
SPECIAL ISSUE 

DISTRIBUTED SYSTEMS 

Growth of distributed systems has attained unstoppable momentum. If we 
better understood how to think about, analyze, and design distributed 
systems, we could direct their implementation with more confidence. 

LEONARD KLEINROCK 

DISTRIBUTED SYSTEMS IN NATURE 
How did the killer bees find thfeir way up to North 
America? By what mechanism does a colony of ants 
carry out its complex tasks? What guides and controls a 
flock of birds or a school of fish? The answers to these 
questions involve examples of loosely coupled systems 
that achieve a common goal with distributed control. 

Throughout nature we find an enormous amount of 
processing taking place at the level of the individual 
organism (be it an ant, a sparrow, or a human), and we 
have only begun to comprehend how processing and 
memory functions operate, especially in the human 
species. How does a human perform the acts of percep- 
tion, cognition, decision making, and motor control? 
This processing occurs in a fraction of a second, using 
natural processing elements that are orders of magni- 
tude slower than our current computer processing ele- 
ments [8]. 

We do know that the brain is organized and struc- 
tured very differently from our present computing ma- 
chines. In human beings (i.e., in their internal neural 
systems) and in groups of organisms, nature has been 
extremely successful in implementing distributed sys- 
tems that are far more clever and impressive than any 
computing machine humans have yet devised. We have 
succeeded in manufacturing highly complex devices 
capable of high-speed computation and massive accu- 
rate memory, but we have not yet gained sufficient 
understanding of distributed systems-our systems are 
still highly constrained and rigid in their construction 
and behavior. The gap between natural and man-made 
systems is huge, and we have a long way to go before 
This research was supported by the Defense Advanced Research Projects 
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we bridge the gap in understanding and implementa- 
tion (see Figure 1, pp. 1202-1203). 

WHY SHOULD WE STUDY 
DISTRIBUTED SYSTEMS? 
Currently we are experiencing the effects of the con- 
fluence of powerful forces in information technology. 
By far, the most significant effect is the host of revolu- 
tionary changes that have been brought about by the 
integrated chip-especially in the form of VLSI and the 
resulting enormous improvements in processing, 
storage, and communications. At the same time, we 
are experiencing a frightening backlog in software- 
application development while the user community is 
clamoring for unprecedented power in processing, com- 
munications, storage, and applications. Fortunately, we 
have the potential for this power-if only we could 
figure out how to put all the pieces together! 

Distributed systems have come into existence in our 
industrial society in some very natural ways. For exam- 
ple, we have seen the emergence of a large number of 
distributed databases-systems that have evolved be- 
cause the source of the data is not centralized and 
where there is a local need for frequent and immediate 
access to the locally generated data (e.g., the employee 
database at a branch office of a nationwide organiza- 
tion) in addition to a global need to view the entire 
database. Situations such as these require us to place 
some processing power at the many distributed loca- 
tions for collecting, preprocessing, and accessing data. 
On-line transaction processing is an application that 
may contain a local component as well as a distributed- 
processing component, and the current proliferation 
of desktop personal computers is a manifestation of 
distributed-processing power. Indeed, if we measure 
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processing power in MIPS (millions of instructions per 
second), we note that the number of installed MIPS in 
personal computers is an order of magnitude greater 
than the number installed in mainframes. However, 
most of those PC MIPS lie idle most of the time. Imag- 
ine what a terrific distributed-processing system we 
could fire up with that unused power! When data and 
processing are distributed, we are obliged to provide 
communications to link the resources. Thus we are led 
into the use of packet networks, satellite networks, in- 
ternets, cellular and packet radio networks, metropoli- 
tan area networks, and local area networks. 

Distributed systems can provide the necessary power 
to meet the growing demands of the user community. 
We are demanding capability faster than the advances 
in devices alone can supply, and to meet these de- 
mands we will have to rely on innovative computing 
architectures such as parallel-processing systems. These 
large distributed databases, along with distributed- 
processing and distributed-communication networks, 
have given rise to some very complex distributed-system 
structures, and it is essential that we learn how to 
think about them properly (see Figure 2, pp. 1204-1205). 

ARCHITECTURE AND ALGORITHMS 
The world of applications has an insatiable need for 
computing power. A good mathematician can easily 
consume any finite computing capability by posing a 
combinatoric problem whose computational complexity 
grows exponentially with a variable of the problem 
(e.g., the enumeration of all graphs with N nodes). The 
ways in which we push back this “power wall” involve 
both hardware and software solutions. Typically, the 
methods for speeding up the computation include the 
following: 

l faster devices (a physics and engineering problem), 

l architectures that permit concurrent processing 
(a system design problem), 

l optimizing compilers for detecting concurrency 
(a software-engineering problem), 

l algorithms for specification of concurrency (a lan- 
guage problem), and 

l more expressive models of computation (an analytic 
problem). 

