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ABSTRACT

A basic model for time-shared systems with M consoles is introduced
and analyzed. Published measurements of existing computer systems demon-
strate the accuracy of the model in describing the behavior of the normalized
average response time, taken as the performance measure of these systems.

The performance measure is derived and interpreted, leading to a
definition of system saturation which is a number of users, M*, equal to
(average think time plus average service time)/(average service time). This
definition is both intuitively pleasing and analytically significant. Asymptotic
expressions for the normalized average response time and for its inverse, the
fraction of the computer available to each user on a personal basis, are given
both for M << M* and M >> M*. The system saturation is found to play a
critical role for both asymptotic regions, as well as for the transition region.

The original system of M consoles with processor capacity C is com-
pared to a class of comparative systems, the Nth class consisting of N proc-
essors, each of capacity C/N serving M/N consoles each (for N = 2,3,4,...).
These systems are all inferior to the original system, and this degradation in
performance is discussed and graphed. For M << M*, the degradation is
considerable, whereas for M >> M¥*, the effect becomes insignificant, ap-
proaching the performance of the original system. The conclusion drawn is
that once the system is heavily saturated, it matters not whether the system
is split into smaller systems. '



SOME RECENT RESULTS FOR TIME -SHARED PROCESSORS
. I.eonard Kleinrock

Associate Professor, Department of Engineering,
University of California at Los Angeles

I. INTRODUCTION

The last few years have seen the introduction and implementation of
numerous operating time-shared computer systems; this activity is rapidly
becoming big business [1]. More recently, the analysis of time-shared
systems has begun to appear in the literature [2]. In this paper, we discuss
some newly obtained results and interpretations and place them in relation to
previously known results.

II. MODELS

The theoretical results divide into two classes: infinite input popula-
tion and finite input population. The first class is illustrated in Fig. 1 in
which we see the basic structure wherein a new
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arrival (from an infinite population of possible e
customers) enters a system of queues, is i 0 05”33 U
treated according to the imposed queueing dis- b
cipline, finally reaching the head of the queue, :
is allowed entry into the service facility for a Fig. 1 Feedback Queue-
given number of seconds (a quantum) and then ing Systems

either (a) departs if the quantum was enough to

satisfy his requirement or (b) cycles back to the system of queues to wait
for another turn in service. Results for a number of these systems is avail-
able in the literature [2].

Of interest to us in this paper are models for the finite input popula-
tion where we assume that M consoles generate requests for use of the
service facility. These requests impinge upon the system (whose internal
structure is identical to that of the infinite population models shown in Fig. 13
upon departure, these customers "return'' to their original console to generate
new requests as shown in Fig. 2. We refer to
the time required for a console to generate a
new request as the "think time'. The system
response time is the elapsed time from when
a request is made to when that request is satis-

fied completely; during this interval, the con- =8 =T sson
CONSOLES PROCESSOR

gole, from which this request was made, is idle WITH QUEUES
(nonthinking). The request is for a given num-=

ber of "operations' in the service facility which Fig. 2 Finite Population
can process at a rate of C operations/sec. Model

Below, we assume both that the think time for each console and that the
size of each request are exponentially distributed with an average value of 1/
sec. for thinking and 1/u operations per request, respectively. All quanta are
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assumed to be infinitesimal, and swap-time (the time lost in changing jobs)
is assumed to be zero, thus leading to a processor-shared model [3]. We let
T be the average response time and take this as our performance measure.

II1. MEASUREMENTS

The analysis of the above model is summarized in Section IV. How
good is our model? Scherr [4] reports on measurements carried out on the
MIT time-sharing system. In Fig. 3 we
show his comparison of the results of A
measuring this system (curve B-B fitted
to the dotted data points) with the-results
of the model analysis (curve A-A). The
figure shows that the normalized response
time (see below) is accurately predicted
by the model above.

