*
ARPANET LESSONS

Leonard Kleinrock
Computer Science Department
University of California
Los Angeles, California 90024

ABSTRACT

Flow control is an essential function in computer
networks but it is beset with subtle dangers. The
ARPANET has taught us many lessons in this regard, some
of which we discuss in this paper. Specifically, we
identify and expose a number of deadlocks and degrada-
tions and then present the remedy to these traps as
implemented in the ARPANET.

1. INTRODUCTION

The ARPANET experience has had an enormous impact
on data communications throughout the world. Indeed
the ARPANET was not only a breakthrough in its demon-
stration of the effectiveness of packet switching for
data communicati'ons but it was also unique (in the
"buy now and think later' computer industry) in that
considerable effort was put forth in careful analysis
and measurement during its growth and development. And
yet, in spite of this effort, we were surprised at the
occurrence of a number of deadlocks, degradations and
traps which lay waiting for us as we delved deeper into
the network design. It is our purpose in this paper to
discuss these events, to collect them in one place, and
to draw what lessons we can from the ARPANET experience.

By its very nature this type of paper is rather
easy to write; it is always simple to discuss weak
points of a system's operation after they manifest
themselves. Indeed we will dwell on the shortcomings
rather than on the strong points of the ARPANET. The
reader is cautioned not to take this as criticism of
the ARPANET, but rather as a constructive attempt to
emphasize what can be learned from an experiment such
as this. Without such honest evaluation and documenta-
tion (which has been the hallmark of the ARPANET devel-
opment) we would have been unable to achieve the mature
design technology and system development which we
believe the ARPANET has provided. Indeed the ARPANET
experiment has been an enormous success; it functions
very well as a sophisticated communications:service for
the majority of its users for the mi#jority of the time.

It is appropriate in this introduction to provide a
thumbnail sketch of the background which led to the
creation of the ARPANET. In the early 1960's Lawrence
:G. Roberts participated in an experiment whereby a
computer at System Development Corporation in Santa
M?nica,California was accessed over a leased line from
Lincoln Laboratory in Lexington, Massachusetts. Larry
Was so motivated by that experiment that when he came
"t9 the Advanced Research Projects Agency (ARPA) Informa-
3 tlog ?rocessing Techniques group some few years later,
€ Initiated the development of a modern data communica-
tions network using a technique which was later to be
OWn as '"packet switching''. In 1967 he gathered
:°“8h1Y a dozen ARPA contractors and discussed the con-
‘:gt of a packet switching network with us. Our task
3 to create a specification that would then become a
‘Auest For Proposal which would then go out for com-

titive bid +o industry. This network was to provide a

i
S research was supported by the Advanced Research

=t:Cts Agency of the Department of Defense under
aCt DAHC 15-73-C-0368.

20-1

means for sharing the computer resources of the many
ARPA contractors and interested government agencies.

We were keenly aware that, in order to provide an
acceptable service, the network itself should demand
very little from existing computer facilities and their
users; our design reflected this in our attempt to con-
nect to these systems in a non-interfering way. Among
those gathered at this meeting was Professor Mel Pirtle
of Berkeley who had the foresight to bang his fist on
the table and insist that if the network could not
provide an end-to-end response time of less than one-
half second for short character strings, then it would
be unable to support remote interactive use of its
resources! We agreed, and so it is - the ARPANET is
designed to respond to short messages in less than two-
tenths of a second, and our measurements indicate that
it easily beats this goal and provides extremely effec-
tive interactive use in a friendly online environment.
In all major respects, however, the driving force
behind the ARPANET was clearly Larry Roberts and to him
goes the major credit for its development. The final
specification was created early in 1968, the Request
For Proposal then went out and bids were received.
Early in 1969 the contract was awarded to Bolt, Beranek
and Newman (BBN) and in September of 1969 the first
switching computer (now well-known as the IMP) was
installed at UCLA to form a one-node network! The rest
is well-documented history bringing us to the present
configuration which is approximately a 55-node network
with three satellite channels spanning one and one-half
oceans. The reader is referred to [5] for more details
regarding the growth of the ARPANET, its functional
description, its design technology, and its analytical
and measured performance.

