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Information Flow in Large Communication Nets

Proposal for a Ph,D. Thesis
Leonard Kleinrock

I. Statemsat of the Problem:

The purpose of this thesis is to investigate the problems
associated with information flow in large commwnication nets. These
problems appear to have wide application, and yat, little serious
research has been conducted in this field. The nets under consideration
consist of nodes, comnected to each other by links. The nodes receive,
sort, store, and transmit messages that enter and leave via the 1lioks.
The links coﬁstst of one-way channels, with fixed capacities. Awmong the
typical systems which fit this description are the Post Office System,
telegraph systems, and satellite communication systems.,

A numbor of iuteresting and important questions can be asked
about this system, and it is the purpose of this research to investigate
the cnewers to some of these guestions, A partial list of such ques-
tions might be as follows:

{1) What is the probability density distributiom for the

total time lepse between the initiation and reception of a

message between any two nodes? In particulax, what is the

expzcted value of this distribution?

(2) Caun one discuss the effective channel capacity between

any twe rcodes?

(3) 1Is it possible to predict the transient behavior and

recovery time of the net under sudden changee in the

traffic statistics?

{4) How large should the storage capacity be at each node?

{5) In vhat way does one srrive at a routing doctrime for

incoming messages in differont neta? In fact, can one state

some bounds or the optiwum performance of the net, independ-

ent of the routing doctrine {under some constraint on the

sat of allowable doctrines)?
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{6) Under what coenditions does the ret jam up, {.e.,

present cn excessive delay in transmittirg messages through
the net? The soluticn to this proolem will dictate the
extent to which the capacity of each link can be used (i.e.,
the vatio of rate to channel ecapacity, which is commonly
kncwn as the utilization f£aclor).

{7) What are the efifecis of such things as additionnl i.nLra-

node delays, anid priozity messages?

Cue ochezr variable in the system is the cmount of faforwation that each
node as chout the state nf the systen (i.e., how long the gueues are
in each other node), 1t is clear that these are eritical cuestions which

nead ansuene, and it L9 the intent of this research to ansirer some of

In atteampting the solution of seone of these problems, it may
well be that the study of a speuific systen or application will enpose
the basis for an understanding of the problem, It L5 anticipated that
such a study, as well ae a simulation of the system on a digital cciputer,

will be undextaken in the course of this research,

Ii. distory of the Problen

The application of Probability Theory to problems of telephone

raffic represents the carliest area of iavestigation wclated to the
svetcil commmicetion network problea. Whe fiven hor“ in this direction
dates back to 2937 and 1200 when E. Jokannsen [l} »2 published two
2ssays, the oze dealing with delays to incoming calls in a manual tele-
rhone exchaage, and the other boing an iavestigatioa as o how often sub-
seribers with one on more lines are vezovied "busy." Xt uas
e Johoanson vwho eneouzaged A, R, Zrlang to investigate problems of this
nature, HZriang, an easineer with the Ceooennagen telephone exchange,
cade o mmmber of major contributions to ithe theory of telephone trafific,

0

all of which are traenslated and reporied in {1]; his Zirst paper {on the
2gigsonicn dist=ibusion of inccaing colle) appzered in 1999 and the pape:
k|

coataining the resuits of his oain work was publighad in 1017, fa whic

.
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he coasidered the effect of fluctuations of sexvice demands on the util-
ization of the automatic equipment in the telephone exchange,

& faw other workers made some contributions in this direction
around this time, and a good account of the existing theories up to
1920 is given by O'Dell [2,3]; his principal work on grading appeared
in 1927, Molina{4,5] was among the writers of that time, many of whom
were conceraed mainly with attempts at provins'o: dieproving Erlang's
foromulas, as well as to modify these formulas,

The theory of stochastic processes was developed after Erlang's
work. In fact it wae Erlang who f£irst introducad the concept of statis-
tical equilibrium, and called attention to the study of distributions
of holding times and of incoming calls. Nuch of moderm queuing theory
is devoted to the extension of these basic principles with the help of
more recent mathematical tools.

In 1928, T.C. Fry [6] published his book (which has since
become a classie text) in which he offered a fine suzxvey of congestion
problems. He was the first to unify all previous works up to that time,
Another prominent writer of that period was C. Palm [7,8], who was the
£irst to use generating functicns, in studying the formulas of Erlang
and 0'Dell. His works appeared in 1937-19238. During this time, &
large number of specific cases ware investigated, using the theories
already developed, in particulac lost call problems. ODoth Fry and
Palm formulated equations {now recognized as the Birth and Death
aquations) which provide the foundation for the modern theory of conges-
tion.

In 1939, Feller {2] introduced the concept of the Birth and
Death process, and ushered in the modern thcory of congestion., His
application was in physics and biology, but it was clear that the same
process chavacterized many mede’ls useful in telephone traffic problems.
NMumerous applications of these equations wvere made by Fala {10} in
1943 In 1948, Jemsen (see {1]) also used this process, without men-
tioning its neme, for the elucidation of Erlang's work. Xosten [11],
in 1949, studied the probability of loss by mcans of genmeralized Birth



ol e

and Death equations. Waiting line and trunking problems were explained
by Feller [12] in his widely used baook on probability, making use of
the theory of stochastic processes, At around 1939, the problems of
waiting lines and trucking problems in telephone systems were taken up
more by mathematicians than by telephcona engineers,

In 1950, C.E. Shannon {13) coneidered the prodblem cf storage
Teguirements in telephone exchanges, and concluded that a bound can be
placed on the size of such storage, by estimating the amount of informa-
tion used ia making tha required conmections, In 1951, F, Riozdan [1:]
investigated a ncw method of approach suitable for general stochastic
processes, R. Syski [15], in 1960, published a fire boolk in which he
presented a swrmary of the theory of coagestion anc stochastic proces-
ses in telephone systems, and also cast some of the more advanced mathe-
matical dascriptions in cormon eagineering temms.

