
SPECIAL ISSUE

DISTRIBUTED SYSTEMS

Growth of distributed systems has attained unstoppable momentum. If we
better understood how to think about, analyze, and design distributed
systems, we could direct their implementation with more confidence.

LEONARD KLEINROCK

DISTRIBUTED SYSTEMS IN NATURE
How did the killer bees find thfeir way up to North
America? By what mechanism does a colony of ants
carry out its complex tasks? What guides and controls a
flock of birds or a school of fish? The answers to these
questions involve examples of loosely coupled systems
that achieve a common goal with distributed control.

Throughout nature we find an enormous amount of
processing taking place at the level of the individual
organism (be it an ant, a sparrow, or a human), and we
have only begun to comprehend how processing and
memory functions operate, especially in the human
species. How does a human perform the acts of percep-
tion, cognition, decision making, and motor control?
This processing occurs in a fraction of a second, using
natural processing elements that are orders of magni-
tude slower than our current computer processing ele-
ments [8].

We do know that the brain is organized and struc-
tured very differently from our present computing ma-
chines. In human beings (i.e., in their internal neural
systems) and in groups of organisms, nature has been
extremely successful in implementing distributed sys-
tems that are far more clever and impressive than any
computing machine humans have yet devised. We have
succeeded in manufacturing highly complex devices
capable of high-speed computation and massive accu-
rate memory, but we have not yet gained sufficient
understanding of distributed systems-our systems are
still highly constrained and rigid in their construction
and behavior. The gap between natural and man-made
systems is huge, and we have a long way to go before
This research was supported by the Defense Advanced Research Projects
Agency of the Department of Defense under Contract MDA 903-82X0064.

ACM/IEEE-CS loint Issue 0 1985 ACM OOOl-0782/85/1100-1200 750

we bridge the gap in understanding and implementa-
tion (see Figure 1, pp. 1202-1203).

WHY SHOULD WE STUDY
DISTRIBUTED SYSTEMS?
Currently we are experiencing the effects of the con-
fluence of powerful forces in information technology.
By far, the most significant effect is the host of revolu-
tionary changes that have been brought about by the
integrated chip-especially in the form of VLSI and the
resulting enormous improvements in processing,
storage, and communications. At the same time, we
are experiencing a frightening backlog in software-
application development while the user community is
clamoring for unprecedented power in processing, com-
munications, storage, and applications. Fortunately, we
have the potential for this power-if only we could
figure out how to put all the pieces together!

Distributed systems have come into existence in our
industrial society in some very natural ways. For exam-
ple, we have seen the emergence of a large number of
distributed databases-systems that have evolved be-
cause the source of the data is not centralized and
where there is a local need for frequent and immediate
access to the locally generated data (e.g., the employee
database at a branch office of a nationwide organiza-
tion) in addition to a global need to view the entire
database. Situations such as these require us to place
some processing power at the many distributed loca-
tions for collecting, preprocessing, and accessing data.
On-line transaction processing is an application that
may contain a local component as well as a distributed-
processing component, and the current proliferation
of desktop personal computers is a manifestation of
distributed-processing power. Indeed, if we measure

1200 Communications of the ACM November 1985 Volume 28 Number 11

Special Issue

processing power in MIPS (millions of instructions per
second), we note that the number of installed MIPS in
personal computers is an order of magnitude greater
than the number installed in mainframes. However,
most of those PC MIPS lie idle most of the time. Imag-
ine what a terrific distributed-processing system we
could fire up with that unused power! When data and
processing are distributed, we are obliged to provide
communications to link the resources. Thus we are led
into the use of packet networks, satellite networks, in-
ternets, cellular and packet radio networks, metropoli-
tan area networks, and local area networks.

Distributed systems can provide the necessary power
to meet the growing demands of the user community.
We are demanding capability faster than the advances
in devices alone can supply, and to meet these de-
mands we will have to rely on innovative computing
architectures such as parallel-processing systems. These
large distributed databases, along with distributed-
processing and distributed-communication networks,
have given rise to some very complex distributed-system
structures, and it is essential that we learn how to
think about them properly (see Figure 2, pp. 1204-1205).

ARCHITECTURE AND ALGORITHMS
The world of applications has an insatiable need for
computing power. A good mathematician can easily
consume any finite computing capability by posing a
combinatoric problem whose computational complexity
grows exponentially with a variable of the problem
(e.g., the enumeration of all graphs with N nodes). The
ways in which we push back this “power wall” involve
both hardware and software solutions. Typically, the
methods for speeding up the computation include the
following:

l faster devices (a physics and engineering problem),

l architectures that permit concurrent processing
(a system design problem),

l optimizing compilers for detecting concurrency
(a software-engineering problem),

l algorithms for specification of concurrency (a lan-
guage problem), and

l more expressive models of computation (an analytic
problem).

Characterizing the Architecture
There are many ways of classifying machine architec-
tures-too many, in fact. The following classification
was selected for the purposes of this article.

We begin with the purely serial uniprocessor in
which a single instruction stream operates on a single
data stream (SISD). These systems are “centralized” at
the global level, but really do contain many elements of
a distributed system at the lower levels, for example, at
the level of communications on the VLSI chips them-
selves.

Next is the vector machine, in which a single in-

struction stream operates on a multiple data stream
(SIMD). These include array processors (e.g., systolic
arrays) and pipeline processors.

