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INTRODUCTION 

Imagine that two users require the use of a communication 
chaimet. "The "ciasstcal approach to "satisfying this require
ment is to provide a channel for their use so long as that need 
continues (and to charge them for the full cost of this chan
nel). It has long been recognized that such allocation of 
scarce communication resources is extremely wasteful as 
witnessed by their low utilization (see for example the meas
urements of Jackson & Stubbs).1 Rather than provide chan
nels on a user-pair basis, we much prefer to provide a single 
high-speed channel to a large number of users which can be 
shared in some fashion; this then allows us to take advantage 
of the powerful "large number laws" which state that with 
very high probability, the demand at any instant will be ap
proximately equal to the sum of the average demands of that 
population. In this way the required channel capacity to sup
port the user traffic may be considerably less than in the 
unshared case of dedicated channels. This approach has been 
used to great effect for many years now in a number of differ
ent contexts: for example, the use of graded channels in the 
telephone industry,2 the introduction of asynchronous time 
division multiplexing,3 and the packet-switching concepts 
introduced by Baran et al.,4Davies,5and finally implemented 
in the ARPA network.6 The essential observation is that the 
full-time allocation of a fraction of the channel to each user 
is highly inefficient compared to the part-time use of the full 
capacity of the channel (this is precisely the notion of time
sharing) . We gain this efficient sharing when the traffic con
sists of rapid, but short bursts of data. The classical schemes 
of synchronous time division multiplexing and frequency 
division multiplexing are examples of the inefficient parti
tioning of channels. 

As soon as we introduce the notion of a shared channel in a 
packet-switching mode then we must be prepared to resolve 
conflicts which arise when more than one demand is simul
taneously placed upon the channel. There are two obvious 
solutions to this problem: the first is to "throw out" or "lose" 
any demands which are made while the channel is in use; 
and the second is to form a queue of conflicting demands and 
serve them in some order as the channel becomes free. The 
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latter approach is that taken in the ARPA network since 
storage may be provided economically at the point of con
flict. The former approach is taken in the ALOHA system7 

which uses paetet^switehing with-radio-ehannels; in this sys
tem, in fact, all simultaneous demands made on the channel 
are lost. 

Of interest to this paper is the consideration of satellite 
channels for packet-switching. The definition of a packet is 
merely a package of data which has been prepared by a user 
for transmission to some other user in the system. The satel
lite is characterized as a high capacity channel with a fixed 
propagation delay which is large compared to the packet 
transmission time (see the next section). The (stationary) 
satellite acts as a pure transponder repeating whatever it re
ceives and beaming this transmission back down to earth; 
this broadcasted transmission can be heard by every user of 
the system and in particular a user can listen to his own 
transmission on its way back down. Since the satellite is 
merely transponding, then whenever a portion of one user's 
transmission reaches the satellite while another user's trans
mission is being transponded, the two collide and "destroy" 
each other. The problem we are then faced with is how to 
control the allocation of time at the satellite in a fashion 
which produces an acceptable level of performance. 

The ideal situation would be for the users to agree collec
tively when each could transmit. The difficulty is that the 
means for communication available to these geographically 
distributed users is the satellite channel itself and we are 
faced with attempting to control a channel which must carry 
its own control information. There are essentially three ap
proaches to the solution of this problem. The first has come 
to be known as a pure "ALOHA" system7 in which users 
transmit any time they desire. If, after one propagation de
lay, they hear their successful transmission then they assume 
that no conflict occurred at the satellite; otherwise they know 
a collision occurred and they must retransmit. If users re
transmit immediately upon hearing a conflict, then they are 
likely to conflict again, and so some scheme must be devised 
for introducing a random retransmission delay to spread 
these conflicting packets over time. 

The second method for using the satellite channel is to 
"slot" time into segments whose duration is exactly equal to 
the transmission time of a single packet (we assume con
stant length packets). If we now require all packets to begin 
their transmission only at the beginning of a slot, then we 
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enjoy a gain in efficiency since collisions are now restricted to 
a single slot duration; such a scheme is referred to as a 
"slotted ALOHA" system and is the principal subject of this 
paper. We consider two models: the first is that of a large 
population of users, each of which makes a small demand on 
the channel; the second model consists of this background of 
users with the addition of one large user acting in a special 
way to provide an increased utilization of the channel. We 
concern ourselves with retransmission strategies, delays, and 
throughput. Abramson8 also considers slotted systems and is 
concerned mainly with the ultimate capacity of these chan
nels with various user mixes. Our results and his have a com
mon meeting point at some limits which will be described 
below. 