In the eatly 1950's, Lt became obvious that many of the results
obtained in the field of telephony were applicable in much more gemeral
sitvations, and sc started investigations into waiiing lines of many
kinds, waich bas developad into modern Queuing Thecry, iteelf a branch
of Cperations Research. A great deal of effort has been spent on single
node facilities, i.e., a systen in which "customer:" enter, jocin a queue,
eventually obtain "service" and upon completion of this sexvice, leave
the system, P.M. Movse [16) presents a fine introduction to such faci-
lities in which he defines terms, indicatee applicantions, and outlines
some of the analytic espects of the theory. P. Burke [17], in 1956,
showed that for indepcudent inter-arrival times {i.e., Poisson errival),
and erponeatiat distribution of service times, the inter~da§arture timee would
alego be iadependeat {Poisson). In 1959, F. Foster [l8] presented a
duality principle in which he shows thet reversing the roles of input
(arxivals) end output {service completions) for a system will define a
dual system very much like the original system. In contrast to the
abundant supply of pape:s.on single node £acilities, relatively few
vorks hZave been published on multi-node facilitiee (which {s the area of

interest to this thesis)., Awong those papers whicl: have been presented
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is one by G.C. HBunt [12] in which he considers scquential arrays of
waiting lines. [e presents a table which gives the maximum utilization
factor (ratio of averagz arrival rate to maximum servica rvate) for which
steady state probabilities of queue length exist, under various allow-
abal queue lengtha between various numbers of sequential service facili-
ties. J.R. Jackson [20], in 1057, published a paper in which he invest i-
geted networks of waiting lines, His network consisted of a number of
service facilities into which customers entered both from external sources
as well as after having completed service in arother facility, Ha proves
a theorem which staicd roughly, says that a steady state distribution for
the system state exis:s, as long a6 the effective utilization foctor for
each facility is less than onme, and in fact this distributicn takes on a
form identical to the solution for the single node caae.3 in 1960,

R. Prosser [21] offered an approximate analysis of a random routing
procedure in a commmication net in vhich he shows that such procedures
are highly inefricient but extrcaely stuble (i.e., chey.desrade grace-
fully undex ﬁartinl failure of the network).

The tvo important characteristics of the communication nets that
form the subject of this thasis arve (1) the number of nodes in the sys-
tem is lorge, and {(2) each node is capable of storing messages waile they
wait for tronsmission channals to become available. As has been pointed
out, Queuirg Theery has directed most of its effort so far, toward
single node facilities with.storagz. There has been, in addition, a
considarnble investigetiocn into multi-node nets, with no storage capa-
bilities, meinly under the title of Linear Programming (which is really
a study of lincar inequalitics and convex s2ts). This latter research
considers, in cffect, steady state flow in large connected nets, and
has yielded some interesting resulta., One prablem which has attracted
a lot of attenticn is the shortest route problem (also known as the
travelling salesmen problem). M. Pollack and W, Wiebenson [22] have

pragented a reviev of the many solutions to this problem, among which

3Jachson's worl: is discussed in detail in Section IV,
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are Pantzig's Simplex Method, Minty's labelling method, and the
Moora-D'Esopo method. W, Jewell {[23] has aleo considered this problem
in some greater pencrality, and, by using the structure of the networlk
and the principle of flow conservation, has extencded an algorithm due
to Ford and Fulkerscm in otder to solve u varied group nf flow problems
in an effi.ciené manner, R, Chien [24] has given a systematic wethod
for the realization of minimum capacity communicatfon nets from their
required terminal capacity requirements (again congidering only uets
with no storage capabilitiaes); a different solukion to the same problem
ias been chtained by Gomory aud fu [25]. In 1956, P. Elizs,

A, Feinstein, and C,E, Shannon [26] showed tbat the maximum rate of
flow through a network, batwean any twe terminals, iz the winfuum value
among all simple cut-sets. Also, im 1956, Z. Prihar [27] presented an
article in which he erplored the topoleglical properties of communica-
tion nets; for enample, he stoved matrix methods for finding the pum-
ber of ways to travel between two nodes in a specific numbar of stepa,

In 1959, P.A,.P, Moran [28] wrote a monograph on the theery of
storage, Tie book describes the basic probabilicy problens that arise
in the theory of storage, paying particular atteanticn to problems of
inventory, queuing, and dam ctorage. It represents one of the few
wecks pertaining to a systam of storage facilities,

The results from Information Theory [29] also have relation to
the cemmmnication net problem considered here. Most of the work there
has dealt with cemmmication between two points, rather than cemmunica-
tion wvithin a network, In particular, ona of the results says that
there is a tyrade-off between wmessage delay and probability of errxor in
the tramsaitted ma2s3age, Thus if delays are of nec censequance, trans-
nicsiocn wich on avbitrarily 1cy prebability of error can be achiaved.
flowever, it is not chvious as yet, what sffect such additional intra-
node dzlays would have in a large natvork of communication centers; it
seems that some maximum additicnal delay exists, and if se, this would
restrict the use of coding mathods, and perhaps put a con-zers lower

bound on the errcr prebability.

-



IIl. Discussion of Proposed Ptoccdggg'

The problems associated with a multi-terminal communication net,
as posed in the firat sectiom, appear to be too difficult for anclysis,
in 2n exact mathematical form, That is to say, the calculation of the
joint distribution of traffic flow through a large (or evea smnll)l
network is extremely difficult, BEven for networks in which no feedback
is present, the mathematics i2 unmanageable; and for those with feedback,
it seems hapeless to attempt an eract solution, The question, then, is
to what degree, and in what fashion can we simplify this problem?