A computer network may be thought of as a collec-
tion of resources (switches, circuits, and processing
facilities and programs), a flow of data and messages
through the network, and a set of operating rules
managing that flow through the hardware elements. We
expect unusual user behavior and shall not dwell fur-
ther on that subject [2]. However physical failures
and software surprises cause problems which require
special attention. For example, a hardware failure can
(and did once) cause an IMP to claim it was some other
IMP; havoc ensued momentarily. In another instance
one IMP claimed it had zero-delay paths to all other
IMPs thereby attracting (and absorbing!) vast quanti-
ties of network traffic; again this was a (memory)
hardware failure. To remedy such situations one merely
makes the hardware reliable and provides some safe-
guards against such failures. Of more interest are
the software surprises, and it is these which form the
subject of this paper. The culprit, in most cases,
turns out to be the flow control procedure. Much of
what we say has been published in bits and pieces pre-
viously [1, 3, 7]; this paper summarizes a number of
lessons we have learned from the ARPANET experience
(the reader is once again referred to [5] for a far
more complete treatment of these and many other issues).

2. PHILOSOPHY OF FLOW CONTROL

It is not our purpose here to describe the details
of the ARPANET flow control procedure. Rather we wish

to address some of those issues which are inherent to
flow control and which are capable of causing problems
if not handled properly. Basically, a flow control
procedure is one which judiciously allocates finite-
capacity resources in a communications interchange.

Its purpose is to prevent congestion while at the same
time maintaining an efficient movement of traffic. If
a flow control procedure is not properly designed, then
rather than streamlining the flow, it may lead to lock-
up or deadlock conditions, which are among the most
serious system malfunctions that can occur in a compu-
ter system or computer network. The ARPANET flow con-
trol has gone through three versions in an attempt to
provide efficient and safe data flow. In the following
two sections, we will describe only those details of
each version sufficient to characterize the lesson
involved in each.

Efficient resource sharing is the goal! The fi-
nite-capacity resources we have in mind include: buf-
fer storage capacity for packets in transit as well as
at the source and destination nodes; communication
channel capacity; switch processing capacity; and stor-
age space in various system tables. This allocation of
resources must be sensitive to the dynamics of the sys-
tem and to the user needs. In addition, the ARPANET
guarantees that the order in which data enters the net
during a process-to-process communication will be the
same order in which that data leaves the network, there-
by guaranteeing an orderly sequencing of packets and
messages at the boundaries of the network. Whereas some
disagreement exists regarding whether all process-to-
process communication should be restricted to sequential
flow, it certainly is reasonable that a network should
be in a position to provide such a function if reques-
ted. This innocent function of sequencing brings with
it the potential for deadlock! In fact, any constraint
on delivery of data is a potential deadlock since if the
constraint (e.g., proper sequencing) cannot be met, then
the flow ceases, thereby deadlocking that flow and pos-
sibly deadlocking other flows due to system resources
which have been captured and which may not be releasable
by that flow. Another reasonable guarantee from a net-
work is the delivery of all traffic which is accepted
(i.e.,no lost messages) ; similarly, one ordinarily
requires that no duplicate messages be delivered.* In
a sense we are on the horns of a dilemma naturally being
led into constrained flow for prudent reasons and then
being dragged down into quagmired flow due to lockups
and serious degradations if we are not careful. The
ARPANET has served us well in identifying a class of
flow control problems and in finding and implementing
solutions to many of them.

In the following section we describe some of the
deadlock situations we have encountered along with their
solutions and in Section 4 we discuss degradations (as
opposed to deadlocks) to data flow.