The third method for using these channels is to attempt to 
schedule their use in some direct fashion; this introduces the 
notion of a reservation system in which time slots are re
served for specific users' transmissions and the manner in 
which these reservations are made is discussed in the paper 
by Roberts.9 He gives an analysis for the delay and through
put, comparing the performance of slotted and reservation 
systems. 

Thus we are faced with a finite-capacity communication 
channel subject to unpredictable and conflicting demands. 
When these demands collide, we "lose" some of the effective 
capacity of the channel and in this paper we characterize the 
effect of that conflict. Note that it is possible to use the chan
nel up to its full rated capacity when only a single user is 
demanding service; this is true since a user will never con
flict with himself (he has the capability to schedule his own 
use). This effect is important in studying the non-uniform 
traffic case as we show below. 

SLOTTED ALOHA CHANNEL MODELS 

Model I. Traffic from many small users 

In this model we assume: 

(Al) an infinite number of users* who collectively form an 
independent source 

This source generates M packets per slot from the distribu
tion vi = 'Prob[mM = f\ with a mean of S0 packets/slot. 

We assume that each packet is of constant length requiring 
T seconds for transmission; in the numerical studies pre
sented below we assume that the capacity of the channel is 
50 kilobits per second and that the packets are each 1125 bits 
in length yielding T = 22.5 msec. Note that S0'=S0/T is the 
average number of packets arriving per second from the 
source. Let d be the maximum roundtrip propagation delay 
which we assume each user experiences and let R = d/T be 
the number of slots which can fit into one roundtrip propaga
tion time; for our numerical results we assume d = 270 msec. 
and so R=12 slots. R slots after a transmission, a user will 

* These will be referred to as the "small" users. 

either hear that it was successful or know that it was de
stroyed. In the latter case if he now retransmits during 
the next slot interval and if all other users behave like
wise, then for sure they will collide again; consequently 
we shall assume that each user transmits a previously col
lided packet at random during one of the next K slots, 
(each such slot being chosen with probability 1/K). Thus, 
retransmission will take place either R+l, R+2, . . . or 
R+K slots after the initial transmission. As a result traffic 
introduced to the channel from our collection of users will 
now consist of new packets and previously blocked packets, 
the total number adding up to N packets transmitted per 
slot where pl = Prob[iV = «] with a mean traffic of G packets 
per slot. We assume that each user in the infinite popu
lation will have at most one packet requiring transmission 
at any time (including any previously blocked packets). 
Of interest to us is a description of the maximum through
put* rate £ as a function of the channel traffic G. It is clear 
that S/G is merely the probability of a successful trans
mission and G/S is the average number of times a packet 
must be transmitted until success; assuming 

(A2) the traffic entering the channel is an independent 
process 

We then have, 
S=Gp0 (1) 

If in addition we assume, 

(A3) the channel traffic is Poisson 

then p0 = e~G, and so, 
S=Ge~G (2) 

Eq. (2) was first obtained by Roberts11 who extended a simi
lar result due to Abramson7 in studying the radio ALOHA 
system. It represents the ultimate throughput in a Model I 
slotted ALOHA channel without regard to the delay packets 
experience; we deal extensively with the delay in the next 
section. 

For Model I we adopt assumption Al. We shall also accept 
a less restrictive form of assumption A2 (namely assumption 
A4 below) which, as we show, lends validity to assumption 
A3 which we also require in this model. Assume, 

(A4) the channel traffic is independent over any K con
secutive slots 

We have conducted simulation experiments which show that 
this is an excellent assumption so long as K<R. 