Since it is the complicated interconnections that ceuse most of
the trouble, one would like to isolate each node, and perferm an indi-
vidual analysis on it, under some boundary constraints. The node could
then be represented by the rasults of such an aralysis. In particular,
it is hopdﬂfthaf_tha node representation would be sufficiently completa,
by the'use of perbaps two numbers, these numbers being the mean and
variance of the traffic handled by the noda. Thus, instead of having to
derive tha complicated joint distribution of the traffic in the network,
cne may be able to make a fairly accurata characterization by specifying
two (or at most a few) parvametars, :

This approach is rot ccmpletely naive and without justiffcatiocn,
Consicdar the linear programming techniques [22.-26] mentioned in the
gecond section of this propgosal. The probleas handled by auch tech-
nigues bave a greet deal in comman with the communication problem at
hand., 7Thaeir problem is that of solving networks in which the commodity
{e.3., vater, pecple, information) £lows steadily. A typical preblem
would be thot of finding the set af golutions (commonly refaerred to as
feasible guiutiens) wmhich would support a given traffic flow in a net-
work. A sclution wouid cousist of specifying the flow capacity for each
1ink betwaen all pairs of nodes. In general, a large number of solu-
tions exiz:t, and @ lot of affort has been spent in minimizing the
total capacity used for such a preblem. One obvious requirsment is that

ths average traffic catering any node must be lesz than the total capac-
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ity leaving the node. Notice thai the important stetistic here ig
the average traffic flew, and if the flow 4s steady, then we have a

deterministic problen. low, inm wiwat way does this preblem differ fron
the problam considered 1n this propesal? Clearly, the difference is
that ve ¢o nat have a stecdy flow of trafliic, Rather, our traffic cones
in spurés, according to seme probability ddstributlon, Consequently, we
must be prepared to uaste scume of our charmmel cajacity, i.e,, tha chaa-
nel will saumetirmes be idle, A pood measure of hcw non-steady our traf-
fic iz, is tke variecnce of the traffic. That is, for zevo variance, we
ave raduced to the special case dbove, nangly, steady flew, As the vari-
ance gees up, we can say less end less abeut the arrival tiwme, and tie
raffic becomes considerably more random in time, Taus, it 4s reasoucbie
to expect that the Lvo impértaat ravameters waich charactevize our trof-
fic ave the mean and vauiancez of the f{laow, Uotice that a nzcessary, hut
clearly oot sufficient conditicn for o feasille solutieoa to our prodblen
is tkhat the aversge trafiic antevring the node pust be less thaa the total
capacity of chanmele leaving the wode. In 1951, Xandall [30] showad for
a single node vith Poiscen inter-arvivel tices {at a rate A per sec), 2n
infinite gllouable queve, aﬁd on axbitrory service dizsribution (with
mean 1f/n and vooiaace v), that che enpected waiting time in the systenm,
B(z) uas

1wt +
E(t) = (1/p) + Erﬁ(mg"ﬁ‘. {lvu)]

This clearly shious a iizenr dependence on the variance,

-,

Refovence has alveady baen wade to JR, Jackesem [2€], The
czsunptions that he sada In Lis avclyeis of natvorke of waiting lines was
that the avviviag traffic at cach node ad o Poisseon distributien, that
the service time was enponsatlally distvibuted, and that infinite gueues
at exch node were ailowed. With Chese assurpiions, he was able go devive
the distvribution of traffic gt 211 the nedes, It is important to anolyze

aic assurpptions carefully. 7The Poisgon assumpiion effectively
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characterized the traffic with two porameters, This same assumption
alezo effectively decoupled the nodes from each other., Uis vesults state
that if the mean traffic satisfier the necessary condition stated in tha
previous paragraph, then the vesultant traffic cun be charvacterized by a
two pargmeter description,
The question of queuing cdiscipline is an interesting one, and
on¢ which causes some difficuities, That is, the node must decide on a
nethod for cheosing some member in the queune to ba sarved next. An
interesting simplircation tothis question, and perhaps a key to the solu-
tion of the network problem may be obtained as follows, Consider that
class of queue disciplines which require that a channel facility never
remain idle, as long as the queue 18 non-empty (clearily this is a reason-
able constraint), Dow, adosting a macroscopic viewnoint, (i.e., remov-
ing all labels from the members in the queue), what can be azid about
the mean ond varlance of the waiting time distribution for this class of
queue digciplines? It seams that seme reasonably tight bounds might
exigt feor this distribution, indegendent of tha particular discipline
uged, Perhape scme other resiriction on the class of disciplines will be
required in order tc obtain meauingful results, Hcvever..undnr such 2
set of regtricticns, if we can characterize the queue aufficiently well,
we may then be placed In a position to obtain some overall behavior for
the retwork. All of the queuing problems solved to date, have considered
a perticular queue disciplice {tha microecopic viewpoint), and eo the
results have been specialized to am extremaly large degree. Adopting
the macrescopic vicwpoint seems to Le a2 pmatuvral step, and it is the
intention of this research to investignte this avenue,
There appear to be a aumber of conflicting interests in a network
of this type, Thie things to L2 comsidered are: storage capacity at
each: node; chamnel capacity at each node; and meszage delay. There
enists o tradipg relationshiy amoug thesz quantities, and it is necas-
sary ta ateach some quantitcative measvraes o this crcde, In facek, if
one wisies to generalize one stop further, one can consider a mulel-
tarminal coxmmicaticn system, in waich the signals cre perturbed by