Characterizing the Architecture 
There are many ways of classifying machine architec- 
tures-too many, in fact. The following classification 
was selected for the purposes of this article. 

We begin with the purely serial uniprocessor in 
which a single instruction stream operates on a single 
data stream (SISD). These systems are “centralized” at 
the global level, but really do contain many elements of 
a distributed system at the lower levels, for example, at 
the level of communications on the VLSI chips them- 
selves. 

Next is the vector machine, in which a single in- 

struction stream operates on a multiple data stream 
(SIMD). These include array processors (e.g., systolic 
arrays) and pipeline processors. 

The third consists of multiple processors that, collec- 
tively, can process multiple instruction streams on mul- 
tiple data streams (MIMD). The form of multiprocessing 
that takes place when multiple processors cooperate 
closely to process tasks from the same job is referred to 
as parallel processing. On the other hand, the term dis- 
tributed processing is applied to the form of multipro- 
cessing that takes place when the multiple processors 
cooperate loosely and process separate jobs. 

Vector machines and multiprocessing systems all pro- 
vide some form of concurrency. The effect of this con- 
currency on system performance is important and is 
therefore a very active area of research (see Figure 3, 
p. 1206). 

Since the onslaught of the VLSI revolution, a number 
of machine architectures have been implemented in an 
attempt to provide the supercomputing power toward 
which concurrent processing tempts us [5]. Two excel- 
lent recent summaries of some of these projects are 
offered by Hwang [9] and by Schneck et al. [17]. There 
you will find the Butterfly machine, the Cosmic Cube, 
various kinds of tree machines, the Cedar project, the 
Sisal language, the Connection machine, and others 
whose names are intriguingly close to Mother Nature’s 
systems. 

Characterizing the Algorithm 
The major goal in characterizing the algorithm is to 
identify and exploit its inherent parallelism (i.e., poten- 
tial for concurrency). The levels of resolution at which 
we can attempt to find this parallelism are listed below 
in decreasing order of granularity [16]: 

l job execution, 
. task execution, 
l process execution, 
. instruction execution, 
l register transfer, and 
l logic device. 

Clearly, as we drop down the list to finer granularity, 
we expose more and more parallelism, but we also in- 
crease the complexity of scheduling these tiny objects 
to the processors and of providing the communications 
among so many objects (the problem of interprocess 
communication-IPC). As was stated earlier, if we op- 
erate at the top level (i.e., at the job level), then we 
think of the system as a distributed-processing system; 
if we operate at the task or process level, we have a 
parallel-processing system; if we operate at the instruc- 
tion level, we have the vector machine and the array 
processor. 

Regardless of the level at which we operate, it be- 
hooves us to create a “model” of the algorithm or, if you 
will, of the computation we are processing [lo]. A very 
common model is the graph model of computation, 
which is normally used at the task or process level 
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(another common modeling method is the use of Petri 
Nets). In this model, the nodes represent the tasks (or 
processes), and the directed edges represent the de- 
pendencies among the tasks, thereby displaying the 
partial ordering of the tasks and the parallelism that 
can be exploited (see Figure 4, p. 1207). 

However, the problem of finding the parallelism in 
the lines of code that represent the algorithm still re- 
mains, and there is an ongoing effort to simplify (and 
even automate) this task by developing parallel pro- 
gramming languages for implementing these algorithms 
(e.g., Ada@, concurrent Pascal]. 

Matching the Architecture to the Algorithm 
The performance of a distributed system depends 
strongly on how well the architecture and the algo- 
rithm are matched. For example, a highly parallel algo- 
rithm will perform well on a highly parallel architec- 
ture; a distributed system requiring lots of interproces- 
SOT communication will perform poorly if the commu- 
nication bandwidth is too narrow. This matching prob- 
lem becomes fierce and crucia.1 when we attempt to 
coordinate an exponentially growing number of proces- 
sors requiring an exponentially growing amount of in- 
terprocessor communication. The apparent solution 
to such an unmanageable problem is one that is self- 
organizing. 