Let, 

P(*)= £ P . * ' (3) 
»=0 

V{z)= f> j g * (4) 
t=0 

* Note that S=S0 under stable system operation which we assume 
unless stated otherwise C=ee below). 
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Using only assumption A4 and the assumption that M is in
dependent of N—M, we find [10] that P (z) may be expressed 
as 

If, further, the source is an independent process (i.e., as

sumption Al) and is Poisson distributed then V(z) =e~sa~z), 

and then we see immediately that, 

LimP(z)=e - ( ? a~ z )-
itt°o 

This shows that assumption A3 follows from assumptions 
Al and A4 in the limit of large K, under the reasonable con
dition that the source is Poisson distributed. 

distinguish packets transmitting in a given slot as being 
either newly generated or ones which have in the past col
lided with other packets. This leads to an approximation 
since we do not distinguish how many times a packet has 
met with a collision. We have examined the validity of this 
approximation by simulation, and have found that the cor
relation of traffic in different slots is negligible, except at 
shifts of R-\-l, R+2, . . . , R+K; this exactly supports our 
approximation since we concern ourselves with the most re
cent collision. We require the following two additional 
definitions: 

<7 = Prob[newly generated packet is successfully 
transmitted] 

ge = Prob [previously blocked packet is successfully 
transmitted] 

We also introduce the expected packet delay D: 

D = average time (in slots) until a packet is 
successfully received 

Our principal concern in this paper is to investigate the 
trade-off between the average delay D and the throughput S. 

Model II. Background traffic with one large user 

In this second model, we refer to the source described 
above as the "background" source but we also assume that 
there is an additional single user who constitutes a second 
independent source and we refer to this source as the "large" 
user. The background source is the same as that in Model I 
and for the second source, we assume that the packet arrivals 
to the large user transmitter are Poisson and independent of 
other packets over R+K consecutive slots. In order to dis
tinguish variables for these two sources, we let Si and Gi refer 
to the S and G parameters for the background source and let 
S2 and G2 refer to the S and G parameters for the single large 
user. We point out that the identity of this large user may 

change as time progresses but insist that there be only one 
such at any given time. We introduce the new variables 

S=Si+S2 (5) 

G = G,+G2 (6) 

S represents the total throughput of the system and G repre
sents the traffic which the channel must support (including 
retransmissions). We have assumed that the small users may 
have at most one packet outstanding for transmission in the 
channel; however the single large user may have many pack
ets awaiting transmission. We assume that this large user has 
storage for queueing his requests and of course it is his re
sponsibility to see that he does not attempt the simultaneous 
transmission of two packets. We may interpret G2 as the 
probability that the single large user is transmitting a packet 
in a channel slot and so we require G2< 1; no such restriction 

is4>lacedjcaiJ^^jar-xtnjG-inJ\£odel-I4- -
We now introduce a means by which the large user can 

control his channel usage enabling him to absorb some of the 
slack channel capacity; this permits an increase in the total 
throughput S. The set of packets awaiting transmission by 
the large user compete among each other for the attention of 
his local transmitter as follows. Each waiting packet will be 
scheduled for transmission in some future slot. When a newly 
generated packet arrives, it immediately attempts trans
mission in the current slot and will succeed in capturing the 
transmitter unless some other packet has also been scheduled 
for this slot; in the case of such a scheduling conflict, the new 
packet is randomly rescheduled in one of the next L slots, 
each such slot being chosen equally likely with probability 
1/L. Due to the background traffic, a large user packet may 
meet with a transmission conflict at the satellite (which is 
discovered R slots after transmission) in which case, as in 
Model I, it incurs a random delay (uniformly distributed 
over K slots) plus the fixed delay of R slots. More than one 
packet may be scheduled for a future slot and we assume 
that these scheduling conflicts are resolved by admitting that 
packet with the longest delay since its previous blocking (due 
to conflict in transmission or conflict in scheduling) and uni
formly rescheduling the others over the next L slots; ties are 
broken by random selection. We see, therefore, that new 
packets have the lowest priority in case of a scheduling con
flict; however, they seize the channel if it is free upon their 
arrival. The variable L permits us a certain control of chan
nel use by the large user but does not limit his throughput. 
We also assume K,L<R. Corresponding to q and qt in Model 
I, we introduce the success probabilities qi and qit (i—1, 2) 
for new and previously blocked packets respectively and 
where i=\ denotes the background source and i = 2 denotes 
the single large source. Finally, we choose to distinguish be
tween Z)i and D2 which are the average number of slots until 
a packet is successfully transmitted from the background 
and large user sources respectively. 