-
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noise ia the system. Information thecry tells us how to combat this
disturbance, and the solution introduces cdditional delays in nessage
transmission and reception, What effect these additfonal delays will
have on the system {5 not clear; in fact it becomes difficult to state
just what the overall capacity is for such a situation, Questions such
as these are extremely impertant, and deserve asttention,

Froa the statcoments in this section, it is clsar that an
approximate analysis i8 all that can easily be obtained for the network
under consideration. Hopefully, the approximate acswers will be reason-
ably uszful, One way to check the vtilization of the results is sicu-~
lation. It is fully expected that, in the course of this research, a
simulatad net of this type will be programmed on one of the local digital
computers, The euthor kas access to the Linecoln laberatory TX-2
computer, as vwell as the IBM 709, This simulation study should serve ac
2 useful check on the resnl&s and perhaps, will also sexve as a guide

into the researci,
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IV, Prelinivary Investipation

In this scction, certain resulis will be preseated, which have
been obtained in the preliminary investigation already undertaken, The
vrcofs of the new theorems will be left for the Appendix,

The point of departure is a theoren due te Jackson [20] which
bas alrcody been referved to. e considers a situation in which there
are M departrents, the mth department iraving the fellowing prepecties

(n-l.2. ...,H)t

, 8 Hm servers
2, Custeomezs fvnnm outsida the systen arrive in a Poicson-type

time series at wmnran wate N\ o (additional customers will arvive
fron other departments in the system).

3. Sevvice is on a fiuct cone, first served basis, with an
infinite stovage available for overflow; the sarvicieg tine
being exponentially distributed uith cean ll’pm.

4. Once served, a customer goes immediately from department m
to depantmont It with prebabilicy B} bis total eservice is cou-
pleted (and he then izaves the systam) with probadbility

l—zalm.

Praperty & is the basis on which Jackson calls this systam a network of
vaiting linzs. Dafining [: as the avarage ervival rate of customery
at deparvtmant o frem 2ll eaurces, inside and outsida tha system, Jackson

states chaet
r':z g Lu ia ; 'mk rl:

Maw, Gefining n, a8 tie number af custemers witing and in sauvvice ot
deportmant m, and defining the otate of the systea es the vactor

(ul, B,s s8sp :1\1), ne prevez the follewing
LY

(1
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THEOREM: Defina !’u(') fm=1,2, .cc, N, n=0, 1, 2, ...), the
Pr [finding n customers in department m in the steady state], by the
foilowving equations (where the l’o“) are determined by the conditions

Zl’n(ﬂ =1):

Po(m) ¢ rnfﬂmu.)n n“/a: el L, soes l.) .

N
B ™ ¢ Fagnd™ 0o "/ e,

& steady state distribution of the state of the above described system
is given by the pfqd\:cts

)y ; @ ..rnnm 3)

P_ (ul, I‘z. eney un) - Pul X

ptOVided rn<”n“. fﬂtm'l. 2. o..’“

This theorem says, in essence, that at least so far as ateady
states ara concerned, the system with which we are coucarned behaves as
if its departments were independent elementary systems of the following
type (which is the type considered by Erlang): Customers arrive in a
Poisson type time series at mean rate A, They are handled on a first
come, first gserve basis by a system of N identical servers, the servicing
times being exponantially distributed with mean 1/u. The steady state
distribution of the number of people, n, waiting and in service has been
obtained by Erlang, and is the identical form as in Jackson's theorem
abhove, with Rm =N, r:n = A, By ™ e Pn(m, - Pn’ and with the condition
N € ul, That is, Jackeon's problem raduces to that of EBrlang's vhen
M= 1, However, for M = 1, the network property of the system is des-
troyed., Jackson'e result is very neat, and suggests the possibility of
baing able to handle large nets of the type of interest to this theeis.

Pollowing, i8 a statement and discussion of some results obtained

for asystems similar to those considered by Erlang and Jackson; proofs
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for the theorecus ave yiven in the Appengiz,

Corsides a psir of modes in a large communication rmet. Waen
the first ¢f thesz nodos trancmits 2 message destined for the other, cne
cen inguize as to what the r2st of the ast appears like, from the poirt
of view of tha transmitting code. In answer to this ioguiry, it does not ©
sean unréaconsble to consider that the rest of the nec olfers, to the
zessage, a mmber I, of "equivalent” alternats paths from the firvel uode
to the seccnd; the eacuivalence being a very gross simplification of the
actual sicuction, which, meverthaless, serves a useful purpose, Thas,
the system under comsilderation reduces itself to that considered by
Erlang, New, for given conditions of average traffic flow and total
transaitting capacity between the two uodes, the problem as to the
optimm value of M greceute itself (optimum here referring to that value
of ¥ which niatmizes the total time epent in the transnitting nedz, I.e.,
time spent woiting for o free transxicsion channel plus time spent in
tronsmitting the message). Thus, as siwown In Figure 1, the system cor-
sists of N channels, each of cepaclty C/N bits per second, with Folsson
arrivale of mean rate A, and with the measage lengths distribured

ecrxpenenticlly victh mean length 1/ bits,

C/N bite/eec

C/N bita/sec

»u biza/cec
smecan tvaffic

(ﬂexc message chooses ona from the

C/1 bits/eac
available chonzels at random. )

Figure 1: MN-channc) node considered in Theorem 1.
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As is well known, the solutiom for Pn (defined as tle protability of
finding n messages in the system in the steady state) is, for AMuG < 1,

r. 3
Popubln/ul n g N
y - < {4)
rop"x"/u: n 3N
, -

where p » A/iC is defined as the utilization factor, Hete that this is
the same solution found Ly Brlang. FProm these steady state probabil-
ities, we can easlly f£ind B{t), which 13 the euxpected value of the time
gpent in the system, ms