If we choose to use the grapih model discussed, we 
are faced with a number of architecture/algorithm 
problems, namely, partitioning, scheduling, memory ac- 
cess, interprocess communication, and synchronization. 
The partitioning problem refers to decisions regarding 
the level of granularity and the choices involving 
which objects should be grouped into the same node of 
the task graph. The scheduling problem refers to the 
assignment of processors and memory modules to nodes 
of the computation graph. In general, this is an NP- 
complete problem (tough as nails to do optimally). The 
memory-access problem refers to the mechanism that 
allows processors to communicate with the various 
memory modules; usually, either shared-memory or 
message-passing schemes are used. The interprocessor- 
communication problem refers; to the nature of the 
communication paths and connections that are avail- 
able to provide processors access to the memory mod- 
ules and to other processors; this may take the form of 
an interconnection network in a parallel-processing 
system, a local area network in a local distributed- 
processing system or shared data system or shared pe- 
ripheral system, or a packet-switched, value-added, 
long-haul network in a nationwide distributed system. 
Synchronization refers to the requirement that no node 
in the graph model can begin execution until all of its 
predecessor nodes have completed their execution. 

The use of broadcast or multicast communication 
opens up a number of interesting alternatives for com- 
munication. Local area networ:ks take exquisite advan- 
Ada is a registered trademark of the U.S. Government [Ada Joint Program 
Office). 

tage of these communication modes. Algorithms that 
require tight coupling (i.e., lots of IPC) need not only 
large bandwidths [which, for example, could be pro- 
vided by fiber-optic channels), but also low latency. 
Specifically, the speed of light introduces a 15,000- 

microsecond latency delay for a communication that 
must travel from coast-to-coast across the United States. 

Another consideration in matching architectures to 
algorithms is the balance and trade-off among commu- 
nication, processing, and storage. We have all seen sys- 

(4 

There is an amazing contrast between the neural structure of 
the human brain (a) and the architecture of today’s VLSI 
chips (b). The brain is massively parallel, densely (and 
weirdly) connected with leaky transmission paths, highly fault 
tolerant, self-repairing, adaptive, noisy, and probably nonde- 
terministic. Man-made computers are highly constrained, 
precisely (and often symmetrically) laid out with carefully iso- 
lated wires, not very fault tolerant, largely serial and cen- 
tralized, deterministic, minimally adaptive, and hardly self- 
repairing. (Photo (a) is the courtesy of Peter Arnold, Inc.) 

FIGURE 1. Natural and Man-Made Architectures 
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terns where one of these resources can be exchanged 
for others. For example, if we do some preprocessing in 
the form of data compression prior to transmission, we 
can cut down on the communication load (trade pro- 
cessing for communication). If we store a list of compu- 
tational results, we can cut down on the need to recom- 
pute the elements of the list each time we need the 
same entry (trade storage for processing). Similarly, if 
we store data from a previous communication, we need 
merely transmit the data address or name of the pre- 
vious message rather than the message itself (trade stor- 
age for communication). Selecting the appropriate mix 
in a given problem setting is an important issue. 

Distributed algorithms operating in a distributed net- 
work environment (e.g., a packet-switched network) 
pose the possibility that network failures may cause the 
network to temporarily be partitioned into two (or 
more) isolated subnetworks. In such a case, detection 
and recovery mechanisms must be introduced (see Fig- 
ure 5, p. 1207). 

Lastly, it should be mentioned that very little is 
known about characterizing those properties of an algo- 
rithm that cause it to perform well or poorly in a dis- 
tributed environment. 

PERFORMANCE AND BEHAVIOR 
We do know some things about the way distributed 
systems behave, precious few though they may be. The 
most interesting thing about them is that they come to 
us from research in very different fields of study. Un- 
fortunately, the collection of results (of which the fol- 
lowing is a sample) is just that-a collection, with no 
fundamental models or theory behind it. 

We begin by considering closely coupled systems, in 
particular, parallel-processing systems. One of the most 
compelling applications of parallel processing is in the 
area of scientific computing, where the speed of the 
world’s largest uniprocessors is hopelessly inadequate 
to handle the computational complexity required for 
many of these problems [3]. Of course, the idea is that, 
as we apply more parallel processors to the computa- 
tional job, the time to complete that job will drop in 
proportion to the number of (identical) processors, P. 
The “speedup” factor, denoted by S, is a common mea- 
sure of performance for parallel-processing systems 
and is defined as the time required to complete the job 
using P processors, divided into the time required to 
complete the job using one of these processors. S may 
also be interpreted as the average number of busy pro- 

FIGURE 2. A Complex Distributed System (left) 

Humans have created some unbelievably complex distributed 
systems. The fact that they work at all is amazing, given that 
we have not yet uncovered the basic principles determining 
their behavior. (From Martin, J. Design and Strategy for Dis- 
tributed Data Processing. Prentice-Hall, Englewood Cliffs, 
N.J., 1981.) 

cessors, that is, the concurrency. The best we can 
achieve is for S to grow directly with P; that is, 

s 5 P. 

Thus, in general, 1 5 S 5 P. In the early days of parallel 
processing, Minsky [15] conjectured a depressingly pes- 
simistic form for the typical speedup; namely, 

s = log P. 