RESULTS OF ANALYSIS 

In this section we present the results of our analysis with
out proof. The details of proof may be found in Reference 10. 
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Figure 1—Throughput as a function of channel traffic 

Model I. Traffic from many small users 

We wish to refine Eq. (2) by accounting for the effect of 
the random retransmission delay parameter K. Our principal 
result in this case is 

S = G- Qt 

where 

Qt+l-q 

G 
9=|V<?/*+Je-ej e-

and 

^ = [l~^]^_<? /X-e~^[e~G'X+ | e _ G f ^ 

(7) 

(8) 

(9) 

The considerations which led to Eq. (7) were inspired by 
Roberts11 in which he developed an approximation for Eq. 
(9) of the form 

?«= 
K-l 

K 
(10) 

We shall see below that this is a reasonably good approxima
tion. Equations (7-9) form a set of non-linear simultaneous 
equations for S, q and qt which must be solved to obtain an 
explicit expression for S in terms of the system parameters 
G and K. In general, this cannot be accomplished. However, 
we note that as K approaches infinity these three equations 
reduce simply to 

. o 
Lim — = Lim q = Lim qt = e~a 

JCt°o « Ktw Kfx 
(11) 

Thus, we see that Eq. (2) is the correct expression for the 
throughput S only when K approaches infinity which cor
responds to the case of infinite average delay; Abramson8 

gives this result and numerous others all of which corre
spond to this limiting case. Note that the large K case avoids 

the large delay problem if T is small (very high speed chan
nels) . 

The numerical solution to Eqs. (7-9) is given in Figure 1 
where we plot the throughput S as a function of the channel 
traffic G for various values of K. We note that the maximum 
throughput at a given K occurs when G = 1. The throughput 
improves as K increases, finally yielding a maximum value 
of S= l/e = .368 for G=l, K = infinity. Thus we have the un
fortunate situation that the ultimate capacity of this channel 
supporting a large number of small users is less than 37 per
cent of its theoretical maximum (of 1). We note that the 
efficiency rapidly approaches this limiting value (of 1/e) as 
K increases and that for K=lo we are almost there. The 
figure also shows some delay contours which we discuss 
below. In Figure 2, we show the variation of q and qt with K 
for various values of G. We note how rapidly these functions 
approach their limiting values as given in Eq. (11). Also on 
this curve, we have shown Roberts' approximation in Eq. 
(10) which converges to the exact value very rapidly as K 
increases and also as G decreases. 

Our next significant result is for packet delay as given by 

D = R+l+ ^ \R+1+ ^ 1 (12) 

We note from this equation that for large K, the average 
delay grows linearly with K at a slope 

Lim 
3D l-erG 

dK 2e~° 

Using Eq. (11), we see that this slope may be expressed as 
G—S/2S which is merely the ratio of that portion of trans
mitted traffic which meets with a conflict to twice the through
put of the channel; since G—S/2S = }'2(G/S— 1), we see 
that the limiting slope is equal to 3>«j times the average 
number of times a packet is retransmitted. Little's well-
known result12 expresses the average number (n) of units 
(packets in our case) in a queueing system as the product of 
the average arrival rate (>So = S in our case) and the average 
time in system (D). If we use this along with Eqs. (7) and 
(12), we get 

i = SD = G\ R+1 + ¥H¥] (13) 

q 

Kll . -G 
K * 

^ 

/ ^^~~S^zs:^::==:S^ 

G-O.l 

G*0.4 

G-0.7 

G-1,0 

G = l.5 

10 15 20 

Figure 2—Success probabilities as a function of retransmission delay 
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In Figure 1 we plot the loci of constant delay in the S, G 
plane. Note the way these loci bend over sharply as K in
creases defining a maximum throughput Smax(D) for any 
given value of D; we note the cost in throughput if we wish 
to limit the average delay. This effect is clearly seen in 
Figure 3 which is the fundamental display of the tradeoff 
between delay and throughput for Model I; this figure shows 
the delay-throughput contours for constant values of K. We 
also give the minimum envelope of these contours which de
fines the optimum performance curve for this system (a 
similar optimum curve is also shown in Figure 1). Note how 
sharply the delay increases near the maximum throughput 
S~ 0.368; it is clear that an extreme price in delay must be 
paid if one wishes to push the channel throughput much 
above 0.360 and the incremental gain in throughput here is 
infinitesimal. On the other hand, as S approaches zero, D 
approaches R+l. Also shown here are the constant G con
tours. Thus this figure and Figure 1 are two alternate ways of 
displaying the relationship among the four critical system 
quantities S,G,K, and D. 

