial ordering on 
a set of immediate transitions. Formally, 

ti SEC tj iff W-(t j )  C W-(ti)  N wH(ti) _C WtI (tj ). (1) 

2.3.2 Enabling Graph 

The enabling graph (EG) is a directed acyclic graph that depicts the partial order 
among the set of immediate transitions with respect to the structural enabling 
cover relation. Each node v of an EG contains a set of transitions Tv such that 
there exists a path of zero length or more from the node containing transition 
ti to the node containing transition tj if and only if ti is a structural enabling 
cover for tj. An EG is minimal if there does not exist a subgraph of the EG 
which also reflects the SEC partial order. Figure 1 shows a GSPN immediate 
subnet and its corresponding enabling graph. 

: |  t l  . ~ t5 ..  

t l  t6 

I 
PP5 / #tl  plO EC9 1 gCS I 

Figure 1: GSPN Subnet and Enabling Graph 

2 .4  E x t e n d e d  C o n f l i c t  S e t s  

The partitioning of the set of immediate transitions into extended conflict sets 
(ECSs) effectively partitions the connected components of the enabling graph. 
In other words, transitions in the same connected components of the EG must be 
in the same ECS. Specifically, the SEC partial order depicted in the EG dictates 
that the transitions contained in any two nodes connected by a directed path are 
in symmetric structural conflict. And, the transitive and reflexive closure of the 
symmetric structural conflict relation dictates that the transitions contained in 
any two nodes connected by an undirected path are in the same ECS. Figure 1 
shows the partitioning of the connected components of the EG into ECSs. 
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3 S t a t e  Space  Level  R e d u c t i o n  M e t h o d s  

The concurrent firing of immediate transitions in a single state space transition 
eliminates the intermediate vanishing markings that derive from all possible 
firing order permutations. In this section, we extend the reduction methods 
developed in [1] to permit the concurrent firing of transitions both in different 
ECSs and within an ECS of a structurally confused immediate subnet. 

3.1 Enabling and Firing Rules for Concurrent Firings 
The enabling bag EB(M) is a bag of transitions that specifies not only which 
transitions are enabled in marking M, but also the number of enablings EB (t, M) 
of each transition t. Formally, 

0 t r E(M) 
EB($, M) = max{ n e/~r I nW-(t)  C M } otherwise (2) 

A transition firing combination X is a bag of transitions such that the mul- 
tiplicity of a transition in the bag specifies the number of times the transition 
fires. Formally, the concurrent firing of a bag of transitions X in marking M 
results in the new marking M': 

M' = M - ~j-~ X(t)W-(t)  + ~_X(t)W+(t). (3) 
t~T  tET 

3.2 Marking Dependent Properties 
The disabled status of certain transitions in a given vanishing marking can elimi- 
nate both confusion and conflict present in the GSPN structure. In this section, 
we define marking dependent counterparts of structural properties to identify 
the absence of confusion and conflict among transitions, thereby permitting the 
maximum concurrent firing of immediate transitions. 

3.2.1 Marking  Confusion-Free Property 

In a given vanishing marking, an immediate subnet possibly containing struc- 
tural confusion is marking confusion-free if for any enabled transition tk and any 
disabled transition tj in the same ECS, the causally connected set CCSt~(tj) 
contains no enabled transitions. In other words, the firing of an enabled transi- 
tion in one ECS cannot enable a disabled transition in another ECS. For example, 
in Figure 1, the immediate subnet containing ECS1 and ECS2 is marking, but 
not structurally, confusion-free. Formally, for marking M, an immediate subnet 
is marking confusion-free if: 

k/tk E E(M) Vtj e ECS(tk) I"1E(M), CCSt~(tj) (1E(M) = 0. (4) 
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3.2.2 Marking F r ~ - C h o i c e  Property  

In a given vanishing marking, a non free-choice ECS exhibits the free-choice 
property for a specified number of transition firings if the set of enabled tran- 
sitions in the ECS remains unchanged for these transition firings. Let n be the 
minimum number of enablings over all the enabled transitions in a given ECS. If 
the firing of any enabled transition in the ECS does not increment the inhibitor 
place of any other enabled transition in the ECS, then all the enabled transitions 
in the ECS remain enabled for n transition firings within the ECS. In addition, 
if the immediate subnet of the ECS is marking confusion-free then all disabled 
transitions in the given ECS remain disabled for these n transition firings. For 
example, ECS2 in Figure 1 is not free-choice; however, ECS2 is marking free- 
choice for the first two transition firings. Formally, for a a given marking M, 
an ECS in a marking confusion-free subnet is marking free-choice(n) if for all 
ti, t j  E E C S  A E B ( M ) ,  

n = min{ES( t i ,  M)} N (W+(t j )  - W - ( t j ) )  N w g ( t , )  = 0. (5) 
t~ 

? 