Often that kind of poor performance is indeed ob- 
served. Fortunately, however, experience has shown 
that things need not be that bad. For example, we can 
achieve S = 0.3P for certain programs by carefully ex- 
tracting the parallelism in Fortran DO loops [14]. How- 
ever, Amdahl has pointed out a serious limitation to 
the practical improvements one can achieve with paral- 
lel processing (the same argument applies to the im- 
provements available with vector machines) [l]. He ar- 
gues that, if a fraction, f, of a computation must be dohe 
serially, then the fastest that S can grow with P is 

S Iwax = fp +4 - f. 

We see that, for f = 1 (everything must be serial), 
S max = 1; for f = 0 (everything in parallel), S,,, = P. 

The actual amount of parallelism (i.e., S) achieved in 
a parallel-processing system is a quantity that we 
would like to be able to compute. S is a strong function 
of the structure of the computational graph of the jobs 
being processed. I, with one of my students [2], have 
been able to calculate S exactly as a simple function of 
the graph model. Specifically, we consider a parallel- 
processing system with P processors and with an arrival 
rate of X jobs per second. We assume the collection of 
jobs can be modeled with an arbitrary computation 
graph with an average of N tasks per job, each task 
requiring an average off seconds. Then it can be 
shown that 

s = XN.f for XNf 5 P 
P for XN3 2 P. 

This is a very general result; in some special cases, the 
distribution of the number of busy processors can be 
found as well. 

So far, we have given ourselves the luxury of increas- 
ing the system’s computational capacity as we have 
added more processors to the system. Let us now con- 
sider adding more processors, but in a fashion that 
maintains a constant total system capacity (i.e., a con- 
stant system throughput in jobs completed per second). 
This will allow us to see the effect of distributing the 
computation for a job over many smaller processors. 
The particular structure we are considering is the regu- 
lar series-parallel structure shown in Figure 6 (p. 1208) 
where we have taken a total processing capacity of C 
MIPS and divided it equally into mn processors, each of 
C/mn MIPS. On entering the system, a job selects 
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Local ‘I . . . 
memory 

Locality of memory reference, band- 
width of communication, processor 
overhead, and cost are key issues 
determining the appropriate architec- 
ture for a given application. 

1 IInterconnection network ~ -. 

(a) Message-Passing Architecture: Local Memory 
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Iliterconnection network 
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(b) Shared-Memory Architecture 

Interconnection network 
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(c) Hybrid Architecture 

FIGURE 3. Architectures for Connecting Processors and Memory 
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The graph model of computation is an extremely useful 
model for displaying the parallelism inherent in an algorithm 
(i.e., a job). The entire graph represents the computational 
tasks associated with that job, the nodes represent the tasks 
themselves, and the directed arcs, which define a partial 
ordering of the nodes, represent the sequence in which the 
tasks must be performed. 

FIGURE 4. Graph Model of Computation 

(equally likely) any one of the m series branches down 
which it will travel. It will receive l/n of its total pro- 
cessing needs at each of the n series-connected proces- 
sors. The key result for this system 1131 is that the 
mean response time for jobs in this series-parallel pipe- 
line system is mn times as large as it would have been 

Subnet 1 Subnet 2 
Network failures can create two sep- 
arated subnetworks that cannot 
communicate until the failure is re- 
paired. Maintaining consistency of 
databases in such a situation is a key 
issue in distributed-systems design. 

Database 

FIGURE 5. A Partitioned Network 
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had the jobs been processed by a single processor of C 
MIPS! There are some statistical assumptions behind 
this result, but the message is clear-distributed pro- 
cessing of this kind is terrible. Why, then, is everyone 
talking about the advantages of distributed processing? 
The answer must be that a large number of small pro- 
cessors (e.g., microprocessors) with an aggregate capac- 
ity of C MIPS is less expensive than a large uniproces- 
sor of the same total capacity. It can be shown that the 
series-parallel system will have the same response time 
as the uniprocessor if the aggregate capacity of the 
series-parallel system has K times the capacity of the 
uniprocessor where 

K = mn - p(mn - 1) 

and where p is the utilization factor for each processor; 
namely, p = arrival rate of jobs times the average ser- 
vice time per job for a processor. This says that, for 
light loads (p << I), K = mn, whereas, for heavy loads 
(p + l), K = 1. Is it the case that smaller machines are 
mn times less expensive than larger machines (so that 
we can purchase mn times the capacity at the same 
total price, as is needed in the light-load case)? To an- 
swer this question, recall a law that was empirically 
observed by Grosch more than three decades ago. 
Grosch’s law [7] states that the capacity of a computer 
is related to its cost, which we denote by D (dollars) 
through the following equation: 