From Figure 3 we observe the following effect. Consider 
any given value of *S (say at S = 0.20), and some given value 
of K (say K=2). We note that there are two possible values 
of D which satisfy these conditions (D = 21.8, D= 161). How 
do we explain this?* It is clear that the lower value is a stable 

i01 1 , 1 , 1 1—i 1 
.1 .2 .3 l/e- .4 

THROUGHPUT (PACKETS/SLOT) S 

Figure 3—Delay-throughput tradeoff 

* This question was raised in a private conversation with Martin Gra
ham (University of California, Berkeley). A simulation of this situation 
is reported upon in Reference 13. 
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Figure 4—Optimum K 

operating point since the system has sufficient capacity to 
aJssor-b-any &j£tuatianJn-the--ra±e-^-Suppose^hat Ave-Jiow-
slowly increase So (the source rate); so long as we do not 
exceed the maximum value of the system throughput rate 
for this K (say, Sm^(K)), then we see that S = S0 and the 
sj^stem will follow the input. Note that Sm^(K) always oc
curs at the intersection of the G=\ curve as noted earlier. 
However, if we attempt to set S0>Sm&x(K), then the sys
tem will go unstable! In fact, the throughput S will drop 
from Smax(-K) toward zero as the system accelerates up the 
constant K contour toward infinite delay! The system will 
remain in that unfortunate circumstance so long as So>S 
(where now S is approaching zero). All during its demise, the 
rate at which new packets are being trapped by the system is 
S0—S. To recover from this situation, one can set So = 0; 
then the delay will proceed down the K contour, round the 
bend at SmB.^(K) and race down to $ = 0. All this while, the 
backlogged packets are being flushed out of the system. The 
warning is clear: one must avoid the knee of the K contour. 
Fortunately, the optimum performance curve does avoid the 
knee everywhere except when one attempts to squeeze out 
the last few percent of throughput. In Figure 4, we show the 
optimum values of K as a function of S. Thus, we have char
acterized the tradeoff between throughput and delay for 
Model I. 

Model II. Background traffic with one large user 

In this model the throughput equation is similar to that 
given in Eq. (7), namely, 

S.- = G.; — t = l . 2 (14) 

the quantities qn and <?; are given in the appendix. Similarly 
the average delays for the two classes of user are given by 

^ B + 1 + l z f t ^ + x + ^ z l ] (15) 
qxt i 2 J 

A_B+1+l=»rB+1+*=ll+t±l"gl+lzaA'l 
qu L 2 J 2 L ?2« J 

(16) 
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Figure 5—Throughput surface 

where En and Et are given in the appendix. It is easy to show 
that as K, L approach infinity, 

S1 = G1e-G^(l-G2) 

S=(G-G1G2)e-G> 

(17) 

(18) 

(19) 

(20) 

(21) 

where we recall G = Gi+G2 and S=Si+S2. From these last 
equations or as given by direct arguments in an unpublished 
note by Roberts, one may easily show that at a constant 
background user throughput Si, the large user throughput 
S2 will be maximized when 

G = G1+G2=l (22) 

This last is a special case of results obtained by Abramson in 
Reference 8 and he discusses these limiting cases at length for 
various mixes of users. We note that, 

dS_ 

dG2 

dS_ 

= tr«i(l-Gi) 

= -e~^(G-G1G2-l+G2) 

(23) 

(24) 

In Figure 5 we give a qualitative diagram of the 3-dimen-
sional contour for S as a function of (?i and G2. We remind the 
reader that this function is shown for the limiting case K, L 
approaching infinity only. From our results we see that for 
constant (?i<l, S increases linearly with G2 (G2<1). For 
constant Gi>l, S decreases linearly as G2 increases. In ad
dition, for constant G2<%, S has a maximum value at 
Gi=l — 2G2/1 — G2. Furthermore, for constant G2>%, S de
creases as Gi increases and therefore the maximum through
put S must occur at S = G2 in the Gi = 0 plane. 