3 . 3  C o n c u r r e n t  T r a n s i t i o n  F i r i n g  C o m b i n a t i o n s  

In this section, we define methods to identify which transition combinations can 
fire concurrently, along with their associated firing probabilities. 

In a marking free-choice(n) ECS, the set of enabled transitions remains un- 
changed throughout the firing of any n transitions within the ECS. Thus, the 
firing probability of each of the n transitions is independent of its order in the 
firing sequence. This independence permits the concurrent firing of the first n 
transitions to fire within the ECS. Specifically, the set of concurrent transition 
firing combinations within a free-choice(n) ECS is the set of all unique transition 
combinations when selecting n transitions to fire, with replacement and without 
regard to order, from the set of enabled transitions in the given ECS. 

The general branch and bound generation of a power set tree as defined in 
Section 2 provides an efficient method to generate all concurrent transition firing 
combinations within a marking free-choice(n) ECS. Without loss of generality 
let t l  through tm be the set of enabled transitions in the ECS. Let T~ denote 
the bag of that  contains a multiplicity of n for each transitions t l  through tin. 
The feasibility constraint dictates that a subbag of T,~ is a concurrent transition 
firing combination if and only if the cardinality of the subbag is n. Likewise, 
the bounding function avoids the generation of all nodes that represents subbags 
with a cardinality that  exceeds n. In other words the leaf nodes of the generated 
portion of the power set tree represent the concurrent transition firing combina- 
tions. To achieve a reduction in space requirements, the algorithm discards any 
infeasible node after the generation of all the node's outgoing arcs. 

The firing probability associated with any concurrent transition firing combi- 
nation X must equal the probability of firing the transitions in X one at a time 
in any different firing order. Specifically, the firing probability of X is simply the 
product of the firing probabilities for each transition in X times the number of 
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permutations, defined by the multinomial coefficient, to account for all possible 
firing orders. Formally, 

~ 1 x(to n] 
Prob{X fires } = H X(t,)! ,,exl-I A(tj) (61 

t~6X L tj eE(M)NECS(t~) 

By direct extension of the results in [3], the underlying Markovian process of 
the GSPN is independent of the firing order of transitions in different ECSs of a 
marking confusion-free immediate subnet. This independence permits the con- 
current firing of transitions in the different ECSs. Thus, the Cartesian product 
of the sets of concurrent transition firing combinations over each ECS defines 
the set of concurrent transition firing combinations for the immediate subnet. 
Likewise, the firing probability associated with any concurrent transition firing 
combination for the immediate subnet is simply the product over the firing prob- 
abilities of the corresponding concurrent transition combinations for each ECS 
within the subnet. 

3 .4  T i m e  a n d  S p a c e  C o m p l e x i t y  A n a l y s i s  

In [I], they discuss the reduction in vanishing markings achieved by the con- 
current firing of transitions in different ECSs. In this section, we provide a 
theoretical analysis of the reduction in the number of vanishing markings gener- 
ated through the concurrent, rather than sequential, firing of transitions within 
an ECS. For a given marking free-choice(n) ECS with m distinct enabled transi- 
tions, the number of resulting markings from firing all feasible concurrent firing 
combinations is simply the number of ways to distribute n non-distinct objects 
into m distinct cells. The sequential firing of transitions generates the intermedi- 
ate vanishing markings to account for all possible transitions firing combinations 
after the firing of each transition within the sequence. Formally, the reduction 
in the number of vanishing markings generated by the concurrent, rather than 
sequential firing of n transitions is: 

n - - I  

1 �9 (7) 

4 S t r u c t u r a l  L e v e l  R e d u c t i o n  M e t h o d s  

In this section, we modify the structural level reduction algorithms proposed 
in [2, 5] to avoid the generation of redundant replicas that simulate different 
firing order permutations of the same transition firing combination. To replicate 
a timed transition, the proposed structural reduction algorithm first computes 
all feasible bags of enabled immediate transitions directly after the firing of the 
given timed transition. Given a feasible bag of enabled immediate transitions, 
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the state space reduction methods defined in Section 3 provide all the feasible 
concurrent transition firing combinations and their corresponding firing proba- 
bilities. The direct applicability of state space level reduction techniques at the 
structural level is due to the dependency of the state space reduction techniques 
on only the bag of enabled transitions, rather than the actual markings. Each 
generated replica corresponds to both a feasible bag of enabled transitions and 
a concurrent transition firing combination within the bag. The computed en- 
abling conditions for the feasible bag of enabled transitions dictate the input 
and inhibitor functions of a replica, while the input and output functions of the 
transitions in the concurrent transition firing combination dictate the replica's 
output function. Iterative replications of a timed transition result in replicas 
that simulate the firing of the timed transition followed by each possible firing 
combination of immediate transitions. Within this section we provide an out- 
line of the modified structural reduction algorithm and a corresponding example 
showing the reduction of transition t9 in Figure 1. For simplification, the exam- 
ple does not include inhibitor ares; however, all formulas fully account for the 
effect of any inhibitor arcs. 