C=JD’ 

where 1 is a constant. This law may be rewritten as 

D 1 
s=T’ 

Grosch tells us that the economics are exactly the reverse 
of what we need to break even with distributed pro- 
cessing! He says that larger machines are cheaper per 
MIPS. If Grosch is correct today, then why are micro- 
processors selling like hotcakes? A more recent look at 
the economics explains why. Ein-Dor [a] shows that, if 
we consider all computers at the same time, Grosch’s 
law is clearly not true, as seen in Figure 7 (p. 1208). In 
this figure we see that microcomputers are a good buy. 
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+&+& .*= + fVm When a constant amount of process- 
ing capacity (C) is distributed into mn 
equal (and smaller) processors in a 
network such as this, the response 
time increases 

Vm 
+&-.& l l l + tion, 

by a factor of mn. 
How can one justify a distributed 
system in the face of this degrada- 

. . . 

FIGURE 6. A Symmetrical Distributed-Processing Network 
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The cost per MIPS seems to rise with the number of MIPS 
when we examine all computers in a single group. However, 
when we separate them into families, we find that the oppo- 
site is true, thus confirming Grosch’s law. Figure taken from 

Ein-Dor, P. Grosch’s law re-revisited: CPU power and the 
cost of computation. Commun. ACM 28, 2 (Feb. 1985) 
142-151. 

FIGURE 7. Economics of Computer Power 
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However, as Ein-Dor points out, Grosch’s law is still 
true today if we consider families of computers. Each 
family has a decreasing cost per unit of capacity as 
capacity is increased. Ein-Dor goes on to make the ob- 
servation that, if one needs a certain number of MIPS, 
then one should purchase computers from the smallest 
family that can currently supply that many MIPS. Fur- 
thermore, once in the family, it pays to purchase the 
biggest member machine in that family (as predicted by 
Grosch). 

Now that we have discussed the performance of 
parallel-processing systems for some special cases, let 
us generalize the ways in which jobs pass through a 
multiprocessor system, and analyze the system 
throughput and response time. Indeed, we bound these 
key system-performance measures in the following 
way: Suppose we have a population of M customers 
competing for the resources of the system. Assume that 
customers generate jobs to be processed by some of the 
system’s resources, that the way in which these jobs 
bounce around among the resources is specified in a 
probabilistic fashion, and that the mean response time 
of this system is T seconds. When a customer’s job 
leaves the system, that customer then begins to gener- 
ate another job request for the system, where the aver- 
age time to generate the request is t, seconds. Of inter- 
est is the mean response time, T, and the system 
throughput y as a function’of the other system param- 
eters. Although we have been extremely general in the 
system description, we can nevertheless place an excel- 
lent upper bound on the system throughput and an 
excellent lower bound on the mean response time as 
shown in Figure 8. In this figure, the quantity M* is 
defined as the ratio of the mean cycle time T, + t, to 
the mean time x0 required on the critical resource in a 
cycle; T, is the mean response time when M = 1, and 
the critical resource is that system resource that is most 
heavily loaded [ll]. 

To find the exact behavior (shown in dashed lines in 
the figure) rather than the bounds, one must be much 
more explicit about the distributions of the service time 
required by jobs at each resource in the system as well 
as the queueing discipline at each. Using the bounds or 
the exact results, the effect of parameter changes on the 
system behavior can be seen. For example, one can 
examine the accuracy of the common rule of thumb 
that suggests that the proper mix of microprocessor 
speed, memory size, and communication bandwidth is 
in the proportion 1 MIPS, 1 Mbyte, and 1 Mbit per 
second; some suggest that we will soon see a 10, 10, 10 

mix instead of the 1, 1, 1 mix. Of course the correct 
answer to this question depends on the total system 
configuration. 

Once we evaluate the throughput and mean response 
time for a system, we usually want to find the relation- 
ship between the two, which typically has the well- 
known shape (shown in Figure 9, p. 1210) that clearly 
demonstrates the trade-off between them-a low delay 
implies a small throughput and vice versa. 
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0 M Input load (M) 

(a) Bound on Throughput 

0 if* Input load (AA) 

(b) Bound on Mean Response Time 

Excellent bounds on throughput (a) and mean response time 
(b) as a function of the number of users (or any measure of 
the input load) are easily obtained for a very large class of 
distributed systems. The exact behavior can be derived for 
more restricted systems and demonstrates the excellence of 
the bounds. 

FIGURE 8. Bounds on Throughput and Response Time 

We are immediately compelled to inquire about the 
location of the “optimal” operating point for a system. 
The answer depends on how much you hate delay ver- 
sus how much you love throughput. One way to quan- 
tify this love-hate choice is to define a quantity known 
as “power” (denoted by P), which is defined as 

P=$. 