The third consists of multiple processors that, collec-
tively, can process multiple instruction streams on mul-
tiple data streams (MIMD). The form of multiprocessing
that takes place when multiple processors cooperate
closely to process tasks from the same job is referred to
as parallel processing. On the other hand, the term dis-
tributed processing is applied to the form of multipro-
cessing that takes place when the multiple processors
cooperate loosely and process separate jobs.

Vector machines and multiprocessing systems all pro-
vide some form of concurrency. The effect of this con-
currency on system performance is important and is
therefore a very active area of research (see Figure 3,
p. 1206).

Since the onslaught of the VLSI revolution, a number
of machine architectures have been implemented in an
attempt to provide the supercomputing power toward
which concurrent processing tempts us [5]. Two excel-
lent recent summaries of some of these projects are
offered by Hwang [9] and by Schneck et al. [17]. There
you will find the Butterfly machine, the Cosmic Cube,
various kinds of tree machines, the Cedar project, the
Sisal language, the Connection machine, and others
whose names are intriguingly close to Mother Nature’s
systems.

Characterizing the Algorithm
The major goal in characterizing the algorithm is to
identify and exploit its inherent parallelism (i.e., poten-
tial for concurrency). The levels of resolution at which
we can attempt to find this parallelism are listed below
in decreasing order of granularity [16]:

l job execution,
. task execution,
l process execution,
. instruction execution,
l register transfer, and
l logic device.

Clearly, as we drop down the list to finer granularity,
we expose more and more parallelism, but we also in-
crease the complexity of scheduling these tiny objects
to the processors and of providing the communications
among so many objects (the problem of interprocess
communication-IPC). As was stated earlier, if we op-
erate at the top level (i.e., at the job level), then we
think of the system as a distributed-processing system;
if we operate at the task or process level, we have a
parallel-processing system; if we operate at the instruc-
tion level, we have the vector machine and the array
processor.

Regardless of the level at which we operate, it be-
hooves us to create a “model” of the algorithm or, if you
will, of the computation we are processing [lo]. A very
common model is the graph model of computation,
which is normally used at the task or process level

November 1985 Volume 28 Number II Communications of the ACM 1201

Special Issue

(another common modeling method is the use of Petri
Nets). In this model, the nodes represent the tasks (or
processes), and the directed edges represent the de-
pendencies among the tasks, thereby displaying the
partial ordering of the tasks and the parallelism that
can be exploited (see Figure 4, p. 1207).

However, the problem of finding the parallelism in
the lines of code that represent the algorithm still re-
mains, and there is an ongoing effort to simplify (and
even automate) this task by developing parallel pro-
gramming languages for implementing these algorithms
(e.g., Ada@, concurrent Pascal].

Matching the Architecture to the Algorithm
The performance of a distributed system depends
strongly on how well the architecture and the algo-
rithm are matched. For example, a highly parallel algo-
rithm will perform well on a highly parallel architec-
ture; a distributed system requiring lots of interproces-
SOT communication will perform poorly if the commu-
nication bandwidth is too narrow. This matching prob-
lem becomes fierce and crucia.1 when we attempt to
coordinate an exponentially growing number of proces-
sors requiring an exponentially growing amount of in-
terprocessor communication. The apparent solution
to such an unmanageable problem is one that is self-
organizing.

If we choose to use the grapih model discussed, we
are faced with a number of architecture/algorithm
problems, namely, partitioning, scheduling, memory ac-
cess, interprocess communication, and synchronization.
The partitioning problem refers to decisions regarding
the level of granularity and the choices involving
which objects should be grouped into the same node of
the task graph. The scheduling problem refers to the
assignment of processors and memory modules to nodes
of the computation graph. In general, this is an NP-
complete problem (tough as nails to do optimally). The
memory-access problem refers to the mechanism that
allows processors to communicate with the various
memory modules; usually, either shared-memory or
message-passing schemes are used. The interprocessor-
communication problem refers; to the nature of the
communication paths and connections that are avail-
able to provide processors access to the memory mod-
ules and to other processors; this may take the form of
an interconnection network in a parallel-processing
system, a local area network in a local distributed-
processing system or shared data system or shared pe-
ripheral system, or a packet-switched, value-added,
long-haul network in a nationwide distributed system.
Synchronization refers to the requirement that no node
in the graph model can begin execution until all of its
predecessor nodes have completed their execution.

The use of broadcast or multicast communication
opens up a number of interesting alternatives for com-
munication. Local area networ:ks take exquisite advan-
Ada is a registered trademark of the U.S. Government [Ada Joint Program
Office).

tage of these communication modes. Algorithms that
require tight coupling (i.e., lots of IPC) need not only
large bandwidths [which, for example, could be pro-
vided by fiber-optic channels), but also low latency.
Specifically, the speed of light introduces a 15,000-

microsecond latency delay for a communication that
must travel from coast-to-coast across the United States.

Another consideration in matching architectures to
algorithms is the balance and trade-off among commu-
nication, processing, and storage. We have all seen sys-

(4

There is an amazing contrast between the neural structure of
the human brain (a) and the architecture of today’s VLSI
chips (b). The brain is massively parallel, densely (and
weirdly) connected with leaky transmission paths, highly fault
tolerant, self-repairing, adaptive, noisy, and probably nonde-
terministic. Man-made computers are highly constrained,
precisely (and often symmetrically) laid out with carefully iso-
lated wires, not very fault tolerant, largely serial and cen-
tralized, deterministic, minimally adaptive, and hardly self-
repairing. (Photo (a) is the courtesy of Peter Arnold, Inc.)

