Fact

emnn

28

fﬂ )
P &/ / /

-l - w5 . i . watety

UCLA Packet Radio Temporary Note #5 (Analytic) ' - Leonard Kleinrock
PRT 136 '
UCLA

March 4, 1975

ON GIANT STEPPING
™

PACKET RADIO NETWORKS

Recently Metwork Analysis Corporation has suggesteﬂ, as a result of thelr
simulation experiments, that it is advantageoﬁs.fo;:algivén repeater to
hop over as many interamsdiate repedfers as possible in its axtemﬁt to
route packets to the station inla centralized netﬁork. (This we call
giant stepping). of course, giant stepping is'accomplished by increasing

the tr?namltulng power of repeatexs.

]

In thls note, we suggest a simple model in vwhich we prove that unlimited. - ..
giant stepplng is c¢clearly not optlmal in’ unlfbrm d15tr1buted networks and
that in fact a critical propagation radius I _ can ea511y be found which

is the optlmum step size to be used (The issue regardlng optimum step

- size in the centralized netwozks created by the smnvlé station philosophy

still lacks an analytic treatment).
The Model

We take the simplest possible model (not unlike ﬁhe one used by Abram-
son in Packet Radio Néte No. 49) in which we assume a uniform density of
jnterfering traffic. Specifically, we assume that there is a packet
generating source at a raté of A packets per second per unit'area;
we will assume that this uniform density applics ;6 the entire real plane
and that this is the traffic carricd by repeaters. Traffic is originated
by and destined fot repeaters; in this sonse, all vepeaters are élso
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stations, i.e., We have point-to-point ttaffic. Secondly, we assume
that all dest;nations are equally likely (a truly distributed net).
Thirdly, we assume that every poin£ in the real plane is a potential
repeater. Each packet rransmission relayed by one repeater will be heard
by all other repeaters within é radius 7t . Among all those repeatei‘s
that heaxr this first repeater, only one (as determlned by the routing
procedure) will be allowed to relay this given transmissiomn. We assume
that the labeling is carried out such that this relay repeater lies exactly
at z distance T from the first Tepeater and in the dlrectlon toward the
dest1nat1on. Fourth, we assume that the average delay required to success- .
fully transmit the packet a dlstance T (1.e , one hop) is given by the
funetion T(A(r)) where A(r) represents the total ‘interfering trafflc
within the fadius T of the receiving repeater. |

We wish to study the performance of a '"tagged" packet which is required
to travel o distance D through the network from its source to its desti-
nation. For convenlence let us assume that D 1is an integral multiple
of r . As é consequence, the tagged packet must travel a total of

-"D/r hops as jt passes through this network and we will assume that at

each hop the average delay is glven by T(A(r)) . This of course assumes
that each repeater transmits out to 2 radius r and s:mu].arly that each

repeater is disturbed by all sources with the radius T . See Figure 1.
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, : Figure 1 4
The sequence of repeaters relaying the tagged packet. Here D = 10r

0f course, most of the interesting analytical work is involved in

finding the function T (r)).. This for example has.beén discussed in

the work by Xleinrock and'Tobagi T

~

The Optimizition Problem

Our task, simply, is to find that critical value of T namely - which

1

A
g 9

will minimize the.totai delay that a packef éxperiencés in its travels
thraﬁgh the net. Clearly if r approgcheé zero, then, the number of hops
will grow to infinity and this will be éﬂpoor sqlutioh. Similarly, if

T is very large; theﬁ the interfering traffic which thé repeater is subject
to will eventually drive it into saturation and the throughput will drop

to zero thereby increasiﬁg T to infinity. These';ﬁo intuitive limits
suggest that there does exist a finite value of T (és oppbsed‘to the
unlimited value of T suggested by NAC for single station nets). In

this szetion we find fhat'critical value (rc) |

Specifically, we wish to solve the following optimization problem

nin D
e ;-T(k(r)) v
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where of —-T(A(r)} is simply the expected delay our packet etperm
¢ jances. The following simple condition therefore determines the value

of r which we are seeking

dT(A(r)) T(X(r)) . (2}

' The solution to this last equation will give us T - (We ignore the
trivial, yet ammoying requirement that D be an integral multiple of
r ; this is acceptable if D> rc)‘."lﬁ Figure 2 we show the graphical

interpretation of this'fesult(
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Figure 2 ]
The Optiwmum Radins, ¥, @ 2 Graphical Interpretation
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Here we have shown T(A(r)) as a convex function although this is cer-

tainly not necessary as, for example, shown in Figure 3 below.
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' " Figure 3
g The Optimum Radius, L for an Arbitrary T(A(T))
% ' :

In tﬂié figure (3), we show.a clearly unrealistic shapeAfor TA(x)) .
The solution for =, is simply 6btained as thevfirst'interséction of a
ray from the origin beginning with slope zerc and increasing in slope
until the ray hits the T cuive. We also note that the average total

delay is simply given by

Average Total Delay = D ﬂIL%%EIL (3)

Thus, we sse that our solution is good for arbitrary T(A(r)) -

A Simple Example

As a simple example, let us assume that the per-hop delay 1is simply

given by the M/M/1 queueing formula [2], that iz,
= e
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TO(T)) = MC—)\(T) . A
where the average packet length is taken as 1/p bits, the channel capacity
ijs C bits per second and, of course, fhe average packet generating rate
in the radius 1z 1s simply )\('r) - Due to'opr assumpti.on of a uniform
packet genei:ation Tate, we have simply
Alr) = AT L , | (5)
g _-Using these eﬁcptessions in Equation % we find immediately that
’ Te 3rA o .
and that the total average delay (minimized) is
» T (A (T )) -
Minimum Average Total Delay = (0 c)
: T,
. 3D A
RVATATANS
D 3 (7}
) . 2Th (rc]
The behavior of the total average delay is shown 'in'Figure 4, which
is simply the graph of
* BTN D
(r,CT)) L 2 (8)
T (uC-Anr™)
=iz
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' Figure 4 k
Average Tctal Delay for D = 10 , 1/pc 10 ms, WC/Ar =
For.this sketch, we have thosen’ D = 10 '.1/ﬁc = 10ms  (the packet

We note how flat the minimum 1is

=1/ 3=0.577 ,

We also show (dashéd) the sketch of

1

transmission time) and WC/AT

for DT/r . At the critical radius T, we find the

minimum delay is 'DT/rc =~ 260ms.

of course).

=
x

DT and the Tay which first touches it (at T = T,

Conclusions
In tﬁis (albeit'Simﬁie) model of a po

we have been able to show that unlimited giant stepping is undesirable

but that there is a critical step size (we are fighting the temptation
to generate a mythological mame fo

by Equation 2.
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