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ABSTRACT

Although the first polling systems to be analyzed were systems with zero switch-over periods
(ZSOP), later research concentrated on studying polling systems with non-zero switch-over
periods (NSOP). As a result, many variations of polling schemes (in particular, discrete-time
variations) which have been analyzed for NSOP systems have not been analyzed for the
corresponding ZSOP systems. In this note we propose a general approach for using the results
that have been derived for NSOP systems and applying them to solve the corresponding ZSOP

systems.



1. Introduction

We consider the problem of calculating the expected delay in polling systems with zero
length switch-over periods. The models under consideration consist of a single server which
serves N infinite independent queues. In these systems after completing the service of queue 1,
the server switches and starts serving queue 3. The instant at which the server starts serving a
queue is called a polling instant and the period during which the server switches from queue 1 to

queue j is called a switch-over period (or reply snterval or walking time).

Although the first polling systems to be analyzed were systems with zero length switch-over
periods (ZSOP), i.e., systems where all the switch-over periods are deterministically of zero
length, later studies concentrated on studying polling systems with nonzero switch-over periods
(NSOP), i.e., systems where not all of the switch over periods are of zero length. As a result,
while the solutions for a large variety of NSOP polling models are available, this is not the cnse
with ZSOP polling systems models -- solutions are available only for the continuous-time cyclic-
polling system with exhaustive or gated service discipline (Cooper and Murray [1969], Cooper

(1970], Humblet 1978]).

This situation raised the question of whether the solutions developed for NSOP systems can
be extended and applied to ZSOP systems. This question was briefly addressed by several
previous studies (Eisenberg [1972], Takagi [1986]) where it was stated that the method used to
analyze the NSOP systems is not applicable for solving the ZSOP systems. However, since

neither of those references comprehensively addressed the issue, the answer to this question

remained unclear.

In this paper we address this question, concentrating on analyzing available methods which
derive the expected delay in NSOP systems by solving a linear set of equations. While we agree
with the previous statements that those methods cannot be applied directly to solve ZSOP
systems, we show that by considering the limiting behavior of NSOP systems, and by applying a
simple modification to the available equation sets one can easily create new equation sets from

which the expected delay in ZSOP systems can be derived. As a result, we claim that for all



practical purposes, ZSOP systems may be solved using the solutions for the appropriate NSOP

systems, and additional analysis is not required.

The structure of this note is as follows: In Section 2 we review the details of the model and
the relevant literature. In section 3 we concentrate on the discrete-time cyclic-polling
exhaustive system and show how the expected delay in the ZSOP version of this model may be
calculated using the method developed for solving the corresponding NSOP system. In Section
4 we list the models for which the treatment of Section 3 may be applied. In Section 5 we

present numerical results and discuss the limitation of this method.

2. Description of the Models and Previous Work

The common denominator for all the models considered below is that a single server serves N
infinite queues. The order in which the server serves these queues, i.e., the rules by which the
next queue to be served (after the service of queuei + has been completed) is determined, is called
the polling order. The rule by which the server decides to stop servicing a given queue is called
the service policy. The polling orders considered here are: 1) Cyelic - in which the next queue
served after queue ¢is {4 1 (modulo N), and 2) Memory-less random - in which the next queue to
be served is queue y with probability p;. The service policies considered are: 1) Ezhaustive - in
which the server stops serving queue ¢ only when no more customers are left in the queue, 2)
Gated - in which the server stops serving when he completeds the service of all customers found
in queue ¢ at the polling instant, and 3) Limited - in which the server serves at most one
customer at a time and then switches to the next queue. Two time models are
considered: Continuous time and discrete time. In the discrete-time model time is slotted, all
times (service times and lengths of switch-over periods) are expressed in terms of the slot unit,
and events (e.g., arrivals) occur at the slot boundary. Arrivals to each of the queues in the

continuous-time system are assumed to be Poisson.