FIGURE 1. Natural and Man-Made Architectures

1202 Communications of the ACM November 1985 Volume 28 Number II

Special Issue

November 1985 Volume 28 Number 11

., _“‘:-.-

N

FIGURE 1. Natural and Man-Made Architectures

Communications of the ACM 1203

TE
LE

PH
O

N
ES

-

/

PR
IV

AT
E

EA
R

TH

W
ID

EB
AN

D

LE
AS

ED

C
IR

C
U

IT
S

-
I

.
.

.
.

1
m

.
..-

..“
--

.
m

A
N

”W
I”

I n

C

O
N

TR
O

LL
ER

R

nf
w

I

-
,“-

t

=
’

‘[U
I

M
EE

TI
N

G

L.
-v

...

M
IN

IC
O

M
FU

TE
R

H
 c

W
O

R
D

PR

O
C

ES
SI

N
G

M

AC
H

IN
ES

EX
EC

U
TI

VE

O
FF

IC
E

TE
R

M
IN

AL
S

FO
R

M

Al
Li

M

AN
AG

IN
G

TH

E
W

O
R

K
O

U
EU

E.

D
IA

R
Y.

TR

AC
KI

N
G

C

R
IT

IC
AL

PR

O
JE

C
TS

.E
TC

.
m

l
IN

TE
LL

IG
EN

T
-

C
O

PY
IN

G

M
AC

H
IN

E
F-

l-

M
ES

SA
G

E
TE

R
M

IN
AL

s A

-

N
y

-0
00

I
IN

FO
R

M
AT

IO
N

I

R
ET

R
IE

VA
L

SY
ST

EM

C
O

R
PO

R
AT

E
N

ET
W

O
R

K
FO

R

D
P,

 M
AI

L,

AN
D

O

FF
IC

E
AD

M
IN

IS
TR

AT
IO

N

I
IN

ST
R

U
M

EN
TA

TI
O

N

I
-I

D
ES

K
TO

P
C

O
M

PU
TE

R
S

D
AT

A
EN

TR
Y

TE
R

M
IN

AL
S

-0
-o

0

TE
R

M
IN

AL
S

Special Issue

terns where one of these resources can be exchanged
for others. For example, if we do some preprocessing in
the form of data compression prior to transmission, we
can cut down on the communication load (trade pro-
cessing for communication). If we store a list of compu-
tational results, we can cut down on the need to recom-
pute the elements of the list each time we need the
same entry (trade storage for processing). Similarly, if
we store data from a previous communication, we need
merely transmit the data address or name of the pre-
vious message rather than the message itself (trade stor-
age for communication). Selecting the appropriate mix
in a given problem setting is an important issue.

Distributed algorithms operating in a distributed net-
work environment (e.g., a packet-switched network)
pose the possibility that network failures may cause the
network to temporarily be partitioned into two (or
more) isolated subnetworks. In such a case, detection
and recovery mechanisms must be introduced (see Fig-
ure 5, p. 1207).

Lastly, it should be mentioned that very little is
known about characterizing those properties of an algo-
rithm that cause it to perform well or poorly in a dis-
tributed environment.

PERFORMANCE AND BEHAVIOR
We do know some things about the way distributed
systems behave, precious few though they may be. The
most interesting thing about them is that they come to
us from research in very different fields of study. Un-
fortunately, the collection of results (of which the fol-
lowing is a sample) is just that-a collection, with no
fundamental models or theory behind it.

We begin by considering closely coupled systems, in
particular, parallel-processing systems. One of the most
compelling applications of parallel processing is in the
area of scientific computing, where the speed of the
world’s largest uniprocessors is hopelessly inadequate
to handle the computational complexity required for
many of these problems [3]. Of course, the idea is that,
as we apply more parallel processors to the computa-
tional job, the time to complete that job will drop in
proportion to the number of (identical) processors, P.
The “speedup” factor, denoted by S, is a common mea-
sure of performance for parallel-processing systems
and is defined as the time required to complete the job
using P processors, divided into the time required to
complete the job using one of these processors. S may
also be interpreted as the average number of busy pro-

FIGURE 2. A Complex Distributed System (left)

Humans have created some unbelievably complex distributed
systems. The fact that they work at all is amazing, given that
we have not yet uncovered the basic principles determining
their behavior. (From Martin, J. Design and Strategy for Dis-
tributed Data Processing. Prentice-Hall, Englewood Cliffs,
N.J., 1981.)

cessors, that is, the concurrency. The best we can
achieve is for S to grow directly with P; that is,

s 5 P.

Thus, in general, 1 5 S 5 P. In the early days of parallel
processing, Minsky [15] conjectured a depressingly pes-
simistic form for the typical speedup; namely,

s = log P.

Often that kind of poor performance is indeed ob-
served. Fortunately, however, experience has shown
that things need not be that bad. For example, we can
achieve S = 0.3P for certain programs by carefully ex-
tracting the parallelism in Fortran DO loops [14]. How-
ever, Amdahl has pointed out a serious limitation to
the practical improvements one can achieve with paral-
lel processing (the same argument applies to the im-
provements available with vector machines) [l]. He ar-
gues that, if a fraction, f, of a computation must be dohe
serially, then the fastest that S can grow with P is

S Iwax = fp +4 - f.

We see that, for f = 1 (everything must be serial),
S max = 1; for f = 0 (everything in parallel), S,,, = P.

The actual amount of parallelism (i.e., S) achieved in
a parallel-processing system is a quantity that we
would like to be able to compute. S is a strong function
of the structure of the computational graph of the jobs
being processed. I, with one of my students [2], have
been able to calculate S exactly as a simple function of
the graph model. Specifically, we consider a parallel-
processing system with P processors and with an arrival
rate of X jobs per second. We assume the collection of
jobs can be modeled with an arbitrary computation
graph with an average of N tasks per job, each task
requiring an average off seconds. Then it can be
shown that

s = XN.f for XNf 5 P
P for XN3 2 P.