5. DEADLOCKS AND THEIR REMEDIES

A deadlock (also known as a lockup) is a condition
in which processes competing for resources cannot pro-
ceed due to an improper allocation of these resources
among these processes. A simple example is the case of
two processes, say P; and P,, competing for two resour-
ces, say A and B. Assume that P1 has been assigned re-
source A and that P, has been assigned B. Further as-
sume that neither pTocess can proceed if it is not allo-
cated both resources A and B simultaneously. It is
clear in this situation that neither process P1 nor P

2

e 3
In facrt, however, one can tay a traffic stream as one
which demands neither orderly delivery nor complete
delivery of all the offered traffic. See below.

can proceed and this deadlock will persist forever
unless some supervisory action is taken to remedy the
situation. Most deadlocks are no more complicated than
this example; however, these simple conditions are
usually not easily recognized when they are deeply
embedded in a sophisticated flow control procedure.
However, it is fortunate that once these logical flaws
are uncovered, they are easily removed.

In this section we shall discuss four ARPANET
deadlocks which have come to be known as: reassembly
deadlock; store-and-forward deadlock; the Christmas
lockup; and piggyback lockup.

Reassembly lockup, the most famous of the ARPANET
deadlock conditions, was due to a logical flaw in the
original (version 1) flow control procedure. In the
ARPANET, a string of bits to be passed through the
network is broken into ''messages'' which are at most
approximately 8000 bits in length. These messages are
themselves broken into packets which are at most approx-
imately 1000 bits in length. A message requiring
more than one packet (up to a maximum of eight) is
termed a multipacket message and each of these packets
traverses the network independently; upon receipt at
the destination node, these packets are 'reassembled
into their original order and the message itself is
recomposed at which time it is ready for delivery out
of the network. (A more complete description of the
ARPANET protocols may be found in [5].) Reassembly
lockup occurred when partially reassembled messages
could not be completely reassembled since the network
through which the remaining packets had to traverse
was congested and this prevented these packets from
reaching the destination; that is, each of the des-
tination's neighbors had given all of their relay
(store-and-forward) buffers to additional packets (from
messages other than those being reassembled) heading
for that same destination and for which there were no
unassigned reassembly buffers available. Thus the des-
tination was surrounded by a barrier of blocked IMPs
which themselves could provide no store-and-forward
buffers for the needed outstanding packets and which
at the same time were prevented from releasing any of
their store-and-forward buffers since the destination
itself refused to accept these packets due to a lack of
reassembly buffers at the destination. The deadlock
was simply that the remaining packets could not reach
the destination and complete the reassembly until some
store-and-forward buffers became free, and the store-
and-forward buffers could not be released until the
remaining packets reached the destination. The impor-
tance of this reassembly lockup problem indicated the
need for a new flow control procedure within the ARPA-
NET (version 2) which reserved reassembly space for any
message before it was launched into the network. This
reservation procedure guaranteed that the necessary
resources (i.e., reassembly buffer space) would be
available for all arriving packets thereby preventing
the possibility of this lockup situation.

Store-and-forward lockup is another example of a
lockup that can occur in a packet-switched network if
no proper precautions are taken [1]. The case of
"direct" store-and-forward lockup can occur under the
following conditions. Let us assume that all store-and-
forward buffers in some IMP A are filled with packets
headed toward some destination IMP C through a neighbor-
ing IMP B and that all store-and-forward buffers in IMP
B are filled with packets headed toward some destination
IMP D through IMP A. Since there is no store-and-for-
ward buffer space available in either IMP A or B, no
packet can be successfully transmitted between these
two IMPs and a deadlock situation results. The lesson
here is to make sure that not all of the store-and-
forward buffers can reside on a single output queue and

20-2

this is implemented in the ARPANET by restricting the
maximum length of any single output queue to be less
than the total collection of pooled store-and-forward
buffers. '"Indirect'" store-and-forward lockup can
occur when all the store-and-forward buffers in a loop
of IMPs become filled with packets all of which travel
in the same direction (clockwise or counter-clockwise),
and none of which are within one hop of their destina-
tion. Both store-and-forward lockup conditions are
remedied if, as in the ARPANET, more than one path
exists between all pairs of communicating IMPs.