Previous Work

The main approach for analyzing polling systems has been to calculate the first two
moments of the buffer occupancy (number of customers present at the system) at polling
instants. Cooper and Murray [1969] and Cooper [1970] were the first to use it in analyzing the
continuous-time cyclic-polling exhaustive and gated systems with zero reply intervals. A similar
approach was later used by Eisenberg [1972] and Hashida [1972] (continuous-time cyclic-polling
exhaustive and gated NSOP systems)‘, Konheim and Meister [1974] and Swartz [1980] (discrete-
time cyclic-polling exhaustive NSOP systems), Rubin and DeMoraes [1983] (discrete-time cyclic-
polling NSOP systems), Nomura and Tsukamoto [1978] (continuous-time cyclic-polling limited-
service NSOP system), Takagi [1985] (discrete-time cyclic-polling limited-service NSOP system),
and Kleinrock and Levy [1985] (discrete-time random-polling exhaustive, gated and limited-
service NSOP systems). Recently, a different approach for analyzing the system by looking at
the cycle times was presented by Humblet [1978] and Ferguson and Aminetzah [1985]. This
analysis was derived for the continuous-time cyclic-polling exhaustive and gated NSOP systems
(Humblet’s [1978] analysis can be used for ZSOP systems as well). Very recently Baker and
Rubin [1987] used this approach to analyze systems with general-periodic polling. Lastly, a
recent tutorial presenting the analysis of polling systems in an organized framework was written
by Takagi [1986]. The main analysis approach taken in Takagi [1986] is the approach of

calculating the moments of the buffer occupancy at polling instants.

3. The Discrete-Time Cyclic-Polling Exhaustive Service Policy
3.1 Model Description and Review of the Solution for NSOP Systems

In this section we consider a discrete-time model in which time is slotted with the slot size
equal to the (fixed) service time of a customer, and is measured in slots; the time interval
[t,t+1] is called the tth slot. The polling order is cyclic and the service policy is exhaustive (ie.

- serve queue ¢ until emptying it).



The arrival process at each queue is assumed to be independent of those at other queues and
we denote by X;(t) the number of customers arriving to queue t during slot f; the arrivals are
assumed to occur at the end of the slot. The sequence {X;(t); t=0, 1, 2...} is assumed to be an
independent and identically distributed sequence of random variables whose mean and variance
are: p; = E[X(t)], of = Var[X(t)]. The lengths of the switch-over periods from queue i to
queue 1+ 1 are assumed to be a sequence of independent and identically distributed random

variables (denoted by S;) with mean and variance r; and 6% respectively.

We define the customer wasting time’, denoted by W, as the time spent by the customer in
the queue, and the customer delay (or, sojourn time), denoted by T, as the sum of the waiting
time and the time spent in service (one unit in the discrete-time model and general in the
continuous-time model). The solution for the expected customer delay in NSOP systems was
derived by Konheim and Meister [1974] and Swartz [1980]. Below we follow that approach as
presented by Takagi [1986]. The key for that method is to compute the first moments and the
variance-covariance matrix of the number of customers present in the system at polling instants.
More precisely, we let L;(t) be the number of customers present at queue 1 at time ¢, and ri(m)
be the time at which the server becomes available to serve queue i (for the mth time). Then we

denote:
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The expected delay observed in queue ¢ can be calculated (see, e.g., Takagi [1986]) from (1)

and f(1,1):

1. Since arrivals are assumed to occur at the end of the slots, the customer waiting time (or delay) does not include the
slot at which he arrived.
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The expressions for f;(;) are available in closed form:
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where all indices are modulo N.

(3.1)

(3.2a)

Closed form expressions for f;(5,k) are not available, but these values may be computed by

solving the following set of N? linear equations:
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where all indices are modulo N.

The computation of the expected delay, therefore, boils down to the solution of this equation

set which can be carried out very efficiently using a simple iterative procedure (Levy [1986]).