B(c) = B/uC + P ( 2 W) / pCQ1-p) {3
where .
ypm = Po(Hp)ﬂ / (1-phl
= _
e o H -1
B ® {nzomp) /ol + (B?) fQ-p)ri]

¥e are now ready to state

TIEGERM 1:

The velue of W ubich minimizas B(t), for all1 0 g p < 1 ic
=1,

Lat us leok at the cxpression for Efr) a little closer. Uota
thot the quantity N/uC is merely the average time spent in transmitting
the message over the channel, nnce a chanuel is availasble, Also,

P{» @) is the probabllity that a cessege is forced to enter the queus,

Fow, from the independence of the messages, one would expect E{t) to be
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E{t) = averege time szent in chemnel 4+ aveuvcse time szent in quueuc.
Bquation {5) is of the form

B{t) = average time speat in chavnel 4 {prcbability of entering

the queue)?
wvaare T = 1/(1-p)pC.

The physicsl intevrpretation of the quantity T is that it is the avevage
tize spent in tha queue, given that a message will join the gqueve, The
interasting thing here is that the quantity T is independent of W,

Let us now vrecall one of the basgic assumptions of Jackson's
theorem, namely, that upon completing service in department m, a

customer goes imnedfately to depavtment k with probabilicy = . If,
now, we consicder a commmication network of modes gnd links (chammels),
it is not at all obvicus how ve can voute messages in the pet so as to
satisfy this assumption., That is, how can we design a commmication
nettork so that an arbitrary nessage entering wode m will, with
probability % be tronsnitted over that channel which linke nede o to
rode k., Clezrly, one way to achlove this is to assign each message, as
it eaters nede @, to the chanrel linking nodas m and k, with probabil-
ity %« Fovever, with such & scheme, thave wonld osccur gitvatiens in
which there wara wegsages in the uode wmiting on a queue at the same time
that some of the channels leading out of the node were idic. It seems
reaconable, fn some cases at least, to prohilbit such a condition.
Therefore, restricting the enistance of idle channels if there are any

vaiting messages, ve arrive at the following
THEREM 2:

Given & two chamnel service facilizy of total capecity C,
Poisson arvivals with mean rate A, message lengths distributed exponen-
tially with mean length 1/u, and the restrictlen that no channel be idie
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if a message is waiting in the queua, then, for an arbitrarily chosen
mmbes, 0 € », € 1 it is not posalble to find 3 queue discipline and an
assignment of the twe channel capacitiez {the sum being C) such that

Pr {entering message is transmitted on the first channel) = X,

for al10g pgl
vhere p = AuC

Thus, this theorem shiows that one canmnot, in general, mae an arbitrary
aszignment of the probability of being trausmitted over a pavticular
channel which remaing ccustant fer all p, However, Iin the proof of this
thenzem, it is shown that it i3 pessibvle to find a queue dizcipline and
a channel capacity assignment such thatk the deviation of thia probabil-
icy *; is rather small ovey the entire range 0 ¢ p < 1.

it ig also ef interest te note that in the proof of Theoream 2,
it is shown that the_ vaxistion of % is zero over 0 g p < 1 for
® =0, 1/2, 1, In fact chic leads to the following

COROLIARY: For the same conditicms as Theovem 2, encept allowing
il channels, and for Xy MWy ®oeee ® Wy 7 L/, then it is possible to
find a queuwing discipline and 2 channel capacity assigoment such that

Pr {entering message ie transuwlited over the ich channel) =
1/8 for all 0g p< ]

In proving Theorvems & aud 5, as well as in some other investi-
gations which bave beea started by the suther, the solution to a ser of
non-linear eqguations was found <o be necessery. As is eomecimes pos-
sible wikh such equations, the proper transformaticn of variables per-
niteed the redruction of these 2quationg te o linear system., This
cransfermation turnad cut ko invalve that fundimentzl quantity p, and

thus 1led to
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THEOREM 3:

Cousider an ! chammel service facility of total capacity C,
Polssgon arrivals with mean rate N\, message lengths distributad exponzn-
tially with msan length 1/p, and an arbitrary queue discipline. Defipe
the utilization factoz

p = A/pC

Then pel ~2 (é: /ey (6)
n

where E; = Expected value of the unused capacity given n 1lines in use
and Pn w Pr (Finding n messages in the system in the steady state)

provided the system reaches a steady state,

Yotice that, in Theorem 3, all inforwation regarding the queue
digcipline is contained and summarized in the quantity E;. This theorem
corresponds very nicely with one'sg intuition, as may be seen by rewriting
it as

p =1 - E (uvaused normalized capacity)

where the normalizatien is with respeet to the total capacity C. It is
clear that this last equation wmay, in turn be written as

p = E (used normalizec capacity)
which says that
Ay = E (used capacity) )

fow, gince the average number of messages entering per secemd is A and
their average length is 1/u bits par message, the guantity A/u is clearly
the average number of bits per second entering the facility. Recall that
the condition for the cxnistancs af 3 stendy state for this system i

-

AMpC € 1
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Thus, if we have a steady state solution, we are guaranteed that
AMu < C (uhich says that the facility can bandle the incoming traffic)
and so the enxpected valua of the capacity used by this input rate wiil
merely be A/u; this is precisely what equation (7) states.

In even the simplest conceivable communications natworlk, it seens
reasonable to require that when a message reaches the node to which it is
addressed, it should leava the systom i.e,, it is delivered. tHowaver, in
the aasumptions considered by Jackson, there 18 no final address associ-
ated with each "massage" and so, tha correspondence betwean the problenm
considered Dy Jackson, and that of interest to thias thasis is net as
close as coe might hope.