Iv. ANALYSIS

To solve for T we need merely
equate the customer input rate,
My[(1/¥)/(T +1/7)] with the customer out-
put rate, pC(1-m,), where 7, is the prob-
ability that all customers are in the thinking state. This yields
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In Fig. 4, we plot uCT which is the ratio

of T to the average service time 1/uC; 60
this is curve A-A of Fig. 3. Note for e
large M, that uCT-M-uC/vy since Ty must
approach zero. This asymptote is shown
dashed in Fig. 4, and we observe that it
crosses the line uCT = 1 at M = (uC +7)/7.
We recognize that uC +v)/v=[(1/uC) +
(1/7)]/(1/uC) which is the ratio of average

service time plus average think time to e L
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RATIO OF RESPONSE TIME
TO AVERAGE SERVICE TIME

the average service time; this quantity is NUMBER OF CONSOLES, M
defined as the saturation number of users

M™ in the system since in the determin- Fig. 4 Performance and
istic case, at most exactly M™* users can Saturation

receive 1/uC seconds of service without
mutually interfering if each requires 1/v sec. for thinking. We see that uCT
begins to increase sharply in the region, M & M*. The asymptotic form



merely shows that each additional user "completely' interferes with all the
other users, adding one more unit of normalized delay to the average re-

sponse time.

We also consider the function f = 1/uCT which represents the fraction
of the processor which each user effectively sees as his personal processor;
see Fig. 5. This shows the effect of adding additional consoles. It can be
shown that the slope of f as M~ 1 is merely -uC/v and so the tangent shown
in this figure crosses the horizontal axis at precisely M =M¥, the saturation
load again! For M>>M¥, f-1/(M-M*+1),

It is interesting to observe the degradation in performance when we
split the system of M consoles and a processor of capacity C (referred to as
an M, C system) into two M/2, C/2 systems (see Fig. 6).
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In general, we consider N M/N, C/N systems (N a positive integer). The be-
havior of this class is shown in Fig. 7 where we plot uCTy as a function of M/N
(where Ty is the behavior of an M/N, C/N system). At M/N=1, the M/N, C/N
system gives uCTy =N. Note that the asymptote pCTy = N(M/N) -uC/y for

- M/N>>@C/yN)+1=My" intersects the line uCTy =N at precisely M/N = My™
(saturation point for the M/N, C/N system). The inverse, fn =1/uCTy is
again the fraction of the original machine (capacity C) seen by a user in an
M/N, C/N system and this is plotted in Fig. 8.
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Note that the tangent to fyy at M =N is a line intersecting the horizontal axis
at M =NMy . -

Lastly, we consider this degradation, as N increases, by plotting
Ay = (TN—TI)/Tl versus M. This is the normalized increase in response
time due to splitting the system. Figure 9 shows this for N=2. We see that
the degradation is large for M<<M™. Note for M>>M%*, that A, -0; this
says in the heavily saturated case that the M, C and M/2, C/2 systems both
behave the same from the user's viewpoint. The inflection point in A is
seen to occur in the vicinity M = M*, indicating that the smallest rate of de-
gradation occurs there. Figure 10 shows AN for N=2,3,4, 5, and 1035 all of
the comments for N =2 apply to this last also.

800
100
z | &
s T H
L 80 &
g | b
% w
o 60 - N2 §
Yol g
g &
W oF :
¢ 20| :
g | M
0 ! Foe A [ [ Y
0O 10 20 30 4 50 60 70 80 90 100 004 301 TR0
NUMBER OF CONSOLES, M NUMBER OF CONSOLES, M
Fig. 9 Percentage Degradation of Fig. 10 Percentage Degradation
Comparative Systems (N = 2) of Comparative Systems

. (N=2,3,4,5,10)
V. CONCLUSION

We feel that the simple processor-sharing model gives an accurate
description of the behavior of the normalized average response time for finite
population time-shared systems. The saturation load, M"= (think time plus
service time)/(service time) is a meaningful definition for saturation, which
is both intuitively pleasing and analytically significant.

Plots of the normalized average response time and of the fraction of
the machine available to each user on a personal basis served to show the
sensitivity of the system performance to the number of consoles in use. In-
vestigation of splitting the original processor into a number of smaller ma-
chines, each with proportionally fewer consoles showed for M<<M™ that the
degradation was large, whereas for M>> M¥, the degradation was almost un-
noticable (the heavily saturated case). '

REFERENCES
1. Hyman, H. ““The Time-Sharing Business,”” Datamation, Vol. 13, No. 2, February 1967, pp. 49-37.

2. Estrin, G. and L. Kleinrock, ““Measures, Models and Measurements for Time-Shared Computer Utilities,”” Proc. of
22nd National Conference of the ACM, August 1967, pp. 85-96. .

3. Kleinrock, L. “Time-Shared Systems — A Theoretical Treatment,”’Journal of the A.C.M., .—\bril 1967, pp. 242-261.
4. Scherr, A.L., “Time-Sharing Measurements,”” Datamation, April 1966, pp. 22-26.

We acknowledge Jean-Loup E. Baer for computing the curves shown.