This is a very general result; in some special cases, the
distribution of the number of busy processors can be
found as well.

So far, we have given ourselves the luxury of increas-
ing the system’s computational capacity as we have
added more processors to the system. Let us now con-
sider adding more processors, but in a fashion that
maintains a constant total system capacity (i.e., a con-
stant system throughput in jobs completed per second).
This will allow us to see the effect of distributing the
computation for a job over many smaller processors.
The particular structure we are considering is the regu-
lar series-parallel structure shown in Figure 6 (p. 1208)
where we have taken a total processing capacity of C
MIPS and divided it equally into mn processors, each of
C/mn MIPS. On entering the system, a job selects

November 1985 Volume 28 Number 11 Communications of the ACM 1205

Special Issue

Local
memory v

Local ‘I . . .
memory

Locality of memory reference, band-
width of communication, processor
overhead, and cost are key issues
determining the appropriate architec-
ture for a given application.

1 IInterconnection network ~ -.

(a) Message-Passing Architecture: Local Memory

Processor ><~>***<iyQ

Iliterconnection network

Memory 1 . . . Memory

(b) Shared-Memory Architecture

Interconnection network

1206 Communications of the ACM

(c) Hybrid Architecture

FIGURE 3. Architectures for Connecting Processors and Memory

November 1985 Volume 28 Number 11

The graph model of computation is an extremely useful
model for displaying the parallelism inherent in an algorithm
(i.e., a job). The entire graph represents the computational
tasks associated with that job, the nodes represent the tasks
themselves, and the directed arcs, which define a partial
ordering of the nodes, represent the sequence in which the
tasks must be performed.

FIGURE 4. Graph Model of Computation

(equally likely) any one of the m series branches down
which it will travel. It will receive l/n of its total pro-
cessing needs at each of the n series-connected proces-
sors. The key result for this system 1131 is that the
mean response time for jobs in this series-parallel pipe-
line system is mn times as large as it would have been

Subnet 1 Subnet 2
Network failures can create two sep-
arated subnetworks that cannot
communicate until the failure is re-
paired. Maintaining consistency of
databases in such a situation is a key
issue in distributed-systems design.

Database

FIGURE 5. A Partitioned Network

Special Issue

had the jobs been processed by a single processor of C
MIPS! There are some statistical assumptions behind
this result, but the message is clear-distributed pro-
cessing of this kind is terrible. Why, then, is everyone
talking about the advantages of distributed processing?
The answer must be that a large number of small pro-
cessors (e.g., microprocessors) with an aggregate capac-
ity of C MIPS is less expensive than a large uniproces-
sor of the same total capacity. It can be shown that the
series-parallel system will have the same response time
as the uniprocessor if the aggregate capacity of the
series-parallel system has K times the capacity of the
uniprocessor where

K = mn - p(mn - 1)

and where p is the utilization factor for each processor;
namely, p = arrival rate of jobs times the average ser-
vice time per job for a processor. This says that, for
light loads (p << I), K = mn, whereas, for heavy loads
(p + l), K = 1. Is it the case that smaller machines are
mn times less expensive than larger machines (so that
we can purchase mn times the capacity at the same
total price, as is needed in the light-load case)? To an-
swer this question, recall a law that was empirically
observed by Grosch more than three decades ago.
Grosch’s law [7] states that the capacity of a computer
is related to its cost, which we denote by D (dollars)
through the following equation:

C=JD’

where 1 is a constant. This law may be rewritten as

D 1
s=T’

Grosch tells us that the economics are exactly the reverse
of what we need to break even with distributed pro-
cessing! He says that larger machines are cheaper per
MIPS. If Grosch is correct today, then why are micro-
processors selling like hotcakes? A more recent look at
the economics explains why. Ein-Dor [a] shows that, if
we consider all computers at the same time, Grosch’s
law is clearly not true, as seen in Figure 7 (p. 1208). In
this figure we see that microcomputers are a good buy.

November 1985 Volume 28 Number 11 Communications of the ACM 1207

Special Issue

+&+& .*= + fVm When a constant amount of process-
ing capacity (C) is distributed into mn
equal (and smaller) processors in a
network such as this, the response
time increases

Vm
+&-.& l l l + tion,

by a factor of mn.
How can one justify a distributed
system in the face of this degrada-

. . .

FIGURE 6. A Symmetrical Distributed-Processing Network

800

2
5

$ 600

t+
75
cl

. . All computers All computers

. .
.

;.
. .

i

. .
. . 0.

. . .

.” . .
.

.
- -

Supercomputers nputers

12345 10 15 20 25

C = CPU power in MIPS

The cost per MIPS seems to rise with the number of MIPS
when we examine all computers in a single group. However,
when we separate them into families, we find that the oppo-
site is true, thus confirming Grosch’s law. Figure taken from

Ein-Dor, P. Grosch’s law re-revisited: CPU power and the
cost of computation. Commun. ACM 28, 2 (Feb. 1985)
142-151.

FIGURE 7. Economics of Computer Power

1208 Communications of the ACM November 1985 Volume 28 Number 11

However, as Ein-Dor points out, Grosch’s law is still
true today if we consider families of computers. Each
family has a decreasing cost per unit of capacity as
capacity is increased. Ein-Dor goes on to make the ob-
servation that, if one needs a certain number of MIPS,
then one should purchase computers from the smallest
family that can currently supply that many MIPS. Fur-
thermore, once in the family, it pays to purchase the
biggest member machine in that family (as predicted by
Grosch).