When all queues are identical we drop the subscript f from all parameters and the expected



delay can be expressed explicitly:
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3.2 Server Behavior for System with Zero Switch-Over Periods

In the discrete-time system with zero switch-over periods, when the server completes serving
queue ¢ he is tnstantaneously ready io serve queue 1+ 1. The server behavior, therefore, needs
further specification in this case; the specific issue must be addressed is what service order does
the server take at time t+ 1, if the system is empty at time ¢ In other words, the question is,

which queue is first polled at time ¢+ 1 when the system is completely empty at time ¢.

For the cyclic system we assume that the first queue to be polled at time ¢4 1 is randomly
selected among the N queues with equal probability (1/N) for each queue. Once the first queue
to be polled at time ¢+ 1 is selected, the server then proceeds in cyclic order until it finds a
queue which is non-empty at that time (¢+1). If no such queue is found the process (i.e., the

random selection) repeats for time ¢+ 2 and so on.

For the memoryless random system we assume that the selection of the queue to be polled at
time ¢+ 1 is done as in the case of non-empty system. This means that at time t+1 queue tis

polled with probability p;.

Obviously, one could propose alternative definitions for the polling orders at these instants.
Nevertheless, the orders defined above seem to be natural and to follow the general philosophy

of the two polling systems considered.

Note that the problem of which queue to poll next when the system becomes empty and the
switch-over period is of zero length, does not arise in the context of the continuous-time system.
The reason is that in this system, due to the continuous-time model and the assumption of
Poisson arrivals, no two arrivals can occur at exactly the same time. Therefore, the server’s
choice in that system, when it becomes empty, is simple: select the first queue to become non-

empty. Obviouslv. no tie-breaking rules are reauired in that case.



3.3 NSOP Equations May Not be Used Directly to Solve for ZSOP Systems

In a ZSOP system the switch-over periods are deterministically of zero length; Thus, we have

It is straightforward to see that under these conditions equations (3.1), (3.2a-b) and (3.3a-d)
may not be used directly to calculate E[T;]. The reason is that from (3.2a-b) we get fi(j) = 0
(f,5=1,...N) and, then, from (3.3a-d) we get fi(s,k) = O (,5,k=1...N). Therefore, (3.1) may not

be used.

This problem has a simple physical interpretation. The variables f(;) and f{j,k) represent
the moments of the number of customers present in the system at arbitrary instants of polling
queue i¢. In a system where all switch-over periods are of zero length, then, when the system
becomes empty, the server polls the queues infinitely many times at a single instant. This

causes all these moments and the expected cycle time (which is a key for deriving (3.1)) to be

equal to zero.

This property was mentioned by Takagi [1986] as the reason for the inapplicability of the

above method for deriving the expected delay in the ZSOP system.
3.4 Using the Limit of the Expected Delay in the NSOP System

While the method described above is not suitable for analyzing ZSOP systems it is
theoretically suitable for analyzing any NSOP system. In particular, it may be used to analyze
NSOP systems where the length of the switch-over ;;eriod is non-zero with probability p (p >0)
and zero with probability 1—p. The main idea presented in this subsection, is to consider a
system where the switch-over periods are almost always of zero length. We call this a system
with Almost-Zero Switch-Over Periods, or an AZSOP system. The use of an AZSOP system
allows one to use the equations described above. A proper selection of the AZSOP system will

lead to calculated delays that closely approximate the delay in the ZSOP system.



3.5 Proper Selection of the Almost-Zero Switch-Over Period

When constructing the AZSOP system the goal is to create a system whose behavior will
approach the behavior of the ZSOP system. The arrival process parameters are therefore
selected to be as in the ZSOP system and we concentrate on selecting the switch-over period

parameters, by observing the relevant characteristics of the ZSOP system:

1)  When the server finishes servicing queue 1 at time ¢, it is ready to serve any of the non-
empty queues right at that time (). If several queues are not empty, the queue to be

served at ¢ is selected according to the cyclic order.