4 .1  Maximum Bag o f  E n a b l e d  Transitions 

A timed transition's maximum enabled bag (MEB) is a bag of immediate tran- 
sitions such that the multiplicity of each transition in the MEB corresponds to 
its maximum possible number of enablings directly after the firing of the timed 
transition. Since all feasible bags of enabled transitions must be a subbag of the 
MEB, the cardinality of the MEB's power set specifies the potential number of 
replicas created during a single replication step. To minimize this exponential 
complexity, we extend the GSPN structural properties defined in [3] to establish 
stringent sufficient structural conditions which restrict the maximum number 
of direct enablings. These structural properties must also be inclusive enough 
to determine when the GSPN structure prohibits any enablings of immediate 
transitions, thereby signifying the completion of the iterative replication of the 
timed transition. 

4.1.1 S t ruc tura l  Enable  Relat ion 

The structural enable (SE(n)) relation provides necessary structural conditions 
for the firing of a transition to achieve n direct enablings of another disabled 
transition. For the firing of transition t~ to enable transition t j, the firing of t~ 
must either increment an input place or decrement an inhibitor place of tj. If 
the incremented input place of tj is also an input place to ti then the arc weight 
from the input place to t~ must be less than the arc weight from the input place 
to tj. This condition allows the incremented input place to contain sufficient 
tokens to enable ti while concurrently disabling tj. Analogous conditions apply 
to the decremented inhibitor place. If the firing of a timed transition can enable 
an immediate transition by decrementing an inhibitor place, then the maximum 
number of enablings of the immediate transition depends on the initial marking 
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and is indeterminate with respect to the GSPN structure. Otherwise, the in- 
creased token count in the incremented input places of the immediate transition 
dictate an upper bound on the maximum number of enablings. For example, in 
Figure 1, the firing of t9 structurally enables both tl and t2 two times and t3 
one time. Formally, ti SE(n) tj iff Sp E P, 

((W+O~,ti) - W-(p,  ti) <~ O) N (WH(p, ti) ~> WH(p, tj))) U (8) 

< >.) 
I w-(v ,  tj) I -  " 

4.1.2 Structural  Disable  Rela t ion  

The structural disable (SD(n)) relation provides sufficient structural conditions 
for the firing of a transition to prohibit n direct enablings of another transition. 
Specifically, if the firing of transition ti increments an inhibitor place of transition 
tj by a token count which exceeds the weight of the inhibitor arc, then the 
structure prohibits the firing of ti to directly enable tj. Otherwise, if there 
exists a place which is an inhibitor place to ti and an input place to t j, then 
the enabling and subsequent firing of the ti dictates an upper bound on the 
maximum number of direct enablings of tj. This particular circumstance is 
somewhat unusual for a non-structurally reduced CSPN; however, during the 
iterative replication process this restriction on the enabling conditions of a replica 
specifies which markings map into which feasible bags of enabled transitions. 
Formally, t~ SD(n) tj iff 3p E P, 

W+(p,t,) > wu(p, t j )u [WU(p,t,) + w+(p,t,) - W-(p,t ,)]  
- W-(p, tj) < TM 

(9) 

Note that the structural disable relation provides sufficient conditions for the 
firing of a transition to guarantee the disabling of another transition; whereas, 
the structural conflict relation provides necessary conditions for the firing of a 
transition to have the potential to disable another transition. 

4.1.3 Structurally Maximum Bag of Enabled Transitions 

The structural enable and disable relations provide sufficient structural con- 
ditions to restrict the maximum number of direct enablings of an immediate 
transition upon firing a given timed transition. In addition, the structural en- 
abling cover relation dictates that if tj SEC tk then the maximum number of 
enablings of transition tj cannot exceed the maximum number of enablings of 
tk. For example, in Figure 1, since t3 is a structural enabling cover for t4 and 
the firing of t~ permits no enabling of t4, then, even though the firing of t9 
increments an input place of t3, t3 also must have no enablings. Formally, the 
multiplicity of immediate transition tj in the maximum enabling bag of t~ is: 

max It, SE(n) tj Nt, SD(n) tj N MEB(tk) >_ n Vtk : tj SEC tk } . (10) 
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The MEB for timed transition t9 in Figure 1 is {2Q, 2t2}. In [5], we provide an 
algorithm that generates the set of immediate transitions that can be directly 
enabled after the firing of a timed transition. This algorithm only requires 
minor modification, with no additional cost in complexity, to also determine the 
maximum number of enablings of each transition. 