The operating point that optimizes (i.e., maximizes) the 
power (large throughput and small delay) is located at 
that throughput where a straight line (of minimum 
slope) out of the origin touches the throughput-delay 
profile (usually tangentially); such a tangent and oper- 
ating point are shown in Figure 9. This result holds for 
all profiles and all flow-control functions (see below). 
Moreover, for a large class of queueing curves, this opti- 
mal operating point implies that the system should be 
loaded in such a way that each resource has, on the 
average, exactly one job to work on [Z!]. 
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networks and distributed systems. Examples are the 
distributed election of a leader, distributed rules for 
traversing all the links of a network, and distributed 
rules for controlling access to a database. 

Another large class of distributed-control algorithms 
has to do with sharing a common communication chan- 
nel among a number of devices in a distributed fashion 
[19]. If the channel is a broadcast channel (also known 
as a one-hop channel), then the analytic and design 
problem is fairly manageable and a number of popular 
local area network algorithms for media access control 
have been studied and implemented. Examples here 
include CSMA/CI) (carrier-sense multiple access with 
collision detect-as used in Xerox’s Ethernet, AT&T’s 
3B-Net and Starlan, and IBM’s PC Network), token 
passing (as used in the token-ring and token-bus net- 
works), and address contention resolution (as used in 
AT&T’s ISN). A large number of additional channel ac- 
cess algorithms have been studied in the literature in- 
cluding Expressnet, tree algorithms, urn models, and 
hybrid models. If the channel is multicast (or multi- 
hop), then the analytic problem becomes much harder. 

But what if the processors in our distributed environ- 
ment are allowed to communicate with their peers in 
very limited ways? Can we endow these processors (let 
us call them automatons for this discussion) with an 
internal algorithm that will allow them to achieve a 
collective goal? Tsetlin [ZO] studied this problem at 
length and was able to demonstrate some remarkable 
behavior. For example, he describes the Goore game in 
which the automatons possess finite memory and act in 
a probabilistic fashion based on their current state and 
the current input. They cannot communicate with each 
other at all and are required to vote YES or NO at 

0 Optimal 
operating 
point 

Throughput 

The delay-throughput relationship, an example of the key 
profile in systems performance evaluation, clearly shows 
the trade-off between the two. In (general, you cannot get 
a small delay and a large throughput at the same time. We 
can, however, maximize “power,” which is the ratio of 
throughput to delay, in order to define the natural point for 
a system. 

FIGURE 9. The Key System Profile 

Unfortunately, there are some distributed systems 
that do not have the nice relationship shown in Figure 
8a where the throughput rises asymptotically to its 
maximum value as the “input” is increased. Often we 
find the behavior depicted in Figure 10 where the 
throughput reaches a peak and then declines as the 
input increases further, possib1.y dropping to zero, in 
which case we say that the system has crashed. Such 
behavior has been observed in paged virtual-memory 
systems (thrashing), in computer networks (deadlocks 
and degradations), and in auto:mobile traffic flow 
(bumper-to-bumper traffic). Here again, one must find a 
method for controlling the input (i.e., setting the system 
operating point) so as to achieve optimal or near- 
optimal performance (somewhsere near the peak of the 
curve in Figure 10). 

“Flow control” is the name a.ssociated with this oper- 
ation, and it can be implemented in a centralized or a 
distributed fashion in distributed systems with the lat- 
ter being the more challenging design problem [6]. One 
example of distributed control is the dynamic routing 
procedure found in many of today’s packet-switching 
networks where no single switching node is responsible 
for the network routing. Instead, all nodes participate in 
the selection of network routes in a distributed fashion. 
A great deal of research is currently under way to eval- 
uate the performance of other distributed algorithms in 

Input Deadlock 
(crash) 

There are many systems that degrade badly when pushed 
too hard. They can even degrade to a situation of deadlock. 
Examples include thrashing in virtual memory systems, dead- 
locks in computer networks, and bumper-to-bumper traffic in 
highway systems. 

FIGURE 10. A Dangerous Throughput Profile 
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certain times. The automatons are not aware of each 
other’s vote; however, there is a referee who can ob- 
serve and calculate the percentage, p, of automatons 
that vote YES. The referee has a function, f(p) (such as 
that shown in Figure ll), where we require that 0 5 
f(p) 5 1. Whenever the referee observes a percentage, p, 
who vote YES, he or she will, with probability, f(p), 
reward each automaton, independently, with a one dol- 
lar payment; with probability 1 - f(p) he or she will 
punish an automaton by taking one dollar away. Tsetlin 
proved that no matter how many players there may be 
in a Goore game, if the automatons have sufficient 
memory, then for the payoff probability shown in the 
figure, exactly 20 percent of the automatons will vote 
YES with probability one! This is a beautiful demon- 
stration of the ability of a distributed-processing system 
to act in an optimum fashion, even when the rules of 
the reward function are unknown to the players and 
when they can neither observe nor communicate with 
each other. All they are allowed is to vote when asked, 
and to observe the reward or penalty they receive as a 
result of that vote. In this work we see the beginnings 
of a theory that may be able to explain how the colony 
of ants performs its tasks. 