In December, 1973, the dormant Christmas lockup
condition was brought to life. This lockup was
exposed by collecting measurement messages at UCLA
from all IMPs simultaneously. The Christmas lockup
occurred when these measurement messages arrived at
the UCLA IMP for which reassembly storage had been
allocated but for which no reassembly blocks had been
given (A reassembly block is a piece of storage used
in the actual process of reassembling packets back in-
to messages.) These messages had no way to locate
their allocated buffers since the pointer to an allo-
cated buffer is part of the reassembly block; as a
consequence, allocated buffers could never be used and
could never be freed! The difficulty was caused by
the system first allocating buffers before it was
assured that a reassembly block was available. To
avoid this kind of lockup, reassembly blocks are now
allocated along with the reassembly buffers for each
multipacket message in the ARPANET.

Piggyback lockup is a deadlock condition which was
identified by examining the flow control code and has,
as far as we know, never occurred. This lockup condi-
tion comes about due to an unfortunate combination of
intuitively reasonable goals implemented in the flow
control procedure. One of these goals, which we have
already mentioned, is to deliver messages to a destina-
tion in the same order that the source received them;
the source and destination in this particular case
refers to the source IMP and destination IMP, respec-
tively. The other innocent condition has to do with
the reservation of reassembly storage space at the
destination IMP which we have also discussed above.

In order to make this reservation procedure efficient,
it is reasonable that only the first multipacket mes-
sage of a long file transfer be required to make the
reservation and therefore version 2 of the ARPANET
flow control procedure maintained that reservation for
a given file transfer as long as successive multipac-
ket messages from that file were promptly received in
succession at the source IMP. We have now laid the
groundwork for piggyback lockup! Assume that there is
a maximum of eight reassembly buffers in each IMP; the
choice of eight is for simplicity, but the argument
works for any value. Let IMP A continually transmit
eight-packet messages (from some long file) to some
destination IMP B such that all eight reassembly buf-
fers in IMP B are used up by this transmission of
multipacket messages. If now, in the stream of eight-
packet messages, IMP A sends a single packet message
(not part of the file transfer) to destination IMP B,
it will generally not be accepted since there is no
reassembly buffer space available. (There may be a
free reassembly buffer if the single-packet message
just happens to arrive during the time when one of the
eight-packet messages is being transmitted to its
HOST). The single-packet message will therefore be
treated as a request for buffer allocation (these
requests are the mechanism by which reservations are
made) . This request will not be serviced before the
RFNM (an end-to-end acknowledgement from destination
to source) for the previous multipacket message has
been sent. At this time, however, all the free reas-
sembly buffers will immediately be allocated to the
next multipacket message in the file transfer for

efficient transmission as mentioned above; this alloca-
tion is said to be '"piggybacked" on the RFNM. In this
case, the eight-packet message from IMP A that arrives
later at IMP B (and which is stored in the eight buf-
fers) cannot be delivered to its destination HOST
because it is out of order. The single-packet message
that should be delivered next, however, will never reach
the destination IMP since there is no reassembly space
available and therefore its requested reservation can
never be serviced. Deadlock! A minor modification re-
moves the piggyback lockup as follows. The described
deadlock can only occur because single and multipacket
messages use the same pool of reassembly buffers. If

we set aside a single reassembly buffer (or one for

each destination HOST) that can be used only by single-
packet messages, this lockup condition which is due to
message sequencing cannot occur.

These various deadlock conditions are usually
quite easy to prevent once they are detected and under-
stood. The trick, however, is to expurgate all dead-
locks from the control mechanism ahead of time, either
by careful programming (a difficult task) or by some
automatic checking procedure (which may be as difficult
as proving the correctness of programs). On the other
hand, the deadlocks we have found in the ARPANET have
been eliminated, and, in so doing, we have come to
understand some of the dangers in flow control which
must be avoided.