4.1.4 Indeterminate  Transitions in an MEB 

To simplify the algorithm for a transition replication step, we assume the timed 
transition's MEB contains no indeterminate transitions. A transition in the 
MEB is indeterminate with respect to the GSPN structure if the maximum 
number of direct or indirect enablings, after the firing of a timed transition and 
prior to reaching a tangible marking, is dependent on the initial marking. The 
structural enable relation establishes necessary conditions for a transition in the 
MEB to be indeterminate. Specifically, this indeterminacy occurs either if an 
incremented input place in the bag evaluated in the first inequality of Equation 8 
participates in a cycle of immediate transitions or if, as stated previously, there 
is a decremented inhibitor place in the bag evaluated in the second inequality 
of Equation 8. In [5] we provide methods to perform structural reduction with 
indeterminate transitions. 

4.1.5 Enabling Graph Representat ion of  the MEB 

An enabling graph representation of a given MEB facilitates the generation 
of all structurally feasible bags of enabled transitions within the MEB. This 
enabling graph depicts the S E C  partial order, not only among the transitions 
in the MEB, but also among each distinct number of enablings from one to a 
transition's multiplicity in the MEB. Specifically, each node v of the EG contains 
a set of transitions Tv such that there exists a path from the node containing 
ni enablings of transition ti to the node containing nj enablings of transition 
tj if and only if ni enablings of transition ti is a structural enabling cover for 
nj enablings of transition tj. Figure 2a shows the augmented EG for M E B ( t 9 )  
corresponding the GSPN in Figure 1. All future references to an enabling graph 
refer to the enabling graph which represents the MEB of the replicated timed 
transition. 

We represent a subset of nodes in the EG of the MEB with the standard 
variable length ordered K-tuple ((xk) : 1 < k < K <_ IVEGI) such that each xk 
indexes a node in the EG. In turn, we represent a subbag of the MEB with a 
subset of the nodes in the EG such that the subbag of the MEB is simply the 
union of the bag of transitions contained in the subset of nodes. 

4 . 2  F e a s i b l e  B a g s  o f  E n a b l e d  T r a n s i t i o n s  

The GSPN structure restricts which subbags in the MEB can be simultaneously 
enabled, without forcing the enabling of any remaining transitions in the MEB. 
In this section, we develop methods to generate these structurally feasible bags 
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of enabled transitions. We rely on branch and bound techniques to avoid the 
enumeration and examination of the entire power set of the MEB. 

4.2.1 Extended Input and Inhibi tor  Funct ions  

The extended input and inhibitor functions W-(.)  and wH(.) map bags of 
transitions into bags of places and define necessary marking conditions to achieve 
the specified number of enablings of each transition in the bag. Formally, for a 
non-empty bag of transitions TB: 

W-CT.)= U T.Ct)W-Ct); W'CT.)= N W'(t). 
tETB tETe 

(11) 

A bag of transitions TB is enabled in marking M if and only if W-(TB) _< M < 
WH(TB). 

4.2.2 Enabling Tree 

The general branch and bound generation of a power set tree as defined in 
Section 2 provides an efficient method to generate all structurally feasible bags of 
enabled transition for a given MEB. Since a subset of nodes in the EG represents 
a subbag of the MEB, the generated enabling tree essentially represents the 
power set, with pruning, of the set of nodes in the EG. Let EB~ be the subbag 
of the MEB corresponding to node v of the enabling tree. 

The GSPN structure imposes two feasibility constraints on any feasible bag 
of enabled immediate transitions. The first structural constraint ensures the 
enablings of the transitions in a feasible bag do not force the enabling of any 
remaining transitions in the MEB. Specifically, if an enabled bag EB has ni 
enablings of transition ti and these enablings are a structural enabling cover for 
nj enablings of transition tj then EB must also contain at least nj enablings 
of tj. For example, in Figure 2a, a feasible enabling bag which contains two 
enablings of transition t2 must also contain two enablings of transition tl. 

The second structural feasibility constraint prohibits a feasible enabled bag 
from containing structurally mutual exclusive (SME) transitions. To simplify the 
algorithm for a transition replication step, we assume the given MEB contains no 
structurally mutual exclusive transitions. In [5], we provide structural reduction 
algorithms which incorporate this SME feasibility constraint. 