Toerefore, let us consider a communication network wich N 4 1
nodea, for which the entering mossages have associnted with them a Final
destination (address)., Onca a message reachgs its address, it is dropped
from the system immediately, Thus, we are altering the madel considered
by Jackson only siightly; and in ordsr to leep the rest of the syatem
similar to his, wa will consider a completely connected net, wicth allt
% = 1/¥ (i.e., upon entering a node, a message will Le transmitted over
a particular channel with probability 1/8, unless the node which it jus:
entered is its fimal destination, in which case the messaze leaves the
system with probability cne). Note that the corollary to Theorem 2
allcws us to define such R Por euch a system, it turns ocut that
Jackson's repgults still apply with sowme slight midifications, as stated

in
THECREM &

Consider the complezely comnected N + 1 node system described
above, Lat each transmission channel leaving node m have capacity C‘IN.
Let the incoming messages entering node m frem external sources be
Poisscn at rate Km and let the megsage lengths te enponentially dis-
tributad with wean lengih 1/u. Purthex, let Caj e the Pr (message enter-
ieg ncde m from its external source has, for a final rddress, noda j).
Also dafine P§m3 as the prebability of Einding n messages in nodz m in

the staady state,
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Then r_.
po“" ¢ rnf..cm)"n“/n: =0, 1, couy W)
{m)
T wig @
?o"”)( r;lucn)“n"/n: (Greil, H4 1, ...)
whare
P iZﬂ rt L ()
aad ¢, = Pr {arbitrary message in node i does not have node m for

Am

" a final address)
providad I-:'.I < Uacm forallmm™ 1, 2, ..., Ma

This tieoren is alwost identical to Jackson's theorem, as one

night eipact. ﬂh(gge that heve, tbhe appropriate definition for the

utilization £nccc§/node n isp = r;lucm, The definition of r; as given
in E¢n, (9) can Cte shown to agree with the definition for the average
grrival rate of messages at node m {analegous te Jackson's definition in
Egn. (1) ), The cvnluation.?fctﬁn involves golving a set of simultanecus
equations, ag does the evalevation of ':n' By way of illustration, the

solution for and cl, in a three node net follcws:

1

2
=5 e, ¢ 06,

%y iz.\ltm 4 7\2c23ll(3f2) f—;

As alrveady menticned, P. Burke {17] has showva that in a waiting
system with W servers, with Poisson errivels (wean rate \) and with

exponential holding rim2g (mean holding time for each server = 1/u), the
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traffic departing from the system is Poiszon with mean rate A, previdiag
the steady state prevails (i.e. provided p = AN/uil is less than 1). 1Ia
fact, it ig on Cthis baosis that Jackson is gble to say that his systea con-
sists of independent elementary systems; that is, Burke's theorem states
that exponential waiting systems (or departments or nodes, as the problem
may be defined) aluays transform Pecicson input traffic intc Poieson out-
put traffic {with the same mean rates) and thus tae departing traffic is
not distinguishable from the innut traffic., An fdentical situvation exists
for the system considered in Theovem &, and is stated formally in

THEMREM 5:

For the system considered in Theorem &, all traffic flowing
within the network is Peieson in nature, and, in particular, the traffic
transmitted from node m teo any other rode in the system in Peisson with

mean tate r:/N.

Many eof the theorens preseatad here are fairly s;ecialized to
particulor conditicns on the network topology and on the routing disci-
pline., 1t is anticipated that a nuvber of them can Le extended to less
restrictive netwoclks, and such an effcrt is now bDeing undertaken by the
author, since this investigation fits very well with the gensral aims of

che thesis research,
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APPEIDIX
2?roof of Theoreas

Defore we procead with the proofs, lat us devrive a gemeral result
for a class of Birth-Death Processes [12}.

Let
B (t) = Pr [finding n sembers in systea at time t)
bhdt = Pr [birth of 2 rew member during any interval of length
dt |n members already in systen)
dndt = Pr {dedth of a member during any interval of length

dt |a members in systea]

then, clearly
Pb(t $dt) = ?1(:) (dldc) * ?o(t) (l-bodc)
Ph(t + dt) = Pn & 1(t) (dn * ldt) + Pn_l(t) (bn_ldc)
+ 2.(t) (1~d & - b dt) ol

From these equs., we get
P (E)fGe = 4,2, () -by? (t) ar

(e + b P (8 - (dnﬁbh)Pn(a) nxl (A2}

dP“(l:Jldz 5 n~-1 n-

dn-l-l ?n-}l
Let us now assune the czistence cof a steady stota distribution for Pn(t}.
chat is,

1lim P {t) = ?
t-»go" n

Therafore lim dP {t)fdt = 0
t-=00 o

and so, we get, for ems. (A1) and (A2),

¢ = dIPl - bo?o

Q=g P - (dnébn)P

918502 € Pac1¥na1 3

&
Dote that b, and d, are assumed to be independeat of time,



The solution to this set of difference equations isg
n-1

2wl B.(b./d..) a3l

8 g 01 4m 2

which way easily be checled,

Theorem 1 - nroof:

Civen E(t) =« N/uC + P(3V)/uC(l-0)

substicuting for P (»N) and rearzanging terms gives us

1/~
B(t) = (0/uC) (1 4 5;{1;132}7— ]