Now that we have discussed the performance of
parallel-processing systems for some special cases, let
us generalize the ways in which jobs pass through a
multiprocessor system, and analyze the system
throughput and response time. Indeed, we bound these
key system-performance measures in the following
way: Suppose we have a population of M customers
competing for the resources of the system. Assume that
customers generate jobs to be processed by some of the
system’s resources, that the way in which these jobs
bounce around among the resources is specified in a
probabilistic fashion, and that the mean response time
of this system is T seconds. When a customer’s job
leaves the system, that customer then begins to gener-
ate another job request for the system, where the aver-
age time to generate the request is t, seconds. Of inter-
est is the mean response time, T, and the system
throughput y as a function’of the other system param-
eters. Although we have been extremely general in the
system description, we can nevertheless place an excel-
lent upper bound on the system throughput and an
excellent lower bound on the mean response time as
shown in Figure 8. In this figure, the quantity M* is
defined as the ratio of the mean cycle time T, + t, to
the mean time x0 required on the critical resource in a
cycle; T, is the mean response time when M = 1, and
the critical resource is that system resource that is most
heavily loaded [ll].

To find the exact behavior (shown in dashed lines in
the figure) rather than the bounds, one must be much
more explicit about the distributions of the service time
required by jobs at each resource in the system as well
as the queueing discipline at each. Using the bounds or
the exact results, the effect of parameter changes on the
system behavior can be seen. For example, one can
examine the accuracy of the common rule of thumb
that suggests that the proper mix of microprocessor
speed, memory size, and communication bandwidth is
in the proportion 1 MIPS, 1 Mbyte, and 1 Mbit per
second; some suggest that we will soon see a 10, 10, 10

mix instead of the 1, 1, 1 mix. Of course the correct
answer to this question depends on the total system
configuration.

Once we evaluate the throughput and mean response
time for a system, we usually want to find the relation-
ship between the two, which typically has the well-
known shape (shown in Figure 9, p. 1210) that clearly
demonstrates the trade-off between them-a low delay
implies a small throughput and vice versa.

Special Issue

I
.

0 M Input load (M)

(a) Bound on Throughput

0 if* Input load (AA)

(b) Bound on Mean Response Time

Excellent bounds on throughput (a) and mean response time
(b) as a function of the number of users (or any measure of
the input load) are easily obtained for a very large class of
distributed systems. The exact behavior can be derived for
more restricted systems and demonstrates the excellence of
the bounds.

FIGURE 8. Bounds on Throughput and Response Time

We are immediately compelled to inquire about the
location of the “optimal” operating point for a system.
The answer depends on how much you hate delay ver-
sus how much you love throughput. One way to quan-
tify this love-hate choice is to define a quantity known
as “power” (denoted by P), which is defined as

P=$.

The operating point that optimizes (i.e., maximizes) the
power (large throughput and small delay) is located at
that throughput where a straight line (of minimum
slope) out of the origin touches the throughput-delay
profile (usually tangentially); such a tangent and oper-
ating point are shown in Figure 9. This result holds for
all profiles and all flow-control functions (see below).
Moreover, for a large class of queueing curves, this opti-
mal operating point implies that the system should be
loaded in such a way that each resource has, on the
average, exactly one job to work on [Z!].

November 1985 Volume 28 Number 11 Communications of the ACM 1209

Special issue

networks and distributed systems. Examples are the
distributed election of a leader, distributed rules for
traversing all the links of a network, and distributed
rules for controlling access to a database.

Another large class of distributed-control algorithms
has to do with sharing a common communication chan-
nel among a number of devices in a distributed fashion
[19]. If the channel is a broadcast channel (also known
as a one-hop channel), then the analytic and design
problem is fairly manageable and a number of popular
local area network algorithms for media access control
have been studied and implemented. Examples here
include CSMA/CI) (carrier-sense multiple access with
collision detect-as used in Xerox’s Ethernet, AT&T’s
3B-Net and Starlan, and IBM’s PC Network), token
passing (as used in the token-ring and token-bus net-
works), and address contention resolution (as used in
AT&T’s ISN). A large number of additional channel ac-
cess algorithms have been studied in the literature in-
cluding Expressnet, tree algorithms, urn models, and
hybrid models. If the channel is multicast (or multi-
hop), then the analytic problem becomes much harder.

But what if the processors in our distributed environ-
ment are allowed to communicate with their peers in
very limited ways? Can we endow these processors (let
us call them automatons for this discussion) with an
internal algorithm that will allow them to achieve a
collective goal? Tsetlin [ZO] studied this problem at
length and was able to demonstrate some remarkable
behavior. For example, he describes the Goore game in
which the automatons possess finite memory and act in
a probabilistic fashion based on their current state and
the current input. They cannot communicate with each
other at all and are required to vote YES or NO at

0 Optimal
operating
point

Throughput

The delay-throughput relationship, an example of the key
profile in systems performance evaluation, clearly shows
the trade-off between the two. In (general, you cannot get
a small delay and a large throughput at the same time. We
can, however, maximize “power,” which is the ratio of
throughput to delay, in order to define the natural point for
a system.