The bounding function requires a topological ordering of the nodes in the EG 
such that if there exists a path from node x to node y in the EG then the' index 
of node x is greater than the index of node y. As shown for the EG in Figure 2a, 
the numbering of the nodes in increasing order as they are post-visited in a DFS 
traversal achieves this topological ordering. The bounding function prunes any 
subtree of the enabling tree that is rooted at an infeasible node. Specifically, if 
EB,, does not satisfy the feasibility constraint then there must exist a transition 
t~ with multiplicity ni in EBv and a transition tj with multiplicity nj in EBv 
such that niti SEC njtj. For any node w in the subtree rooted at node v, since 
EB,, is a subbag of EBb, then EBw also contains ni enablings of transition t~. 
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In addition, due to the topological ordering of the nodes in the EG, EBw also 
cannot contain nj enablings of transition tj. Thus EBw is also infeasible. 

Let (x l , x2 , . . . xk )  represent the set of EG nodes associated with node u of 
the enabling tree. The following steps define the BFS generation of all direct 
descendents of node u. 
Branch ing  Function:  For all Xk+l such that xk < Xk+l <_ [VEG[, generate 
node v and create an arc from u to v with label Xk+l. 
Node  a t t r ibu tes :  
E B ,  = EBu U Tx~+l . 
W- (EB~)  = W- ( EB~)  U W-(T=~+,). 
W H ( E B , )  = WH(EBu) [3 WH(T=~+~). 
Feasibil i ty Constra ints :  EB,  not feasible if Vti,tj E EBb, 
EBv(tl) = nl =~ EB~(tj) > nj if nitj S E C  njtj .  
Bound ing  Funct ion:  Prune subtree rooted at v, if EBv is infeasible. 

The potential for complexity reduction in this branch and bound technique is 
two-fold: the bounding eliminates the generation of some subbags in the power 
set of the MEB and the systematic tree generation permits a worst case com- 
plexity of O(]P[ + ]MEB D to determine the feasibility for a generated subbag. 
Figure 2b shows the enabling tree associated with MEB(tg).  The numbering of 
the nodes in the enabling tree is in accordance with the order of the BFS node 
generation. 

4.2.3 Enabling Function 

Given the enabling tree, the replication of the timed transition requires the deter- 
mination of the enabling conditions corresponding to each structurally feasible 
bag. The function Enab(.) maps a structurally feasible enabled bag into a set 
of markings such that marking M is an element of Enab(Ts) if and only if TB 
is enabled in marking M. Formally, 

Enab(Ts) = { M [ W - ( T B )  ~ M < WH(TB) }. (12) 

Any marking in the enabling function of a given feasible enabled bag ensures 
the enabling of all transitions in the given bag, but the marking does not prohibit 
the enabling of any remaining transitions in the MEB. Thus, a single marking 
may map into more than one enabling function. The complete specification of 
a feasible bag's enabling conditions requires more stringent marking conditions 
to ensure the disabling of the remaining transitions in the MEB. 

4 . 3  F e a s i b l e  B a g s  o f  D i s a b l e d  T r a n s i t i o n s  

Corresponding to each structurally feasible bag TB of enabled transitions is a 
feasible bag of disabled transitions TBB. In this section, we establish the mark- 
ing conditions that disable the transitions in a given feasible bag of disabled 
transitions, without forcing the disabling of any remaining transitions in the 
MEB. 
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4.3.1 Disabl ing Input and Inhib i tor  Funct ion  

The disabling input and inhibitor functions W D (.) and W H (.) map bags of tran- 
sitions into bags of places and define necessary structural conditions to disable, 
by restricting the token count of single place, the specified number of enablings of 
each transition in the bag. The subscript 'D' emphasizes that the resulting bags 
of places define disabling conditions rather than enabling conditions. Formally, 
for a non-empty bag of transitions TB: 

WD(TB) = A TB(t)W-(t); WH(TB)= U wg(t)" (13) 
tETB teTB 

The specified multiplicity of each transition in the bag TB is disabled in marking 
M if WD(TB ) 2; M U M • WDH(TB). 

4.3.2 Disabling Tree 

In this section, we identify all feasible bags of disabled transitions that satisfy 
necessary structural conditions to permit the disabling of the transitions in the 
bag, by restricting the token count in a single place, without forcing the disabling 
of any remaining transitions in the MEB. We refer to these bags as singularly 
disabled bags. 

The branch and bound generation of a power set tree provides an efficient 
method to generate all singularly disabled bags of transitions. Analogous to the 
generation of the enabling tree, the generated disabling tree essentially represents 
the power set, with pruning, of the set of nodes in the EG. Let the disabled bag 
DB, be the subbag of an MEB associated with node v of the disabling tree. 

The structural feasibility constraint for a bag of singularly disabled tran- 
sitions requires the existence of at least one place such that the multiplicity 
of that place in the disabling function of DBv exceeds the multiplicity of that 
place in the enabling function of DBv or the multiplicity of that place in the 
disabling inhibitor function of DBv is less than the multiplicity of that place in 
the inhibitor function of DBv. For example, given MEB(tg) for the GSPN in 
Figure 1, any bag of transitions that contains tl and does not contain t2 is not 
a feasible disabled bag since the disabling of tl always forces the disabling of t2. 
Also, the bag {2tl,t2} is not a feasible disabled bag since the disabling of these 
transition enablings forces the disabling of tl. 