4. DEGRADATIONS AND THEIR REMEDIES

A degradation is just that, namely, a reduction
in the network's level of performance. For our pur-
poses, we shall measure performance in terms of delay
and throughput. In the next four paragraphs, we dis-
cuss four sources of ARPANET degradation and their
remedies, namely: looping and hold-down in the routing
procedure; gaps in transmission; single-packet turbu-
lance; and phasing.

An efficient message routing procedure is an
essential ingredient for the successful operation of a
computer network. The function of a routing procedure
is to direct message traffic along paths within the
network in a fashion which avoids congestion. As opposed
to the flow control procedure which regulates how much
traffic enters the network, the routing procedure must
be ready to handle all traffic which the network accepts.
The ARPANET uses an adaptive routing procedure which
estimates delays in the network and routes traffic
according to these estimates. The principal feature of
this procedure is that it employs a distributed control
algorithm whereby no overall decision-making authority
is vested in some particular location. Rather, all
nodes make local routing decisions in a dynamic fashion.
Sepcifically, each node (say node n) keeps a routing
table, which is simply a directory with one entry per
destination in the net. This entry (say, for destina-
tion k) gives the name of the node to which node n will
route all traffic it receives which is destined for
node k. The entries in these tables are arrived at by
the exchange of estimates among neighboring nodes in
the network. A given node will route traffic to that
neighbor which it estimates will provide the shortest
delay in reaching the final destination. This neighbor-
to-neighbor updating is really carrying global routing
information. One of the successes of the ARPANET has
been to demonstrate that such a distributed routing con-
trol procedure is basically stable and can converge to
fairly efficient routes. It is reasonably responsive
to network nodal and channel failures, but more impor-
tant, it can automatically become aware of a new node
as soon as it is connected (or repaired and returned)
into the network. There is a cost for this adaptive
routing as discussed in [4] and this includes both the

20-3

overhead in maintaining the tables as well as the inter-
ference the updating causes to data traffic. It is
still not clear whether adaptive routing really pays
off or whether a fixed (or deterministic alternate)
routing procedure might not be more efficient [8, 91;
such a procedure would of course be Trequired to invoke
some special mechanism in the event of a link or nodal
failure and/or extreme noise or congestion somewhere in
the network. Indeed at any instant, an adaptive routing
procedure such as described above, appears as a fixed
routing procedure in the sense that between any given
source-destination IMP-pair, at most one path exists
along which the routing procedure permits the flow of
traffic. In fact, this brings us to a rather annoying
feature of distributed control adaptive routing pro-
cedures, namely, that no path at all may exist between
a source and destination IMP at certain times because
of looping in the routing procedure. Looping comes
about due to independent decisions made by separate
nodes which cause traffic to return to a previously
visited node. Of course, as in the ARPANET, any reason-
able adaptive routing procedure will detect these loops
(through the build-up of queues and delays perhaps) and
will then break the loop and guide the traffic on to

its destination. However, the occurrence of loops does
cause occasional large delays in the traffic flow and
in some applications this is quite unacceptable. It is
ironic that a remedy which was introduced to reduce the
occurrence of loops, in fact made them worse in the
sense that whereas they occurred less frequently, when
they did occur, they persisted for a longer time (some
small number of seconds). This remedy, known as 'hold-
down'', was such that a node could not update its routing
table if the change in the delay estimate sent to it by
a neighbor node exceeded some minimum threshold; the
philosophy here was that if some catastrophic event had
taken place to cause a threshold violation, then per-
haps it would be best to defer decisions until many of
the neighbors in the regicn of that catastrophe became
aware of its occurrence. As shown in [6], it was then
possible to cause a loop to be formed which itself was
"held-down''! Once recognized, these hold-down loops

can be prevented. A strictly loop-free routing algori-
thm is presented in [6].

