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Abstract

We present some results from an exact anal-
ysis of a new model for the problem of
two processors running the Time Warp dis-
tributed simulation protocol. The model
creates a unifying framework for previous
work in this area and additionally provides
some clear insight into the operation of sys-
tems synchronized by rollback.

1 Introduction

Distributed simulation has proven to be an impor-
tant application for parallel processing. Accordingly,
several algorithms have been developed to perform
simulation ‘with multiple processors. The most well
known techniques are generally classified into two
types; conservative [8] and optimistic [2]. Generally
speaking, optimistic simulation on multiple proces-
sors is a technique which allows each processor to
proceed with its portion of a simulation independent
of the other processors (optimistically assuming that
the others will not interact with that processor); if, at
a later time, it finds that some other processor caused
its earlier assumption to be false, it will roll back and
proceed forward again. Our research focuses on the
analysis of the average case behavior of Time Warp,
the most well known optimistic technique.

Very little work has appeared in the literature
which discusses average case behavior of Time Warp
(TW). Lavenberg et al. [5] and Mitra and Mitrani
[9] have examined models similar to ours, and we will
address their relationship to this work in Section 5.
Recently, Lin and Lazowska [6] have examined Time
Warp and conservative methods by appealing to crit-
ical path analysis. Though their work provides im-
portant insights, it generates different types of results
than ours. Finally, Madisetti [7] provides bounds
on the performance of a two processor system where
the processors have different speeds of processing and
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move at constant rates. Madisetti extends his model
to multiple processors, something we do not address
in this work.

The next section introduces our model for Time
Warp. Section 3 provides its exact solution while
in Section 4 we derive some performance measures.
In Section 5 we examine the model as we take limits
on various parameters and discuss the relationship of -
this work to that of Lavenberg et al. and Mitra and
Mitrani. Section 6 discusses what we can learn from
the model. Finally, in Section 7 we provide some
concluding remarks and notes on future research di-
rections.

2 A Model for Two Time
Warp Processors

Assume we have a job which is partitioned into two
processes, each of which is executed on a separate
processor. As these processes are executed, we con-
sider that they advance along the integers on the
x-axis in discrete steps, each beginning at z = 0 at
time ¢t = 0. Each process independently makes jumps
forward .on the axis where the size of the jump is geo-
metrically distributed with mean 1/8; (¢ = 1,2) The
amount. of real time between jumps is a geometri-
cally distributed number of time slots with parame-
ter a; (i = 1,2). After process i makes an advance
along the axis, it will send a message to the other
process with probability ¢; (¢ = 1,2). Upon receiv-
ing a message from the other (sending) process, this

(receiving) process will do the following:

Case 1: If its position along the x-axis is equal to
or behind the sending process, it will ignore the
message. {

Case 2: If it is ahead of the sending process, it will
immediately move back (i.e., “rollback”) along
the x-axis to the current position of the sending
process. , ’

Let F(t)= the position of the First process (pro-
cess one) at time ¢ and let S(¢)= the position of the

Second process (process two) at time ¢. Further, let

D(t) = F(t) - S(t).



D(t) = F(t;)-S (%)
(D) >0)

D(t2) = F(t2) - S ()
(D()<0)

Figure 1: States of two processors at times ¢; and 2.

D(t) = 0 whenever Case 2 occurs (i.e., a rollback).
We are interested in studying the Markov process
D(t). From our assumptions that F(0) = S(0) = 0,
we have D(0) = 0. Clearly, D(t) can take on any
integer value (i.e., it certainly can go negative, see
Figure 1). We will solve for

P = tlir&P[D(t):k] k=0,1,2;..
ngio= tlirg)P[D(t):—k] k=123, ...

namely, the equilibrium probability for the Markov
chain D(t). Moreover, we will find the speedup with
which the computation proceeds when using two pro-
cessors relative to the use of a single processor.
This is a simple model of the Time Warp dis-
tributed simulation algorithm where two processors
are both working on a simulation job in an effort to
speed it up. They both proceed independently until
such time as one (behind) process transmits a mes-
sage in the “past” of the other (ahead) process. This
causes the faster process to “rollback” to the point
where the slower process is located, after which they
advance independently again until the next rollback,
etc. The interpretation of the model is that the po-
sition of each process on the axis is the value of the
local clock (or virtual time of the message being pro-
cessed) of each process. The amount of real time
to execute a particular event is modelled by the geo-
metric distribution of time slots between jumps. The
jumps in virtual time indicate the increase in the vir-
tual timestamp from one event to the next. Messages
passed between processors (with probability ¢;) have
virtual time stamps equal to the virtual time of the
sending process. Our model assumes that states are
stored after every event, otherwise a rollback would
not necessarily send the processor back to the time of
the tardy message; rather it might have to roll back
to a much earlier time, namely, that of the last saved

state. Another implicit assumption is that each pro-
cess always schedules events for itself. Finally, the
interaction between the processes is probabilistic.