The optimum curve given in Eq. (22) is shown in the Si,S2 

plane in Figure 6 along with the performance loci at constant 
(?i. We note in these last two figures that a channel through
put equal to 1 is achievable whenever the background traffic 
drops to zero thereby enabling S=S2 = G2=l; this corre
sponds to the case of a single user utilizing the satellite 
channel at its maximum throughput of 1. Abramson [8] dis-

< 100 

10 

OPTIMUM 
D, ENVELOPE 

OPTIMUM 
0 ENVELOPE 
OPTIMUM j-
D2 ENVELOPE^ 

THROUGHPUT 

Figure 7—Delay-throughput tradeoff at Sl = 0A 

A Z .3 
BACKGROUND THROUGHPUT 

Figure 6—Throughput tradeoff 

cusses a variety of curves such as those in Figure 6; he con
siders the generalization where there may be an arbitrary 
number of background and large users. 

In the next three figures, we give numerical results for the 
finite K case; in all of these computations, we consider only 
the simplified situation in which K = L thereby eliminating 
one parameter. In Figure 7 we show the tradeoff between de
lay and throughput similar to Figure 3. (Note that Figure 5 
is similar to Figure 1.) Here we show the optimum perform
ance of the average delay D = SJ)i+S2D2fS along with the 
behavior of D at constant values of K and Si = 0.1 (note the 
instability once again for overloaded conditions). Also shown 
are minimum curves for Di and D2, which are obtained by 
using the optimum if as a function of S. If we are willing to 
reduce the background throughput from its maximum at 
(Si = 0.368, then we can drive the total throughput up to ap
proximately £ = 0.52 by introducing additional traffic from 
the large user. Xote that the minimum A curve is much 
higher than the minimum D2 curve. Thus our net gain in 
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channel throughput is also at the expense of longer packet 
delays for the small users. Once again, we see the sharp rise 
near saturation. 

In Figure 8, we display a family of optimum D curves for 
various choices of Si as a function of the total throughput S. 
We also show the behavior of Model I as given in Figure 3. 
Note as we reduce the background traffic, the system capac
ity increases slowly; however, when Si falls below 0.1, we 
begin to pick up significant gains for £2. Also observe that 
each of the constant curves "peels off" from the Model I 
curve at a value of S = Si. At Si = 0, we have only the large 
user operating with no collisions and at this point, the optimal 
value of L is 1. This reduces to the classical queueing system 
with Poisson input and constant service time (denoted 
M/D/l) and represents the absolute optimum performance 
contour for any method of using the satellite channel when 
the input is P.oissoB;.fo_r other input distributions we may 
use the G/D/l queueing results to calculate this absolute 
optimum performance contour. 

In Figure 9, we finally show the throughput tradeoffs be
tween the background and large users. The upper curve shows 
the absolute maximum S at each value of &; this is a clear 
display of the significant gain in £2 which we can achieve if 
we are willing to reduce the background throughput. The 
middle curve (also shown in Figure 6 and in Reference 8) 
shows the absolute maximum value for & at each value of 
Si. The lowest curve shows the net gain in system capacity as 
Si is reduced from its maximum possible value of 1/e. 

CONCLUSIONS 

In this paper we have analyzed the performance of a slotted 
satellite system for packet-switching. In our first model, we 
have displayed the trade-off between average delay and 
average throughput and have shown that in the case of 
traffic consisting of a large number of small users, the limiting 

MODEL n 
S, = 0.05-

.2 .4 .6 
THROUGHPUT 

Figure 8—Optimum delay-throughput tradeoffs 

.1 .2 .3 
"BACKGROUND' THROUGHPUT 

Figure 9—Throughput countours 

throughput of the channel (1/e) can be approached fairly 
closely without an excessive delay. This performance can be 
achieved at relatively small values of K which is the random 
retransmission delay parameter. However, if one attempts to 
approach this limiting capacity, not only does one encounter 
large delays, but one also flirts with the hazards of unstable 
behavior. 