The next degradation we wish to discuss is the
occurrence of gaps in the flow of traffic between a
source and destination. These gaps occur because a
source-destination pair (whether it be process-to-
process as in version 1, source-IMP-to-destination-IMP
as in version 2, or HOST-to-HOST as in version 3) is
limited in the number of messages in transit which the
network will allow. In version 3 the network permits up
to 8 messages in flight between any HOST-HOST pair. 1In
addition to a message number, each multipacket message
Mmust acquire two other network resources before its
transmission may begin; the first of these is a reserva-
tion of reassembly space at the destination IMP (the
reservation is identified by an allocate control message
which is referred to as an ALL) and the second resource
is an entry in what is known as the pending leader table
(PLT) which, among other things, stores data which is
used in constructing the header for each packet of a
multipacket message. Once a message has acquired these
three resources, it may then proceed through the net-
work. Any of the three may become limiting resources as
we discuss here and as we shall further discuss with
regard to phasing. Let us focus on the message number
limitation. Assume that the network will permit n mes-
mages in flight at a time. If n messages are in flight,
then the next one may not proceed until a RFNM is re-
turned back at the source IMP for any one of the n out-
standing messages. We now observe that if the round-trip
delay (i.e., the time required to send a message across
the network in the forward direction and to return its
RFNM in the reverse direction) is greater than the time

itltakes to feed the n messages into the network, then
the source will be blocked awaiting RFNMs to release
further messages. This clearly will introduce gaps in
the message flow Tresulting in a reduced throughput. In
a network as large as the ARPANET, such delays do exist
and, in fact, it has been observed in recent measure-
ments that when the path length exceeds 5 hops, then
gaps begin to develop. Of course the remedy for this
is to increase n (which we may be unwilling to do for
flow control considerations).

We now come to the issue of single packet turbu-
lance. The ARPANET was originally designed to handle
only two kinds of traffic: interactive traffic charac-
terized by short, bursty transmissions that require a
small network delay; and file transfers, which generally
are characterized by long sequences of multipacket mes-
sages that require a large network throughput. Both of
these traffic types require high reliability in the
sense that no data should be discarded by the network
nor should the network deliver duplicates of the same
data, and further, proper sequencing of the traffic is
required. However, a third type, real-time (stream)
traffic, has recently been recognized as a potential
candidate for transmission through a packet-switched
network. The throughput and delay requirements for
real-time traffic are quite different from the through-
put and delay requirements for interactive use or file
transfers. For the transmission of digitized speech,
for example, it is necessary to achieve a relatively
high throughput with small delay for small messages
since long messages result in long source delays (unac-
ceptable for speech). Real-time traffic is not nearly
as demanding in terms of reliability, however, and par-
ticularly in the case of digitized speech, we do permit
packets to be discarded by the network if they arrive
out of order. Indeed if we refer to Figure 1 we may
characterize these three traffic types on a very simple
diagram which is due to Dan Cohen of the Information
Sciences Institute in Los Angeles. In that figure, we
show three sides of a triangle, each one of which repre-
sents a desirable network property, namely, high relia-
bility, large throughput, and low delay.

FILE
TRANSFERS

LOW DELAY

STREAM
TRAFFIC

INTERACTIVE
TRAFFIC

Fig. 1. Network Properties and Traffic Types

more the property
If, for example,

The closer one is to a given side the
associated with that side is realized.
one requires low delay, then one must lie anywhere along
the base of the triangle; the diagram indicates that

one may then also achieve either one of the two other
network properties but not both. For example, if one
requires high reliability along with low delay, then

one moves to the lower left-hand corner of the triangle
which is exactly the requirement put forward by

20-4

active traffic; in particular, we see that inter-
e traffic will not achieve a large throughput (nor
require it ordinarily). If one chooses to lo-
cate at the apex of the triangle then one is asking
for a large throgghput algng with a hlgb reliability
which is the typical requirement of a file transfer,
and in this case we are willing to give up the low

. gelay and accept a large initial delay in that trans-
fer. Stream or real-time traffic finds itself in the
jower Tight-hand corner of the triangle requiring low
delay and large throughput but is willing to accept a
1ow reliability as mentioned above. We realize that
originally little effort was put forth to optimize the
transmission of stream traffic in the ARPANET. It was
nevertheless surprising to find that the observed
throughput for single-packet stream messages was in
many cases only about 1/4 of what one would expect.