3 Discrete Time, Discrete
State Analysis

In this section we provide the exact solution for the
discrete time, discrete state model introduced in Sec-
tion 2. Although, as we proceed, the equations may
look formidable, the analysis is quite straightforward.
First, we provide some definitions.

P[i*? processor advances in a time slot]

a; =
@ = 1—o;
A; = ajay (Only proc. 1 advances)
Ay = asa; (Only proc. 2 advances)
As = ajay (Both advance)
Ay = w@ja; (Neither advance)
gi = P[processor 1 advances j units]
= BBT(>0) (Bi=1-8)
fi = P|[processor 2 advances j units]
= BB T (>0 (B=1-4)
v = P[procs. 1 and 2 advance the same dist.]
sy
1- 5,8,
¢ = P[i proc. sends a message]
G = l-g

Since the transitions in our system are quite com-
plex (there are an infinite number of transitions into
and out of each state) we choose to show the state
diagram only for a simplified version of our system
where ) = B2 = 1in Figure 2. This is the case where



From every state Ny

From every state Pk

Figure 2: State Diagram for f; = B, = 1.

the processors only make jumps of a single step (from e =
k to k +1). po=1-3 pi=) .
The balance equations for our completely general ) e
system (no restrictions on f;) are: Bylusmg tlhe tlecl;mque of (zi-transéc‘),rms wl,ve are a.t;,le
_ o to solve explicitly for pr and n;. We only give the
(A1 + 42+ 4s((1-7) + 07))Pe = results here; the full analysis will be found in a forth-
coming paper [4].
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ap £ 1/bp* — dape,

(7’1,7‘2)= 2%
ap = A1+ By(Az+ As)
by = —((A1+ A2+ A3)(1+B,B,) + A151 B,

+B275(A2B; — Aspr))
cp = EZ(AI + Az + A3) + A2ﬁ272

a, + \/b,,i —4ay,cy,

(81, 82) = 2

an = A+ Bz(Al + As)

bo = —((A1+ Az + A3)(1 + B,B,) + A28,
+817,(A18; — A3fz))

cn = PBi(A1+ Az + As) + A1 BT,

4 Performance Measures

With the complete solution to the Markov chain in
hand, we calculate several interesting quantities. The
first is K; which is defined as the average distance
that processor i is ahead of the other. This measure
is useful in getting a fix on the number of states which
will need to be saved on average.

Ky = Zkl’k+0 an—— por;2
Ky = ank+0 Zpk npo;)12

Since the average size of a state jump at processor i
is 1/f; then average number state buffers needed at
processor % is K;f3;.

Another useful measure, ©}, is the probability that
processor one is ahead of processor two by more than
b units. This measure is exactly the probability that
a fixed size state buffer of size b at processor one
overflows if ;1 = 83 = 1 (if only single steps forward
are allowed).

[ee]
Z Pk

k=b+1

of =

A similar (symmetric) value, ©Z, can be found for
processor two. The quantity of most interest though
is speedup, and we calculate its value in the next
section.

4.1 Speedup

Using the formulas for p; and n; we can calculate
the speedup S when using two processors versus us-
ing only one. S is simply the rate of virtual time
progress per real time step when using two processors
(R2) divided by the rate of progress when using only
one processor (Rl) The rate of forward progress for
one processor is defined simply as the average rate of
progress of the two processes
o o
R, = ——F'L > E’z

2
The rate of forward progress for two processors is the
expected “unfettered” progress (without rollbacks)
per time step minus the expected rollback distance
per time step for the two processors.
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As with the p; calculation we omit the derivation
of the following result. Combining all the terms to-
gether we find the formula for speedup.
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5 Limiting Behavior

The reason we chose to use a discrete time, discrete
state (DD) model was to allow ourselves to take lim-
its on the @ and @ parameters thus creating mod-
els which are continuous in time and state (whereby
geometric distributions become exponential distribu-
tions). We omit the actual formulae here due to
space considerations; see [4] for the full details.

We can transform our model into a continuous
time, discrete state (CD) model by taking the limit
as a1 and a3 — 0 while keeping the ratio 31 constant
and defining ZT:-LA? = a. We can take the limit either
on the p; equations or on our formula for speedup.

Alternatively, we create a discrete time, continuous
state (DC) model by taking the limit as 3; and B, —
0 while keeping g:- = b. We find the value for speedup
by taking limits on the speedup formula calculated
for the discrete time, discrete state model.

Finally, we can solve a continuous time, continuous
state (CC) model by taking limits on a; and 5; si-
multaneously. This can be done either by going first
to the CD (a4) or DC (B;) model from DD, and then
finishing by taking limits on the other variable.