N-1
whare Su -gmy‘)ﬂm as > 0

N-l
Tiow SR - ;rn-l! fa/m) ((u-13/31 ... [{n#* 1)}/0]
o

therefo-:e. SN < N::-;pn-}: - (p'n..l)l(l-'p)
0 5

-
5 " L—.-lu
giving 0 < sN € s

Wow, for B = 1, eqn. (A4) yields

B{t) =~ 1/uc{l-p) for M e ]
thereiore, it is sufficient to show that

E(t) > 1/uC(i-p) for 211 M >1, Ogpgl
using (AS) we gat, for (A&)

EQE) 3 (M/C) [1 4 p /8¢1-p))

B(t) 3 [E(1-p) ¢ p 1/uCl1-p)

- 23 -

@3)

e
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Letting l-p = ¢ or 1-¢ = p, wa sec thaot

(l-p) ¢ p = iy + (1-c) 3+ Lo = 1
thus  E(t) 3 1/:C(1-p)

for all N, and in particular, tiwe only case for waich the equality holds
ig N=1, Uote that the equality would also hold for ¢ = 0 but this
implies chat p = 1, which we do not parmit. Thus

BCt) > 1/uc(l-p) for i>1, O0¢p«g1

vr/

which completes the proof,

Theorem 2 - proofs

The mathod of proof will ba tn giewy the impossibility of
contradicting the theoren.

Suppose p=w=C. Then 2, (tie probability that in the steady state
the system is ensty) appronches 1, In such a case, an entering message
(uhich will, with probability arbitearily close to 1, find an empty
system) musc be assigrned to chenuel 1 with probabiliey {and to chapnel 2
with probabllicy x, = 1-‘1) if ooe is tc have sny hopa ef contradicting
the theovenm,

New suppose p-w1; then ?o and Pl (the probability of one mes-
sage in the systea) both approcch 0, Thaerefore, the channal capacity
(!l assigred to chamnel 1 (which implies C-(!1 - (:2 for channel 2) must
L2 chiosen so that

¢ = Pr [chamnel 1 empiies before channgl 2 |toth channels busy)= ®y

That is, with prebability arbitverily close to 1, a message entaring che
node will be forced to join a2 queue, and so, wiaen it r2aches the head of
the quaus, {t will find both cbhammels busy. 1f£ this message is to be
trangaltted over channtel 1 wizh probebility Ao it must be that the
channel capacity assigomente rasult in Q= ®) o ¥Mote that we have taken
advancage of the foct thot messages with enpeonenticlly distributed lengtas

exhibit no memory &g regards their tronsmissicn time.
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Mow, &= T: fchonnel 1 empties in {&,c#dt) } both busy at time 0 ]
=0 ‘Pr [chanunel 2 is not yet empty by t|both busy at time 0 ]

o0
o= J pclc'"clte'“"ztdt

as W, /C L) = C)fC

but
= '1
thereforxe 2
C1 = ..lc
and alse

c2 - xzc ~ (1 - ;I)C

These two imiting cases for p-0 and p-»]1 have constrained the
construction of our system completely,

Row, let

1 - Pr [{ncoming message is transmitted on chamnnel 1 ]
M Pr [finding n messzges in the systea in the steady state]

Then clearly, ©
T, - ‘IPO + qZIPI + z len . (46)
) n=2
where
q;, = P= [channel i 5 busy | only one channel is busy]
that is
T, - E [probability of aun arbitrary message being transmitted

over channel 1}

For Uyqe WE write:
qy (tHdt) = [Py(e)/P, (£) 10mydt) + [By(ed /P (£)]{uC,de)
2 q21(t) (I-Mt-uczdt]

Agsuming a steady state distribution, we get,
0 = (2,/P) 0%, ¢ (P,/P,)uC; - (MnCyla,, a7

Bow, since this system satisfies the hypothesis of the Birth-Death
Process comsidered carlier, we apply Eqn.(Ad), with d, = uC,
d, = i (n32), bn m A, and obtain



whiere p = N uC,

ang Cwg [cagacity in use | one charnel is busy]

= W Gy * M5y,
Also, recall that €y w x,C and GC, = x,C = (l-gl)c .

Thus, Eqa.{i7) beconros

Gpy ™ Cuy + Axy) /O % uley) 9
sinilarly i

qll o {ucﬂl + \-ﬁz) / (7'- + “c'xl)
tiow, forming the e¢guation,

G gt

ve cbialn, aftar seme alguebra,

ut w okl + 20) / (2uC 4 Ny w,)

= uodl 2 Zn) £ (2 % ?‘f‘]_x'ﬁ

e xay wow wrige Tgn.(A9) as

WCQ20) [ (2pluy %, ) 1ty % Doby
‘l21 o R ;J.sz

-

Simplifying, we get

¢ = LD A9, %, 5D £330
iy 31(*/.&) !(&1“13 ¢ )
fecaruing te Rqu.fAG), we see that the enly way in which T, can equal
i for o
- o
which demnus.rates that khe thesren cannot be econtradicted for en

= %, » DBgn. (A13) shous that thie is not tho case,

avbitrary «, , proving th2 Ehoorem, g
- ~
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Yowevar, it cna La saen Sten B, (A20), thar P for

% =0, /2, 1 only, Llet us naw £an z, fren Bens. WmE a ad (."8)

t

= S o
- : 7 1
Ty 1’0[ g.l \Aq,.l 4(‘) % {x %, 0 ¢/e3 p !

nwl

waers Pﬂ is found from Egn., {A8) by requiriag

After suhstituting and simplifylng, uwe oet

“"1' e (‘—ul‘)'t T oA, t
T, = . S
l ‘1 1 -"‘1‘2)" + "’1’ R ‘*l J

x4

Figura {A-1) shows » plot of r, 28 a fTueticn of p, wiLd %5

g a patumetar.
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ig divided between the two chaimels in propertion to iie desived prob-
ability of using cach chaunel, end for the disciplins follcwed uwhea a
message firds both chamnela empty, one merely chooses chipurel 1 with
probability ¥y