2)  When the system is empty at time ¢ the server is ready to serve at time ¢+ 1 any of the
non-empty queues. If several queues are non-empty at time ¢+ 1, the queue to be served
next is determined as follows: First, the server randomly selects (with equal probability
for each of the N queues) the first queue to be polled at time ¢{+1. Then the server
proceeds polling all queues, according to the cyclic order, until the first non-empty

queue is found; This queue is selected to be served at time ¢+ 1.

To assure that the AZSOP system follows these two properties with high probability we

choose the distribution of the switch-over period as follows:
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and we let p — 0.

The selection of a large mass at the origin provides for the first property, namely that the
server will continuously serve the system as long as there are customers in the system.
Concentrating the rest of the mass at 1 provides for the second property, namely, that when the

system is empty at time ¢, the server becomes available to serve again at time ¢4 1.

The equal probability selection stated in the second property is provided for as well. To

verify this, assume that queue N is the one served until time f, when the system becomes
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completely empty. Then, the probability that queue 1 is polled first at time ¢+ 1 (denoted by %)
is given by
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It is easy to see that limo gi=1/N. Thus, the probability of queue § being polled first at time
p—‘

t+1 approaches 1/N, independently of the queue last being served at time ¢.

Since the selection of the switch-over period provides that the behavior of the AZSOP
system will approach that of the ZSOP when p — 0, it follows that the delay incurred in the

AZSOP system approaches the delay in the ZSOP system.

The selection of our switch-over period parameters yields the following values for r; and 6%:

ri=p;68 =p(1-p) (3.6)

which can be substituted into (3.2a-b) and (3.3a-d) to yield a solution for the expected delay in
the AZSOP system. It is interesting to consider the symmetric system by substituting (3.6) into
(3.4). The expected delay in the symmetric ZSOP system is derived by letting p — 0 which

yields:

o2

2u(1— Na) (57)
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Note that when the arrival rate approaches zero the expected delay approaches -2—+ -é? For

example, if the arrival distribution is Bernoulli, then limOE[T,-]= 1, which as expected, equals one
b=

unit (the service time).

It is important to emphasize again that the proper selection of the switch-over period
distribution is critical for correct results and it is not sufficient to select any arbitrary
distribution whose moments approach zero. This issue may be best clarified by considering an

alternative distribution:
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Pr(Si= k= »p
Pr(S;=0]=1-p (3.8)
Whose mean and variance are:
ri=kp ;6% = k?p(1-p) (3.9)

While the limits of r; and 67 are identical to those of (3.6), the limit of their ratio is different:

2

¥
lim — = k. Thus, in the symmetric case the limiting expected delay of this system is:
p—o T

o2
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This is different from (3.7). This difference may be explained by examining the system behavior
under this distribution and by observing that after the system becomes empty at time ¢ the
server is next ready to serve only at time t+ k. This behavior actually reflects a system where
the server takes vacations of length k whenever it goes idle (see Doshi [1986] for a survey of

queueing systems with vacations).
3.6 Equation Modification to Avoid Numerical Problems

The method derived in Sections 3.4 and 3.5 is very stable (see Section 5 below). However, in
extreme cases it may yield numerical problems which can be avoided using the method we
outline below. The main approach (which is somewhat similar to that of Humblet (1978]) is to
embed the limiting behavior into equations (3.2a-b) and (3.3a-d) directly. We do so by assuming
that all switch-over periods are identical and r; = r, 6,2 = §2, and by defining

J{5) {3, k)
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We now substitute (3.11) into (3.2a-b) and (3.3a-d) and evaluate the limit of the equation when

p— 0 this yields:
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Once this linear equation set is solved we may derive the expected delay at the ZSOP system:

9i(6,9) + gd(s) &% 1 1
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It is easy to see that the values of g/(*) and g;(1,7) are not identically zero (in contrast to the
values of f(i) and f{(s,¢)). Thus, the numerical problems, which may be encountered in using

the approach described in Sections 3.4 and 3.5, are avoided here.
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4. The Application of the Method to Other ZSOP Systems
4.1 Discrete-Time Cyclic-Polling Systems

The analysis of the discrete-time cyclic-polling gated NSOP system is similar to that of the
exhaustive system: For the non-symmetric system a set of N® linear equations must be solved
(see, e.g., Takagi [1986] equations (5.4a-b) and (5.5a-d)). For the symmetric system the expected

delay is given by: '
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The treatment of the corresponding ZSOP system is, therefore, similar to the one described in

~ Section 3. This implies that the solution may be achieved by either substituting
ri=p, 6}=p(1—p) (where p is very small) into (5.4a-b) and (5.5a-d) of Takagi [1986], and solving
them or, by transforming the equations as done in Section 3.6. The expected delay in the
symmetric system is obtained by considering the limits of equation (4.1). As expected, the

result is identical to that of the exhaustive system (equation (3.7)).

The NSOP system with limited service has been analyzed only for the fully symmetric case

and its expected delay is given by:

ﬁ_'_ (1+ Nr)o? " N&%u
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The expected delay in the ZSOP system can be obtained by taking limits on this expression;

(4.2)

E(T) =

Again, the result is identical to (3.7).
4.2 Discrete-Time Random-Polling Systems

The expected delay in the NSOP random polling systems has been derived in Kleinrock and
Levy [1985]. The analysis approach is similar to that of the cyclic systems, i.e., the non-
symmetric cases of the exhaustive and gated systems require the solution of N? linear equations
(see in Kleinrock and Levy [1985], equations (17), (18), (19a-b) and (41) for the exhaustive
system and equations (49), (51a-d) and (58) for the gated system), and the solution of symmetric

cases for all three systems (exhaustive, gated and limited) are given in closed form. The latter

are given in Kleinrock and Levy [1985] and can be obtained by adding -QI(IIV——_Ti’% to (3.7) and to
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(4.1) and —ijv—”!%— to (4.2) to yield the expected delay in the exhaustive, gated and

limited systems, respectively. The approach to handling the corresponding ZSOP systems is,
therefore, identical to that of the cyclic systems. Note, that the expected delay in the
symmetric ZSOP systems (take the limits on the additive terms, given above) are all identical to

those of the corresponding cyclic systems.
4.3 Continuous-Time Systems

The expected delay in continuous-time cyclic ZSOP systems has been derived previously by
Cooper and Murray [1969], Cooper [1970] and Humblet [1978]. For the sake of completeness, we

" next show how the method proposed above can be used for analyzing these systems as well.

The treatment of the continuous-time systems is similar to that of the discrete-time systems.
The main difference is in the selection of AZSOP. Here, one wants to select a distribution
which is all concentrated at [0,¢] and e— 0. This would provide that once the system goes
empty, the server will be able to serve the next arriving customer immediately when it arrives.

For example, we may consider a distribution which is all concentrated at €; In that case we have

=¢; 6°=0; £= lim -éf-=0. (4.3)

r e—0r
The equation sets for the non-symmetric NSOP cyclic systems can be found in Takagi (1986]
((4.10a-b) and (4.11a-d) for exhaustive, (5.31a-b) and (5,32a-c) for gated) where the notation
used is \; (the Poisson rate to queue 1) and b; and () (first and second moments of service time
at queue ). The other notation used in that reference is identical to that of the discrete-time
model. The treatment of these equations to yield the expected delay in the ZSOP systems is

identical to that of Section 3, with the exception that the AZSOP is selected according to

equation (4.3) and not according to equation (3.6).

The expected waiting time (limited to the time in queue and not including the time in
service) in the NSOP symmetric systems is given in equations (4.33b), (5.46b) and (6.19) of

Takagi [1986]. The limits of all these expressions (for the ZSOP systems) are given by:
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which is, as expected, the expected waiting time in the M/G/1 system with the combined
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inputs of the polling system.