To both retain the EG node numbering that was used to generate the en- 
abling tree and apply the bounding function, we alter the branching function 
for the generation of the disabling tree such that xk+l < xk <_ IVEGI. The 
bounding function prunes any subtree rooted at any node v if there does not 
exist a complement node in the enabling tree corresponding to DB~. Specif- 
ically, using arguments analogous to those described for the enabling tree, if 
DB~ is not a feasible enabled bag then DB~ is not a feasible disabled bag be- 
cause the disabling of a transition in DB, forces the disabling of a transition in 
DB~. Due to the topological ordering of the nodes in the EG and the specified 
branching function, for any node w in the subtree rooted at node v, the bag 
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DB,~ will contain this same infeasibility. Thus, an efficient BFS generation of 
the disabling tree requires a parallel reverse BFS traversal of the enabling tree to 
determine the existence of the complement node, as well as efficiently access the 
complement node attributes to efficiently evaluate the feasibility constraint. A 
second bounding function prunes all nodes of a subtree rooted at a node that  is 
infeasible because the corresponding bag of transitions does not share a common 
disabling condition. 

Given the GSPN in Figure 1 and the enabling tree in Figure 2b, Figure 2c 
shows the disabling tree associated with MEB(t). The numbering of the nodes 
in the tree facilitates the generation of another tree and is not in accordance 
with the order of the BFS generation. Let (xl,x2,. . .xk) represent the set of 
EG nodes associated with node u of the disabling tree. The following steps 
define the BFS generation of all direct descendents of node u. 
B r a n c h i n g  F u n c t i o n :  For all xk+i such that  xk+l < xk <_ [VEG[, generate 
node v and create an arc from u to v with label Xk+l. 
N o d e  attributes:  
DB~ = DBu U Tx,+l 
WD(DB~ ) = WD(DB~ ) A W-(Tx,+,) .  
WH(DB~) = WH(DB~) U WH(Tx,+, ). 
Feas ib i l i t y  C o n s t r a i n t s :  DB, feasible if 
WD(DB, ) - W-(DBv) ~ Ou WH(DB~) - WH(DB~) ~ 0 
B o u n d i n g  F u n c t i o n :  Prune subtree rooted at v, if DB, is not a feasible 
enabled bag or W D (DBv) = 0 A WH(DB~) contains a multiplicity of infinity for 
each place. 

4.3.3 D i sab l ing  F u n c t i o n  

The function Disab(.) maps a bag of transitions into a set of markings such 
that  a marking M is an element of Disab(TB) if and only if the token count 
of a single place marking in M disables TB without disabling the remaining 
transitions in the MEB. Disab(TB) defines the set of markings in terms of an 
expression that  is a union of single place marking inequalities. For example, 
given the disabling tree in Figure 2c, Disab({2ti, 2t2}) = (mi < 2) U (rn 2 < 2). 
Formally, Disab(Ts)= 

{MIW-(T-BB)<M~WD(TB)UWH(TB)~M<WH(T-BB)}  (14) 

In the following section we remove the restriction that  the disabling of a 
feasible bag of disabled transitions must occur through single place marking 
inequalities. 

4.3.4 Minimal  Disabl ing Sets 

We define a minimal disabling set to be a set of singular disabled bags such that  
the union of the singular disabled bags over any proper subset of the minimal 
disabling set does not equal the union over the entire disabling set. Let the bag 
of transitions TB equal the union of all the singular disabled bags in a given 
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minimal disabling set. The intersection of the respective disabling functions 
of all the singular disabled bags defines a set of markings which disables TB 
without forcing the disabling of any of the remaining transitions in the MEB. 
The minimality property ensures that the intersection of the disabling functions 
associated with the disabled bags in any proper subset of the minimal set results 
in the disabling of only a proper subbag of TB. 

( 

c 1 
2 
3 
4 

T~ 
tl 

t2 

2tl 
2t2 

() 
I 

2 

3 

2a 

UEB ~DB 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 

2b 2c 

EB~ 

{td 
{tits} 
{2tl} 
{2tit2} 
{2t12t2} 

DB~ 
{tit2} 
{2tit2} 
{2t12t2} 
{t2} 
{2t2} 
0 

W-(EB~) 

{PimP3} 
{2p12p~} 
{2p12p2pa} 
{2p~2p22p3} 

Node Attributes 

4 

3 

*~n feasible 

W~(DB~) 
{plp~} 
{plm} 
{2p12p2} 

{2p12p22p3} 

v MS'~ 
1 0 
2 {{tit2}} 
3 {{2t12t~}} 
4 {{t2}} 
5 {{2t2}} 
6 {{2t12t2}{t2}} 

Figure 2: Structural Reduction Graphs 

The general branch and bound generation of a power set tree provides an 
efficient method to generate all minimal disabling sets. In this application, the 
generated minimal tree represents the power set, with pruning, of the set of 
feasible nodes in the disabling tree. In turn, each feasible node in the disabling 
tree represents a singular disabled bag. 