Corollary to Theorem 2 - proof:

In proving Theorem 2, it was shown that for m) = 1/2, a suitable
system could be found te realize this ) » This result aleo follows
directly from the conplete synmetry of the two chamnele, Similarly, tie
proof of this corollary fellows trivially from recopgnizing, once again,
the ccmplate oymmatry of each of the I channels,

(424

Tacoren 3 - proof:

The system consicdered in this theoram satisfies the conditions
of the Birtn-Death Process excmined eariier, with

bn = )\
dn i "(c'q)

Thus, by Eem. {A3), we find

3]
B = POMW)" /I RS 03l
ar £ n .
2 - pop“ /1 ”'n; (-r,)} n3l (a11)

where p = AJuC
ry= C,/C (a12)
and Pn= Po for nv0, by definition.

Let us notr solve for Po:

gl’n-:l.n?o[l{*é[{npn]
o=

n=]

-

where 2]
R, =1/ Q-

in]l.
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8

e poapfiie Rp

29 i {A13)

"3

n

=
(3

How, according o the statement of the theovem, lat us forn and solve

for
x=1- fz; (E;7c39n
0

iioting taat E; = C Dby conatruction, uné using Ecas. {A11) - (Al2),

m '

n
g=l-7 -7 T R p
0 0 ;g; nn

=5 )
14 nnp“
n=.
n
L
z = A5
oo s
14 E p
n=l -
g
- ‘ S

It is impovtant to reccgnize here thut Ry must be defined as

Ro - (l-rl)ﬁl

1

s .
Rq =1 {talen wow oo a defiunition as well)
Al



1
-

[o3)
and 7
o 14 Zxxp‘

e ®~p

%2

which proves the thesrem,

" Theorem 4 - proof:

The systen considered in this theorem satisfies the conditions
of the Birth-Death Precess examined eurlier, However, we have Tl nndes,
(=)
»

and so we wust investigate ¥l probability distvibuticus, Bs 9 where
n=1,2,0..,1 and n = 0,2,2,,.. Lat the birth and death rates foer

node m be bn(m> apd & (“).ecpeccivclj. fiith this notation, we seo
that
il
v a4 e, S Wy u3 0
n n (“‘ Jm : g i ;
: o i=
ita
c;.;cm/a-: ne0,1,,.,,0
a @,
n ;
',:CD gl
{2y

an cuplonation of the bn is reguired a2t tals poiat. h is the inpuk
{birth) rate of messages to nwede m from its euternal ocu;ce (by defini-~
tion). In addition, e-cﬁ of the cther II nodes seads messages to unde m,
Let us cansider the j P node's contribation ( "J say ) to the input
rate cZnodem { § ¥ m):

Clearly,

'jdt = Pf-'{Q1o on Q9} P fa ; taon] Pe “1,.03]
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where Ql = avent that a message on the chanael comneciing wode j to
node m completes its transmission to node m ia an arbitrary
tize interval (t, tide)

Q2 = eveat that an arbitrary message in node § does not have
node m for its final address

Q3 @ gvent that the chamnel comecting node j %o node m is
baeing used

€ ince Q2 and Q3 are indepandent evants, we get
xydt « PriQ, | Q,,Q;] PriQ,} Prlg,]

and for node j,

?r[QI’ Q23Q3] - P':[QII Qa] - ("cij)dt

Pr!Qz'l -a,.,

S
imq)
The cumzation om j eppearing in the enpression for bn‘m)merely adds up
the coatributioas to the imput (birth) rate of internally routed nessages.
tiow, according ton the definition of E; in Thacrem 3, we caw apply
the sane cefinition to coch of the M1 nodes in the p=esent théorem,
Thus, ia this case, we sea that

[{8-n)fuic ng®

i
n

aad o we recognize, by application of Theorem 3, that

-.I :
1 g p, P@-iym = Py
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where, by definition,

ry»

& - Sverage input rate to node
pj c 3 ua..i.r'un output rate » from noce 3
iHl
(m)
thus b "™ = A ¢ 21 |"c /n alln 30
j{u

But, since u (m) is independent of n, it obviously satisfies the definitien
of r (= avemae ounber of messages pe:: second eatering node m). Thus

{m)
bn - R 2 r;a le

Yow, esing thesa birch and death coefficients, we apply equ. (A3) te get
) §icd .
Po( % |Z|/pcm)" 1" ful (h=0,1, ccop 1)

(™ _
an {

P (m)( Flu' d‘ f‘. ' oy
In this ecase, it is clear that the steady state is defined only when

rluc <1 for all
o SEEE TR R

This completes the proof of the theovem,

Theorem 5 - preef:

In order to show that 21l traffic Flowing within the network
congidered in Theorem £, 18 Poissen in nature, it is sufficient to ghaw
that
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q (C,t) m Pr {a message tvonsmiseion, in any chanel C of the
networl:, is completed in a time intapval (&, ¢ 4+ di),
where t is arbltrary’
= kat

wiere k is a constant,
Lot us show this for an asbitrary chanuel counectiuz noce §

{scy) to any other node:

LAM

wher2 Ql and Q.‘J are as defined in the proaf of Thesrem 4, As slowa in

the greof of Theoraem &,
' : &L
i | Q] Pr iQ,) = (ucjlﬂ) 1 - ;;; p, W m-1)/u) de

n (pijH)pjdt

and so of{C fi,e) = ¢ F.IH) dt
J K
wrich proves the theoven, and alen shows the valus of the wean vace for

the Toisson uraifie to Lo ST
-

&k
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