5.1 Previous Work on 2-Processor
Models

There has been some similar work on two-processor
Time Warp models. Lavenberg, Muntz and Samadi
[5] used a continuous time, continuous state model
to solve for the speedup (S) of two processors over
one processor. Their work resulted in an approxima-
tion for S which was valid only for 0 < ¢; < 0.05.
Remember that ¢; is the interaction parameter; the
probability that processor i will send a message to

the other processor. Their result is only valid for
very weakly interacting processes. Our result for this
CC case has no restrictions on any of the parame-
ters and therefore subsumes their work. In fact, we
can compare our results directly for a simplified case
where a = 1/2 (same processing rate for both proces-
sors), b = 1 (same average jump in virtual time for
both) and.¢; = ¢; = ¢ (same probability of sending
a message), which is the completely symmetric case.
Lavenberg et al. derive the following approximation

for speedup:
SL ~2- /2.
Our equation for speedup in this restricted case is:

g= 416 +9)+(1+9vBFq)
Vi(2+9)(T+9) +vB+q(2+5¢+¢2)
If we expand this formula using a power series about
the point ¢ = 0 and list only the first few terms, we
see the essential difference between our result and
Lavenberg et al.

Sz2—\/2_q+%+0(q§)

This clearly shows that our result matches Lavenberg
et al. in the first two terms. We see that their result
is only accurate for very small values of ¢ as they
mention in their paper. Figure 3 shows the Laven-
berg et al. result and our result compared to simu-
lation with 99% confidence intervals.

20 == Our Calculation

“==* Lavenberg et al
*  Simulation (99% conf)

Figure 3: Comparison of speedup results for a sim-
plified case.

Mitra and Mitrani [9] also solve a two-processor
model but use a discrete time, continuous state ap-
proach to solve for the distribution of the separation



between the two processors and the rate of progress
of the two processors. In the definition of their
model, a processor sends a message (with probabil-
ity ¢;) before advancing. Our model has a proces-
sor send a message after advancing. This difference
between the two models disappears in the calcula-
tion of the average rate of progress. Their solu-
tion allows a general continuous distribution for the
state jumps (virtual time), but requires (determinis-
tic) single steps for the discrete time. In our model
this is equivalent to setting @y = ag = 1. Since
our analysis only supports an exponential distribu-
tion for state changes, but their analysis doesn’t have
a distribution on time, neither model subsumes the
other.

Finally, the DD and CD models do not seem to
have appeared in the literature, although a simpli-
fied version of the CD model where 3, = 8, = 1
(a preliminary version of this work which only al-
lowed single-step state jumps) has been published by
Kleinrock([3] . Figure 4 shows how all of this work fits
together. The work discussed in this paper covers the
shaded region.

Figure 4: Previous work.

6 Results for a Restricted
Model

In order to better understand our results, we exam-
ine a restricted version of the CD model (i.e. the
model analyzed in [3]). In this less general model
we eliminate two variables by forcing the processors
to advance exactly one step each time they advance
(1 = B2 = 1). Again, we define ¢; as the inter-
action parameter; the probability that processor i

sends a message to the other processor. We also de-
fine a as the ratio 3‘1—?&-/\;: where A; is the rate for the
continuous time distribution for processor i (rate at
which messages are processed). Figure 5 shows the
speedup for the Symmetric case where ¢; = ¢ = q.

Figure 6 shows the speedup for the Balanced case

Figure 5: Speedup for the Symmetric case ¢; = ¢, =
q

where A; = Ay. Figure 7 shows the speedup for

Figure 6: Speedup for the Balanced case \; = Ay =
X

the extremely simplified Symmetric, Balanced case
where ¢; = g2 = ¢ and A; = Ay = A. For this special
case the formula for speedup is

4
S&= .
2+./4
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Figure 7: Speedup for the Symmetric, Balanced case
g1=¢g2=gqand A\; = Az = A.

6.1 Optimality Proofs

Using the simple model described above, we can
prove several results about optimality with respect
to the parameters of the system. We first show that
the speedup is monotonically decreasing in both ¢;
and ¢, the interaction parameters. We do this by
showing that '«9@:_1 is negative. First, a definition:

h(q1) = (1 — 4aag,).

If we differentiate S with respect to ¢q; we arrive
at the following formula

oS _
i (I)-(—(—l + 2a)? — 2a7@q; + (1 — 20)\/h(tI1)) ;

where ® is a non-negative function of ¢;,g2, and a.
In order to show that % is negative, we must

show that
— (=14 2a)? - 2aaq; + (1 — 2a)\/h(g1) <0. (4)

When a > % Equation 4 is trivially solved. Our
concern is in the range 0 < a < %, in which case our
condition becomes:

—(-1+ 2a)2 — 2aaq; + (1 — 2a)\/h(q1) <0

~(1 - 2a)v/h(g1) < 0

—(~1+2a)® - 2aagy
. 2
(—(—1 + 2a)” — 2aﬁq1) >

IA

Expanding and simplifying, our condition reduces

to
_ 4a%a%q,2 > 0.