Efficient evaluation of the feasibility constraint requires a topological ordering 
of the nodes in the disabling tree such that if node x is less than node y then the 
singular disabled bag DBx is not a subbag of DBu. The numbering of the nodes 
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in decreasing order as they are visited in a BFS traversal, as shown in Figure 2c, 
achieves the required ordering. Let MS,, be the minimal set represented by node 
v in the minimal tree and let T(MS,,) be the union of the singular disabled bags 
in MS,,. The feasibility constraint ensures the minimality property by dictating 
that any added singular disabled bag must contain a transition not in T(MS,,). 
Without the specified topological ordering of the disabling tree, the feasibility 
constraint would also have to ensure none of the singular disabled bags in MS,, 
were a subbag of this added singular disabled bag. 

Clearly the bounding function can prune all subtrees rooted at an infeasible 
node. Figure 2d shows the minimal tree corresponding to the disabling tree in 
Figure 2c. Let the k-tuple (xt, x2,. . ,  x~) represent minimal set MS,, of disabled 
bags. 
Branch ing  Funct ion:  For all xi+l such that xi < Xi+l < ]VDT], generate node 
v and create an arc from u to v with label xi+l. 
Node  a t t r ibu tes :  
MS,~ = MS,, O {MDS=,+ 1 }. 
T(MS,,) = T(MS,,) U MDSz,+,. 
Feasibil i ty Constra ints :  MS,, is feasible if DBz~+I g T(MS,,). 
Bound ing  Function:  prune subtree rooted at node v if MS,, is not minimal. 

4.4  Marking Function 
The marking function M(TB) maps a structurally feasible bag of enabled tran- 
sitions into a set of markings. A marking is an element of M(TB) if and only 
if the marking enables all the transitions in TB and disables all the remaining 
transitions TB. Formally, M(TB) defines the set of markings in terms of a dis- 
junctive normal form expression of inequalities on places. For example, given 
MEB(t9) for the GSPN in Figure 1: 

M(tt, t2) = { M J (1 _< ml < 2 n 1 < ms n 1 < m3)LJ 

(1 _< rnt A I _< ra2 < 2A 1 <_ ra3)} (15) 

The set of markings defined by an 'and' clause of M(TB) must be a subset of 
Enab(TB) to ensure the enabling of TB. Additional place marking inequalities 
of an 'and' clause guarantee the disabling of all transitions in TB. The num- 
ber of 'and' clauses represent the different ways to accomplish the disabling of 
the transitions in TB, without the disabling of the transitions in TB. The gen- 
eration of minimal disabling sets permits the generation of marking functions 
with the minimum number of 'and' clauses. Specifically, a minimal disabling set 
in MS('~B) is associated with each 'and' clause such that there exists exactly 
one place marking inequality for each singular disabling bag that results in the 
disabling of all the transitions in TB. Formally, 

M(TB) = U Enab(Ts) A N (Disab(TB,). (16) 
MS6MS('~B) T m, 6MS 
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In disjunctive normal form, we represent the kth 'and' clause of M(TB) with 
the two bags of places, M-(k, TB) and MH(k, TB) such that 

M(TB) = { M I U ( M - ( k ,  TB) <_ M <_ MH(k, TB))}. 
k 

(17) 

The marking functions of each structurally feasible bag of enabled transitions 
in an MEB effectively partitions the set of all markings. In other words, each 
marking must result in the enabling of exactly one of the feasible enabled bags 
and the disabling of the remaining transitions in the MEB. However, a marking 
can satisfy multiple 'and' clauses of the marking function for a given feasible bag 
of enabled transitions. 

4 .5  G e n e r a t i o n  o f  R e p l i c a s  

For all structurally feasible bags of transitions TB enabled directly after the fir- 
ing of a given timed transition t, for all 'and' clauses k in the marking function 
of TB, and for all concurrent transition firing combinations X given TB, a single 
transition replication step creates the replicas (t, X, TB, k). This replica simu- 
lates the firing of the timed transition t followed by the concurrent firing of the 
transitions in X given TB is the bag of enabled immediate transitions. 