FIGURE 9. The Key System Profile

Unfortunately, there are some distributed systems
that do not have the nice relationship shown in Figure
8a where the throughput rises asymptotically to its
maximum value as the “input” is increased. Often we
find the behavior depicted in Figure 10 where the
throughput reaches a peak and then declines as the
input increases further, possib1.y dropping to zero, in
which case we say that the system has crashed. Such
behavior has been observed in paged virtual-memory
systems (thrashing), in computer networks (deadlocks
and degradations), and in auto:mobile traffic flow
(bumper-to-bumper traffic). Here again, one must find a
method for controlling the input (i.e., setting the system
operating point) so as to achieve optimal or near-
optimal performance (somewhsere near the peak of the
curve in Figure 10).

“Flow control” is the name a.ssociated with this oper-
ation, and it can be implemented in a centralized or a
distributed fashion in distributed systems with the lat-
ter being the more challenging design problem [6]. One
example of distributed control is the dynamic routing
procedure found in many of today’s packet-switching
networks where no single switching node is responsible
for the network routing. Instead, all nodes participate in
the selection of network routes in a distributed fashion.
A great deal of research is currently under way to eval-
uate the performance of other distributed algorithms in

Input Deadlock
(crash)

There are many systems that degrade badly when pushed
too hard. They can even degrade to a situation of deadlock.
Examples include thrashing in virtual memory systems, dead-
locks in computer networks, and bumper-to-bumper traffic in
highway systems.

FIGURE 10. A Dangerous Throughput Profile

1210 Communications of the ACM November 1985 Volume 28 Number 11

certain times. The automatons are not aware of each
other’s vote; however, there is a referee who can ob-
serve and calculate the percentage, p, of automatons
that vote YES. The referee has a function, f(p) (such as
that shown in Figure ll), where we require that 0 5
f(p) 5 1. Whenever the referee observes a percentage, p,
who vote YES, he or she will, with probability, f(p),
reward each automaton, independently, with a one dol-
lar payment; with probability 1 - f(p) he or she will
punish an automaton by taking one dollar away. Tsetlin
proved that no matter how many players there may be
in a Goore game, if the automatons have sufficient
memory, then for the payoff probability shown in the
figure, exactly 20 percent of the automatons will vote
YES with probability one! This is a beautiful demon-
stration of the ability of a distributed-processing system
to act in an optimum fashion, even when the rules of
the reward function are unknown to the players and
when they can neither observe nor communicate with
each other. All they are allowed is to vote when asked,
and to observe the reward or penalty they receive as a
result of that vote. In this work we see the beginnings
of a theory that may be able to explain how the colony
of ants performs its tasks.

NEEDED UNDERSTANDING AND TOOLS
In the previous section, we discussed a few of the
things known about distributed-systems performance
and behavior. A few isolated facts are indeed known,
but overall theory and understanding are still lacking.

For instance we need considerably sharper tools to
evaluate the ways in which randomness, noise, and
inaccurate measurements affect the performance of dis-
tributed systems. What is the effect of distributed con-
trol in an environment where that control is delayed,
based on estimates, and not necessarily consistent
throughout the system? What is the effect on perfor-
mance of scaling some of the system parameters? We
need a common metric for discussing the various sys-
tem resources of communications, storage, and process-
ing. For example, is there a processing component to
communications? We also need a proper way to discuss
distributed algorithms and distributed architectures.

A microscopic theory that deals with the interaction
of each job with each component of the system is likely
to overwhelm us with detail and will fail to lead us to
an understanding of the overall system behavior. It is
similar to the futility of studying the many-body prob-
lem in physics in order to obtain the global behavior of
solids. What is needed is a macroscopic theory of dis-
tributed systems, such as thermodynamics has provided
for the physicist. In fact, Yemini [Zl] has proposed an
approach for a macroscopic theory based on statistical
mechanics that will lead to better understanding the
global behavior of distributed systems without the need
for a detailed, fine-grained analysis.

Another fruitful approach that also avoids the horri-
ble details of any specific system structure must be
credited to Shannon [18]. In analyzing the behavior of

1 t

f@)h .
0 0.2 0.4 0.6 0.8 1.0

P

The Goore game rewards each member ot a s&t of automa-
tons independently with a probability given by the function
f(p), where p is the fraction of the set that votes YES at a
given time. The automatons are completely unaware of the
other automatons, do not know the function f(p), and, re-
markably, will collectively vote in a way that maximizes the
payoff to all.

FIGURE 11. The Goore Game

error-correcting codes for noisy communication chan-
nels, Shannon used the brilliant device of studying all
possible codes simultaneously. This enabled him to aver-
age out the detailed structure of any given code. He
could then take exquisite advantage of the law of large
numbers in order to arrive at a precise statement re-
garding the error behavior of codes. It is likely that
such an approach will allow us to study the behavior
of “typical” topologies and algorithms in distributed
systems.

LIKELY FUTURE DEVELOPMENTS
These are exciting times. Researchers in universities
and laboratories around the world have begun to focus
their attention on distributed systems. They come to
this field from diverse disciplines ranging from
queueing theory to neuroanatomy in which they are
the experts. Thus, we have the ingredients for an enor-
mously rich soup of separate ideas that have only just
begun to blend.