NEEDED UNDERSTANDING AND TOOLS 
In the previous section, we discussed a few of the 
things known about distributed-systems performance 
and behavior. A few isolated facts are indeed known, 
but overall theory and understanding are still lacking. 

For instance we need considerably sharper tools to 
evaluate the ways in which randomness, noise, and 
inaccurate measurements affect the performance of dis- 
tributed systems. What is the effect of distributed con- 
trol in an environment where that control is delayed, 
based on estimates, and not necessarily consistent 
throughout the system? What is the effect on perfor- 
mance of scaling some of the system parameters? We 
need a common metric for discussing the various sys- 
tem resources of communications, storage, and process- 
ing. For example, is there a processing component to 
communications? We also need a proper way to discuss 
distributed algorithms and distributed architectures. 

A microscopic theory that deals with the interaction 
of each job with each component of the system is likely 
to overwhelm us with detail and will fail to lead us to 
an understanding of the overall system behavior. It is 
similar to the futility of studying the many-body prob- 
lem in physics in order to obtain the global behavior of 
solids. What is needed is a macroscopic theory of dis- 
tributed systems, such as thermodynamics has provided 
for the physicist. In fact, Yemini [Zl] has proposed an 
approach for a macroscopic theory based on statistical 
mechanics that will lead to better understanding the 
global behavior of distributed systems without the need 
for a detailed, fine-grained analysis. 

Another fruitful approach that also avoids the horri- 
ble details of any specific system structure must be 
credited to Shannon [18]. In analyzing the behavior of 
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The Goore game rewards each member ot a s&t of automa- 
tons independently with a probability given by the function 
f(p), where p is the fraction of the set that votes YES at a 
given time. The automatons are completely unaware of the 
other automatons, do not know the function f(p), and, re- 
markably, will collectively vote in a way that maximizes the 
payoff to all. 

FIGURE 11. The Goore Game 

error-correcting codes for noisy communication chan- 
nels, Shannon used the brilliant device of studying all 
possible codes simultaneously. This enabled him to aver- 
age out the detailed structure of any given code. He 
could then take exquisite advantage of the law of large 
numbers in order to arrive at a precise statement re- 
garding the error behavior of codes. It is likely that 
such an approach will allow us to study the behavior 
of “typical” topologies and algorithms in distributed 
systems. 

LIKELY FUTURE DEVELOPMENTS 
These are exciting times. Researchers in universities 
and laboratories around the world have begun to focus 
their attention on distributed systems. They come to 
this field from diverse disciplines ranging from 
queueing theory to neuroanatomy in which they are 
the experts. Thus, we have the ingredients for an enor- 
mously rich soup of separate ideas that have only just 
begun to blend. 

As the theoretical frontiers are being assaulted, so too 
are the practitioners busily building systems. This is a 
double-edged sword. On the one hand, the implementa- 
tion of real distributed systems in the hands of the 
designers and users provides us with a strong motiva- 
tion for progress in understanding. as well as a magnifi- 
cent test bed in which we can experiment. On the 
other hand, these systems are massively expensive and 
are being implemented without the benefit of the prin- 
ciples we seek. As a result, they may be colossal fail- 
ures! The reality is that there is no way we can prevent 
their proliferation as manufacturers respond to the 
frenzied demand from the user community. In a sense 
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UNDERLYING PRINCIPLES OF DISTRIBUTED-SYSTEMS BEHAVIOR 

l Developing innovative architectlures for parallel processing 

l Providing better languages and algorithms for specification 
of concurrency 

l More expressive models of computation 

l Matching the architecture to the algorithm 

l Understanding the trade-off among communication, pro- 
cessing, and storage 

l Evaluation of the speedup factor for classes of algorithms 
and architectures 

we are all responsible for the current craziness, because 
we have been “promising” these miraculous systems to 
the user for almost a decade. 