Given the marking bags M-(k, TB) and MH(k, TB), the computations of 
the input and inhibitor functions for replica (t, X, k, TB) are straightforward bag 
operations. The input and inhibitor functions of the replica must permit the 
enabling of the replicated transition t and upon firing t produce a marking which 
satisfies the k th 'and' clause of TB'S marking function. The output function of 
the replica simply produces the change in marking which results from the firing 
of both the replaced timed transition and the replica's concurrent transition 
firing combination. Formally, the attributes of replica (t, X, k, TB) are: 

W-(t,X,k, TB) 
W"(t,X,k, Ts) 
W+(t,X,k, TB) 

h(X, k, 

= W-(t )+ (M-(k, TB) -  W+(t)) 
= wH(t) f'l (W-(t) + (MH(k, TB) -- W+(t))) 

= (w+(t) - w- (x) )  + w+(x) 
= A(t)Prob {X fires I TB enabled }. 

4 . 6  G S P N  D e c o m p o s i t i o n  

In this section, we develop a method to decompose the GSPN into subnets, 
perform structural level reduction on each of these subnets, and aggregate the 
generated subnet replicas to construct the structurally reduced net correspond- 
ing to the original GSPN. This proposed technique is analogous to the state space 
level reduction method which decomposes a state into immediate submarkings, 
performs state space evolution of each immediate subnet, and aggregates the 
resulting tangible submarkings to generate the reachable tangible markings. 
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4.6.1 Augmented Immediate Subnets 

The GSPN decomposition step first augments each immediate subnet to include 
all timed transition such that the transition's MEB contains a transition in the 
immediate subnet. Each included timed transition retains its corresponding 
input and inhibitor functions. The output function of an included timed transi- 
tion equals the output function of the timed transition after the removal of all 
places that are not in the given immediate subnet. Each timed transition in an 
augmented immediate subnet has a firing rate of one. 

For each timed transition, the decomposition also creates a subnet consisting 
solely of the single timed transition. In this subnet, the timed transition retains 
its input function, inhibitor function, and firing rate. The output function of the 
timed transition in the subnet equals the output function of the timed transition 
after the removal of all places that are in any immediate subnet. Figure 3b shows 
the decomposed GSPN subnets corresponding to the GSPN shown in Figure 3a. 

4.6.2 Aggregation of  Transition Replicas 

The structural reduction of the subnets in the decomposed GSPN and the sub- 
sequent aggregation of the replicas among these subnets constructs the same 
reduced net created by structural reduction of the  original GSPN. The Carte- 
sian product of the replicas for a given timed transition in each structurally 
reduced subnet defines the concurrent replicas for this transition in the struc- 
turally reduced net of the original GSPN. In other words, each concurrent replica 
of a timed transition simulates the concurrent firing of one replica for this timed 
transition from each of the structurally reduced subnets that contains replicas 
corresponding to the given timed transition. The input and output functions 
of a concurrent replica are simply the union of the input and output functions, 
respectively, of the corresponding replicas in the reduced subnets. Likewise, the 
inhibitor function of a concurrent replica is simply the intersection of the in- 
hibitor functions of the corresponding replicas in the subnets. The firing rate of 
the concurrent replica is the product of the firing rates of the corresponding sub- 
net replicas. Figure 3c shows the structurally reduced GSPN corresponding to 
the GSPN, while Figure 3d shows the structurally reduced subnets corresponding 
to the decomposed GSPN subnets. The direct derivation of a GSPN's reacha- 
bility set from the structurally reduced subnets, rather than actual construction 
of the aggregated structurally reduced GSPN, achieves additional improvements 
in time and space complexity. 

4 . 7  T i m e  a n d  S p a c e  C o m p l e x i t y  A n a l y s i s  

Branch and bound methods avoid the generation of most structurally infeasi- 
ble replicas, while concurrent replicas avoid the generation of most redundant 
replicas. In addition, the systematic generation of the tree structures, which 
represent each replica's attributes, permits the efficient determination of fea- 
sible replicas. In [5], we provide theoretical complexity analysis for the branch 
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and bound generation of non-concurrent replicas and the complexity analysis for 
state space level reduction is directly applicable to the generation of concurrent 
replicas. 

5 C o n c l u s i o n  

The contribution of this paper is to provide algorithms and corresponding data 
structures to efficiently implement both state space and structural level reduction 
on the GSPN model. Structural level reduction has some inherent advantages 
over state space level reduction. Since the GSPN structure can provide a fac- 
torization of state space transitions into significantly fewer net transitions, there 
is the potential for a corresponding factorization of complexity between state 
space and structural level reduction. In other words, the elimination of a single 
immediate transition can achieve a reduction equivalent to the elimination of 
several state space transitions and their adjacent vanishing markings. On the 
other hand, structural level reduction may generate replicas that are not enabled 
by any marking in the reachability set. 
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