Since a and @ and ¢; are all non-negative, the in-
equality holds. A similar (symmetric) proof for gs is
omitted here.

Optimization with respect to a is a little more dif-
ficult. When we differentiate S with respect to a we

(-1 - 20)/AGan)

get such a complicated formula that it is prohibitive
to solve for the optimum value of a. Fortunately,
by plotting S versus a, ¢; and ¢; we see that S is
unimodal and that the optimum value of a is 1/2
(A1 = A2). When we plug this value (@ = 1/2) into

%‘3— we see that the result is 0.

85 _2-(-T)m)+al-g) _,
daja=4 (1-79)(1-7,)

To show that this is a maximum we must show that
the second derivative is negative at a = 1/2. This is
not difficult, though we omit the equations here for
brevity. For the more general case, where the pro-
cessors are not restricted to single step advances, the
result that @ = 1/2 (A\; = A;) for optimal perfor-
mance generalizes to

3-\-1— = -/\—2 or b= —2

B P2 l-a
meaning that the average “unfettered” rate of
progress in virtual time for each processor should be
the same. For a fixed value of a the best perfor-
mance can be found when Equation 5 is true, and
overall best performance is found at ¢ = 1/2 with
Equation 5 holding true. Speedup is not constant
for a/b constant.

(%)

6.2 Adding a Cost for State Saving

One simple way of examining how state saving over-
head affects the performance of the system is to mod-
ify the value of R, the rate of progress on a single
processor. For example, if we examine the CD model
with the single step restriction (as above) we arrive
at the following value for R;.

C(Al + /\2)
2

The parameter ¢ (¢ > 1) indicates how much faster
events are executed without state saving. If ¢ = 2
state saving doubles the amount of time it takes to
process an event. For the CD model we find that
the new formula for speedup is simply 1/c times the
old value. Let us examine a very simple case in de-
tail. If we look at the Symmetric, Balanced case, the
updated formula for speedup is

4
5= @+

It is easy to see that as ¢ — oo speedup will go
to zero. We are most concerned with the boundary
where S = 1 which is the transition from areas where
TW on two processors helps to where it hurts. Set-
ting S = 1 and solving for ¢ we find the necessary

R1=



condition for two processors running TW to be faster
than only one.
4(2 - ¢)?
2

For ¢ > 2 TW with two processors is always worse
than running on one processor without TW. Con-
versely, for ¢ < 4/3 TW wins out. The interesting
range is where 4/3 < ¢ < 2. In this range, certain
values of ¢ will yield speedup, while others won’t.
Figure 8 shows the regions in the ¢ — ¢ plane where
TW on two processors is effective and where it is not.
Thus, if we know the values of both ¢ and ¢ for our
Symmetric, Balanced system we can immediately tell
whether we can speed up the application by running
it under Time Warp on two processors.

¢ <

10
Single P Faster

2 08 (Speedup <1)
K
s 0.6
]
T 04
g
_‘3 2 Proc. TW Faster

0.2 (Speedup > 1)

0.0 !

1.00 12§ 1.50 17§ 200

Cost of State Saving
(c)

Figure 8: Cost for state saving and it’s effect on per-
formance.

7 Future Work and
Conclusions

There are several avenues to follow for future work.
One is to add message queueing to our model. Cur-
rently any message that arrives in the future is ig-
nored. This is unrealistic since the messages in TW
actually carry some work. Another addition would
be to charge some cost for rollback. In the present
model, rollbacks are free and therefore there is no
penalty for speculative computing. We have ex-
act solutions for models that address these concerns
and they will appear in a future work [1]. We also
would like to extend the model to accommodate more
than two processors. Certainly, an exact Markov
chain analysis will quickly become intractable. We
are currently investigating extensions of our present
model to many processors without using a compli-
cated Markov chain approach.

In this paper we have presented a model for two
processor  Time Warp execution and provided the
results of its exact solution. The model is general
enough to subsume the work of Lavenberg, Muntz
and Samadi [5] and to partially subsume the work
of Mitra and Mitrani [9]. Further, we examined a
simplified version of our model and showed for op-
timal performance that the processors should send
as few messages as possible and that their indepen-
dent rates of progress in virtual time should be the
same. Finally, we addressed the cost of state saving
and it’s effect on performance. Large state saving
costs or frequent message interactions indicate that
TW is ineffective in gaining speedup. The detailed
analysis of our model and logical generalizations to
it will appear in future works [4][1].
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