5. Numerical Considerations

The method described in Sections 3.4 and 3.5 requires the computation of two sets of
variables which tend to zero, {f,-(‘i)} and {f(4,9)}. As such, the method could become
numerically unstable. However, careful examination of the equation sets considered reveals that
the only algebraic operations used in the equations are additions and multiplications. As a
~ result, if the equations are solved by an iterative scheme, the only operations required, during
the whole solution procedure, are additions and multiplications (The only division operation
required is at the end of the process when the expected delay is computed using Equation (3.1).
However, this division is between two numbers of the same order of magnitude, and thus, does
not introduce a numerical problem) . As such, the method is strongly immune against

numerical errors. Nevertheless, when eztremely small quantities of p; and o? are used, the

computer will reach its limit of precision and numerical errors will be encountered.

In contrast, the method described in Section 3.6 does not involve the computation of any
small quantities. As such, the method (when implemented by an iterative scheme) is not

expected to encounter special numerical problems.

Table 1: p=0.8
e {
P Error (iterative) | Error (Eq. (3,4))
10~% | 8.0-10% 7.9-1073
1075 | 8.0-10°5 7.9-107%
10°7 | 8.0-1077 7.9-1077
107° | 3.0-10°8 7.9-107°
1071 | 4.6-10°° 7.9-10~1
10°1 | 2.0-107* 7.9-10"18
107 | 2.4.1072 7.9-10718

We tested these methods in practice and compared their results with the closed-form results
available for fully symmetric systems. In Table 1 we present the results obtained for a fully

symmetric 10-station discrete-time cyclic-polling exhaustive system. The arrival parameters
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Table 2: p=0.9
3 Error (iterative) | Error (Eq. (3.4))
10~% | 8.9-10°% 8.9-10~3
10~% | 8.9-10~% 8.9:10~5
107 | 8.9-10~7 8.9-10~7
10~° | 3.5-10~% 8.9-10~°
107! | 4.3-10°¢ 8.9-10~!!
1071 | 4.0-10~* 8.9-1018
10718 [ 4.1-1072 - | 8.9-10718

used are: p;=.08, 0?=.0736 (the total system load is p=0.8). We applied the method of
Sections 3.4 and 3.5 by computing the values of Equation (3.2a-b) and then iterating on
Equation (3.3a-d), where the input parameters for r; and 67 are taken from Equation (3.6) and p
varies from 10™3 to 10™!5, The iterative scheme was set to stop when the relative change was
less than 10™!%, The relative error in the expected delay calculated by this method (in
comparison to the exact result given in Equation (8.7)) is given in the second column of Table 1
(in the first column, the value of p is given). For comparison, we also give (third column) the
relative error between Equation (3.7) and the result derived by substituting r; and 6% into
Equation (3.4). Similar results are presented in Table 2 for a similar system where ;= 0.09 and
67=0.819. The results show that for all practical purposes this numerical technique is very
accurate and it can derive the expected delay to within accuracy of 10~7 (depending, obviously,
on the computer and language used; The particular computer used here is VAX 11/785 and we
used FORTRAN-77 with double precision arithmetic). The accuracy improves when p

decreases, and numerical problems are encountered, as expected, only when very small values of

p are used (p <1078),

When this level of precision is not satisfactory, one ean uso the mothod deseribed in Section
3.6. In our examination of this method we did not encounter any numerical problems. The
relative error of this method, when applied to the two cases presented above (and to many
others, including, e.g., cases with p=0.3, 0.5 and with higher second moments 6?), was
consistently less than 10~'*, Note that the computation error, in this case, is a function of the
number of iterations for which the method ran. For an analysis of the method accuracy as

function of the number of iterations applied see Levy [1986] (That analysis was given for NSOP



w1 s

systems but applies for the method described in Section 3.6 as well).
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