In the case of a single large user mixed with the background 
traffic, we have shown that it is possible to increase the 
throughput rather significantly. The qualitative behavior for 
this multidimensional trade-off was shown and the numerical 
calculations for a given set of parameters were also dis
played. The optimum mix of channel traffic was given in 
Eq. (22) and is commented on at length in Abramson's 
paper.8 We have been able to show in this paper the relation
ship between delay and throughput which is an essential 
trade-off in these slotted packet-switching systems. 

In Roberts' paper9 he discusses an effective way to reserve 
slots in a satellite system so as to predict and prevent con
flicts. It is worthwhile noting that another scheme is cur
rently being investigated for packet-switching systems in 
which the propagation delay is small compared to the slot 
time, that is, R = d/T<£\. In such systems it may be ad
vantageous for a user to "listen before transmitting" in order 
to determine if the channel is in use by some other user; 
such systems are referred to as "carrier sense" systems and 
seem to offer some interesting possibilities regarding their 
control. For satellite communications this case may be 
found when the capacity of the channel is rather small (for 
example, with a stationary satellite, the capacity should be 
in the range of 1200 bps for the packet sizes we have dis
cussed in this paper). On the other hand, a 50 kilobit channel 
operating in a ground radio environment with packets on the 
order of 100 or 1000 bits lend themselves nicely to carrier 
sense techniques. 

In all of these schemes one must trade off complexity of 
implementation with suitable performance. This performance 
must be effective at all ranges of traffic intensity in that no 
unnecessary delays or loss of throughput should occur due to 
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complicated operational procedures. We feel that the slotted 
satellite packet-switching methods described in this paper 
and the reservation systems for these channels described in 
the paper by Roberts do in fact meet these criteria. 
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APPENDIX 

Define Gs 4 Poisson arrival rate of packets to the transmitter 
of the large user 

= St[l+En+Ei(l+Et)l (A.1) 

The variables qi} qit ( t = l , 2) in Eqs. (14-16) are then 
given as follows (see Reference 10 for details of the deriva
tions) : 

qi=(qo)K(QH)Le-s (A.2) 

qu=(qo)K-1qu(qk)Le-8 (A.3) 

wrhere 

qa = e-G1iK+ 1 [ ( I -* -* . ) (e-oi-e-MK) +£ie-«?i+<?.)] (A.4) 
K 

Qh = 

{(G.+l)*-*' 

1 

L = l 
(A.5) 

L - l 

1 

(Le-G./L_e-e8) L>2 

qic= I _ e-(.Gi+G.) 
e-QiiK\ (1~^~rf~)~e _ ( < ? 1 + < ? , ) l (A'6) 

Let us introduce the following notation for events at the 
large user: 

SS = scheduling success (capture of the transmitter) 
SC = scheduling conflict (failure to capture transmitter) 
TS = transmission success (capture of a satellite slot) 
TC = transmission conflict (conflict at the satellite) 
NP = newly generated packet 

Then, 

?2 = 

qu = 

rn+rsE„ 

1+En 

rt+rsEt 

l+Et 

where 

En ^ average number of SC events before 1 _ 
an SS event conditioning on NP = -

a8 

Et Â  average number of SC events before , _ 
an SS event conditioning on TC = 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

The variables a,-, r,- (i=n, t, s) are defined and given below: 

a„4Prob tSS/NPl = (^) ( ? " ) L ( ^ y ^ ) (A.ll) 

r„AProb ITS/SS, NP^ = qKe~s^ (A. 12) 

1 l~(qo/q)K 

a (AProb tSS/TCy-
K l-qo/q 

r (AProb ITS/SS, TC^ = qK-lq^-s^ 

rsAProb ITS/SS, SCJ = qKe-s^ 

a,AProb LSS/SC] = (gAK ^ ^ 
\q ) L 1 -

where 

Gx 
0_g-Gi/X_| tg-CGi+Gs) 

K 

?2c = 

?Sc = 

e-Gl/K_e-Gi 

l - e - G i 

1_ 

G.-l-r-e-^' fe)K-z)< 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

-Gt!L_e-G,IL + e-Ge 

(A.19) 