As the theoretical frontiers are being assaulted, so too
are the practitioners busily building systems. This is a
double-edged sword. On the one hand, the implementa-
tion of real distributed systems in the hands of the
designers and users provides us with a strong motiva-
tion for progress in understanding. as well as a magnifi-
cent test bed in which we can experiment. On the
other hand, these systems are massively expensive and
are being implemented without the benefit of the prin-
ciples we seek. As a result, they may be colossal fail-
ures! The reality is that there is no way we can prevent
their proliferation as manufacturers respond to the
frenzied demand from the user community. In a sense

November 1985 Voluntc 28 Number I1 Communications of the ACM 1211

Special Issue

UNDERLYING PRINCIPLES OF DISTRIBUTED-SYSTEMS BEHAVIOR

l Developing innovative architectlures for parallel processing

l Providing better languages and algorithms for specification
of concurrency

l More expressive models of computation

l Matching the architecture to the algorithm

l Understanding the trade-off among communication, pro-
cessing, and storage

l Evaluation of the speedup factor for classes of algorithms
and architectures

we are all responsible for the current craziness, because
we have been “promising” these miraculous systems to
the user for almost a decade.

In the face of these developments, we can foresee
some of the likely developments that will take place
over the next decade or two. Let us first consider the
likely technology developments in hardware-type re-
sources. One of the most exciting of these is the huge
data bandwidth projected for fiber-optic technology.
These fibers are being used for point-to-point commu-
nication pipes at rates on the order of hundreds of me-
gabits per second. Bell Laboratories and Japan have
been leapfrogging each other in setting world records
for the largest data rates transmitted over the longest
distances. Earlier this year, Bell Laboratories estab-
lished a new record by transmitting at the rate of 4
billion bits per second at a distance of 117 km without
any repeaters! The product of clata rate times distance
has been doubling every year since 1975, and based on
the limits imposed by physics, there are still five orders
of magnitude to go (16 years of doubling left). The tiny
glass fiber is so clear that, if the oceans of the world
were made of this glass, one could see the bottom of the
deepest trench in the ocean floor from the surface. If
we consider a 1-mW laser and ,a requirement of 10
photons to detect 1 bit of inforrnation (high-quality de-
tection), then a single strand of fiber should be able to
support a data bandwidth of 1015 bits per second. That
would provide, for example, a ,lOO-Mbit-per-second
channel to each of 10 million users-all on one thin
strand! This light-wave technology is being installed
across the United States right now. The Los Angeles
1984 Olympics video was transmitted from the games’
remote locations to satellite transmitters using a fiber-
optic network installed by Pacific Bell-perhaps the
most well-known application to date. This technology is
being applied to local area networks by a number of
vendors, but the technology for this application is not
yet mature because we have yet to develop an efficient
way to optically tap into the light pipes at low loss. As
soon as that problem is resolved (in the next two or
three years), we are likely to see a rapid deployment of
fiber-optic channels in our local network environment.

l Evaluation of the cost-effectiveness of distributed-
processing networks

l Study of distributed algorithms in networks
l Investigation of how loosely coupled self-organizing autom-

atons can demonstrate expedient behavior
l Development of a macroscopic theory of distributed sys-

tems
9 Understanding how to average over algorithms, architec-

tures, and topologies to provide meaningful measures of
system performance

As discussed earlier, enormous bandwidths are neces-
sary, but not sufficient, for many tightly coupled sys-
tems. The latency introduced due to propagation delay
can inhibit tight control. (E.g., if we transmit data into a
l-Gbit-per-second light pipe spanning the United States,
the 15,000-microsecond propagation delay is such that
the first bit will come out of the other end only after 15
million bits have been pumped in!)

This planet is currently laced with many types of
computer/communications networks at all levels.
There are wide area networks, packet-switched net-
works, circuit-switched networks, satellite networks,
packet radio networks, metropolitan area networks, lo-
cal area networks, cellular radio networks, and more:
and they are mostly incompatible within each type and
across types. At the same time, the end user’s facility
consists of telephones, data terminals, Host machines,
PBX switches, alarm systems, video systems, FAX ma-
chines, etc. The incompatibility problem escalates!
What is needed in a distributed system is a standard
digital communication service to connect the many
user devices with one another across the room or across
the world. Fortunately, there is a worldwide movement
to define and adopt an integrated solution to this prob-
lem, which has given rise to the Integrated Services
Digital Network (ISDN). The ISDN service defines a cus-
tomer interface (a plug in the wall) to which the user’s
devices can attach and gain access to the worldwide
integrated digital network. We are not likely to see
much definition and penetration of ISDN until the end
of this decade and, possibly, into the next decade (and
most likely it will first appear at the local network
level).

What all this should tell us is that we are approach-
ing a time when massive connectivity among devices
and systems will exist. Such connectivity is necessary if
we are to derive the full benefits from distributed sys-
tems.

At the processor technology level, perhaps the most
dramatic development is the gathering momentum in
the proliferation of personal workstations. They are
spearheading the drive toward distributed systems. At
the other end of the spectrum, parallel machine archi-

1212 Communicatiorls of the ACM November 1985 Volume 28 Number I1

Special Issue

tectures are being proposed all over the world to in-
crease the processing capacity that can be applied to a
single problem. Both of these technologies are moving
very rapidly and are putting pressure on distributed-
systems research and development. We are seeing the
development of massively distributed architectures that
can be configured as tightly coupled, loosely coupled,
or even hierarchically structured systems.

REFERENCES
1.

2.

Amdahl, CM. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of AFIPS, Vol. 30.
Thompson, Washington, DC., 1967, pp. 483-485.
Belghith, A.. and Kleinrock, L. Analysis of the number of occupied
processors in a multi-processing system. UCLA CSD Rep. 650027,
Computer Science Dept., Univ. of California, Los Angeles, Aug.
1985.

3.
4.