In the face of these developments, we can foresee 
some of the likely developments that will take place 
over the next decade or two. Let us first consider the 
likely technology developments in hardware-type re- 
sources. One of the most exciting of these is the huge 
data bandwidth projected for fiber-optic technology. 
These fibers are being used for point-to-point commu- 
nication pipes at rates on the order of hundreds of me- 
gabits per second. Bell Laboratories and Japan have 
been leapfrogging each other in setting world records 
for the largest data rates transmitted over the longest 
distances. Earlier this year, Bell Laboratories estab- 
lished a new record by transmitting at the rate of 4 
billion bits per second at a distance of 117 km without 
any repeaters! The product of clata rate times distance 
has been doubling every year since 1975, and based on 
the limits imposed by physics, there are still five orders 
of magnitude to go (16 years of doubling left). The tiny 
glass fiber is so clear that, if the oceans of the world 
were made of this glass, one could see the bottom of the 
deepest trench in the ocean floor from the surface. If 
we consider a 1-mW laser and ,a requirement of 10 
photons to detect 1 bit of inforrnation (high-quality de- 
tection), then a single strand of fiber should be able to 
support a data bandwidth of 1015 bits per second. That 
would provide, for example, a ,lOO-Mbit-per-second 
channel to each of 10 million users-all on one thin 
strand! This light-wave technology is being installed 
across the United States right now. The Los Angeles 
1984 Olympics video was transmitted from the games’ 
remote locations to satellite transmitters using a fiber- 
optic network installed by Pacific Bell-perhaps the 
most well-known application to date. This technology is 
being applied to local area networks by a number of 
vendors, but the technology for this application is not 
yet mature because we have yet to develop an efficient 
way to optically tap into the light pipes at low loss. As 
soon as that problem is resolved (in the next two or 
three years), we are likely to see a rapid deployment of 
fiber-optic channels in our local network environment. 

l Evaluation of the cost-effectiveness of distributed- 
processing networks 

l Study of distributed algorithms in networks 
l Investigation of how loosely coupled self-organizing autom- 

atons can demonstrate expedient behavior 
l Development of a macroscopic theory of distributed sys- 

tems 
9 Understanding how to average over algorithms, architec- 

tures, and topologies to provide meaningful measures of 
system performance 

As discussed earlier, enormous bandwidths are neces- 
sary, but not sufficient, for many tightly coupled sys- 
tems. The latency introduced due to propagation delay 
can inhibit tight control. (E.g., if we transmit data into a 
l-Gbit-per-second light pipe spanning the United States, 
the 15,000-microsecond propagation delay is such that 
the first bit will come out of the other end only after 15 
million bits have been pumped in!) 

This planet is currently laced with many types of 
computer/communications networks at all levels. 
There are wide area networks, packet-switched net- 
works, circuit-switched networks, satellite networks, 
packet radio networks, metropolitan area networks, lo- 
cal area networks, cellular radio networks, and more: 
and they are mostly incompatible within each type and 
across types. At the same time, the end user’s facility 
consists of telephones, data terminals, Host machines, 
PBX switches, alarm systems, video systems, FAX ma- 
chines, etc. The incompatibility problem escalates! 
What is needed in a distributed system is a standard 
digital communication service to connect the many 
user devices with one another across the room or across 
the world. Fortunately, there is a worldwide movement 
to define and adopt an integrated solution to this prob- 
lem, which has given rise to the Integrated Services 
Digital Network (ISDN). The ISDN service defines a cus- 
tomer interface (a plug in the wall) to which the user’s 
devices can attach and gain access to the worldwide 
integrated digital network. We are not likely to see 
much definition and penetration of ISDN until the end 
of this decade and, possibly, into the next decade (and 
most likely it will first appear at the local network 
level). 

What all this should tell us is that we are approach- 
ing a time when massive connectivity among devices 
and systems will exist. Such connectivity is necessary if 
we are to derive the full benefits from distributed sys- 
tems. 

At the processor technology level, perhaps the most 
dramatic development is the gathering momentum in 
the proliferation of personal workstations. They are 
spearheading the drive toward distributed systems. At 
the other end of the spectrum, parallel machine archi- 
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tectures are being proposed all over the world to in- 
crease the processing capacity that can be applied to a 
single problem. Both of these technologies are moving 
very rapidly and are putting pressure on distributed- 
systems research and development. We are seeing the 
development of massively distributed architectures that 
can be configured as tightly coupled, loosely coupled, 
or even hierarchically structured systems. 
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As we observe the growth of our man-made distrib- 
uted systems, we wonder how the ants, bees, birds, 
fish, and higher animals have managed to perform so 
well with their distributed systems. If we are ever to 
achieve a level of performance anywhere near theirs, 
we will have to further uncover the underlying princi- 
ples of distributed-systems behavior (see sidebar). We 
have discussed some of these in this article, but there is 
much new ground to be broken. Almost anywhere you 
dig you are likely to find pay dirt. The field is wide 
open for new ideas and new approaches, challenging 
problems remain unsolved, and the application of new 
results will be widespread and rapid-what lovelier en- 
vironment could you seek? 
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