Massively distributed and massively connected sys-
tems with enormous computational capacity are likely
to appear in the next 10 years. Unless we pay very
careful attention to the user interface, users will be
hopelessly lost and ineffective. At the very least, we
must provide users with languages that allow them to
take advantage of the distributed architecture and to
write application code quickly and in a way that allows
the application package to be modified and maintained
easily. Moreover, the complexity of the system should
be transparent to users. Users need to interface with a
systemwide operating system that offers the use of a
single logon (with a networkwide name and password)
and that provides access to file servers, database serv-
ers, automatic backup, processing servers, mail servers,
application packages, education and help functions, etc.

5.

6.

7.

6.

9.

10.

11.

12.

13.

The system itself could take advantage of expert-
systems capability in providing these services to the
user. And the system is likely to include extensive re-
dundancy in order to provide high levels of reliability
and fault tolerance. It should also be self-repairing, and
even self-organizing, as the conditions and demands on
it change.

14.

15.

16.

Aside from the business-oriented applications and
developments listed above, an enormous consumer-
oriented set of products will be developed. One device
that spans business and personal needs is a proper “lap”
computer that will provide the user with remote access
to the massive distributed network resources described
in this article.

We foresee a new phenomenon whereby users are
confronted with so many attractive features in new de-
vices and software packages that they cannot possibly
learn to use them all. Learning how to use the features
represents an investment far beyond users’ available
time; and yet the features are wonderfully seductive.
To coin a term, I would like to refer to this phenome-
non as “FEATURE SHOCK”!

17.

18.

19.

20.

21.

Denning, P.J. Parallel computation. Am. Sci. (July-Aug. 1985).
Ein-Dor, P. Crosch’s law re-revisited: CPU power and the cost of
computation. Commun. ACM 28, 2 (Feb. 1965), 142-151.
Ercegovac, M., and Lang, T. General approaches for achieving high
speed computations. In Supercomputers, S. Fernbach, Ed. North-
Holland, Amsterdam. To be published.
Gerla, M., and Kleinrock, L. Flow control protocols. In Conrpurer
Nelwork Archilectures, Paul Green, Ed. Plenum, New York, 1962. pp.
361-412.
Grosch, H.A. High speed arithmetic: The digital computer as a re-
search tool. 1, Opt. Sot. Am. 43,4 (Apr. 1953).
Grossberg, S. Studies of the Mind and Brain; Neural Principles of Leam-
ing, Percepfion, Developmenf Cognition and Motor Control. Reidel,
Hingham, Mass.. 1962.
Hwang, K. Multiprocessor supercomputers for scientific/engineering
applications. (June 1985), 57-73.
Hwang. K., and Brig& F. Computer Architecture and Parallel Process-
ing. McGraw-Hill, New York, 1984.
Kleinrock. L. Queueing Systems, Volume 2: Computer Applicafions,
Chap. 4. Wiley-Interscience, New York, 1976.
Kleinrock, L. On flow control in computer networks. In IEEE Pro-
ceedings of the Conference in Communication. Vol. 2, IEEE. New York,
June 1976. pp. 27.2.1-27.2.5.

Kleinrock, L. On the theory of distributed processing. In Proceedings
of the 22nd Annual Aflerton Conference on Communication, Control and
Computing, Univ. of Illinois, Monticello, Oct. 1964, pp. 60-70.

Kuck. D.). et al. The effects of program restructuring, algorithm
change and architecture choice on program. In Proceedings of the
Inlernafional Conference on Parallel Processing, Aug. 1984, pp. 129-
136.
Minsky, M., and Papert, S. On some associative, parallel and analog
computations. In Associative Information Technologies, E.J. Jacks, Ed.
Elsevier North Holland, New York. 1971.
Patton, C.P. Microprocessors: Architecture and applications. IEEE
Compul. Msg. IS, 6 [June 1965). 29-40.
Schneck et al. Parallel processor programs in the federal govern-
ment. IEEE Comput. Msg. 18, 6 (June 1965), 43-56.
Shannon, C., and Weaver, W. The Mathematical Theory of Communi-
carion. Univ. of Illinois Press, Urbana, 1962.
Stuck, B.W., and Arthurs, E. A Computer and Communicafions Nel-
work Performance Analysis Primer. Prentice-Hall. Englewood Cliffs,
N.J.. 1985.
Tsetlin. M.L. Automalon Theory and Modeling of Biological Sysfems.
Academic Press, New York, 1973.
Yemini, Y. A statistical mechanics of distributed resource sharing
mechanisms. In Proceedings of INFOCOM 83, 1963, pp. 531-539.

As we observe the growth of our man-made distrib-
uted systems, we wonder how the ants, bees, birds,
fish, and higher animals have managed to perform so
well with their distributed systems. If we are ever to
achieve a level of performance anywhere near theirs,
we will have to further uncover the underlying princi-
ples of distributed-systems behavior (see sidebar). We
have discussed some of these in this article, but there is
much new ground to be broken. Almost anywhere you
dig you are likely to find pay dirt. The field is wide
open for new ideas and new approaches, challenging
problems remain unsolved, and the application of new
results will be widespread and rapid-what lovelier en-
vironment could you seek?

CR Categories and Subject Descriptors: C.2.4 [Computer-Communi-
cation Networks]: Distributed Systems

General Terms: Design, Performance, Theory
Additional Key Words and Phrases: computer networks, distributed

control, distributed processing, economics of computing power, machine
architecture, multiprocessing, parallel processing, performance of dis-
tributed systems, self-organizing systems

Author’s Present Address: Leonard Kleinrock, Depl. of Computer Sci-
ence, Boelter Hall, UCLA, Los Angeles, CA 90024.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

November 1985 Volume 28 Number 11 Communications of the ACM 1213