To understand this, recall that single-packet messages
are not accepted by the destination IMP if they arrive
out of order. Rather, they are then treated as a
request for the allocation of one reassembly buffer.
Therefore if, in a stream of single-packet messages,
packet p arrives out-of-order, (say it arrives after
packet p+3), then packets p+l, p+2 and p+3 will all be
discarded at the destination IMP and only after packet
p arrives will ‘a single packet buffer be allocated to
message p+1. This allocation will piggyback on the
RFNM for packet p and when it arrives at the source
IMP, it will then cause a retransmission of the dis-
carded packet p+1 (which has been stored in the source
IMP). Of course any packets arriving at the destina-
tion after packet p+3, but before p+l arrives in order,
will themselves be discarded. When packet p+1 finally
arrives for the second time at the destination IMP it
is now in order and this will cause an allocation of

a single-packet buffer to packet p+2, etc. The net
result is that only one packet will be deliverable to
the destination per round-trip time along this path;
had no packets been received out-of-order, then we
would have been pumping at a rate close to n packets
per round-trip time (if the maximum number in transit,
n, could fit into the pipe). Observe that once a
single packet arrives out-of-order in this stream, then
the degradation from n to 1 packet per round-trip time
will persist forever until either some supervisory
action is taken or until the traffic stream ceases and
begins again from a fresh start in the future. We
refer to this effect as '"single packet turbulance' and
it was observed in the ARPANET as described in [7].

To remedy this single packet turbulance for stream
traffic, the ARPANET has introduced a new type of mes-
sage which in fact has no message number limitation,
does not require orderly delivery and does not require
complete delivery of all the traffic, i.e., out-of-
order packets may be discarded; with the relaxation of
these requirements, single packet turbulance immediate-
ly disappeared and now we are capable of supporting
packetized speech through the ARPANET.

jnteT
‘active
does 1t

The last degradation we wish to discuss is known
as ''phasing'. Phasing, a cause for throughput degra-
dation, is due to the sending of superfluous requests
for the reservation of reassembly space at the destina-
tion IMP; these requests are called REQALLs. A REQALL
is called superfluous if it is sent while a previous
REQALL is still outstanding. This situation can arise
if message i sends a REQALL but does not use the ALL
returned by this REQALL because it obtained its reas-
sembly buffer allocation piggybacked on a RFNM for an
earlier message (which reached the source IMP before
its requested ALL). The sending of superfluous REQALLs
is undesirable because it unnecessarily uses up re-
sources. Recall that each multipacket message requires
three resources to proceed and these are the message
number, an ALL, and a PLT entry. The problem with
phasing is that the three kinds of resources just men-
tioned do not all appear at the source IMP at the same

time and therefore an incoming message must wait until
it collects one of each kind of resource before pro-
ceeding. For example, in version 3 of the flow control
procedure, there are at most 8 message numbers between
a source and destination HOST, at most 4 ALL's availa-
ble from the destination IMP, and at most 6 PLT entries
at a source IMP. One would naturally conjecture that
the limiting resource is the ALL; this is not always
correct! A stable configuratior (and one that was ob-
served through measurement) is to have two messages in
transit between a source and destination IMP (each of
which contains a message number, a PLT and an ALL), to
have one RFNM on the way back from the destination to
the source IMP (which also contains these 3 resources)
and to have 3 RFNMs waiting in the destination IMP to
be returned to the source IMP as shown in Figure 2.

DESTINATION
REST OF IMP
SOURCE NET (\

IMP

[] messacE
@ RFNM FOR MESSAGE i

Fig. 2. The Effect of Phasing

Each of the RFNMs owns a message number and a PLT entry
(but has already released its ALL); the rub is that a
RFNM prefers not to be returned to a source IMP unless
it also piggybacks an ALL. From Figure 2 we see that
the RFNM for message i-4 will be launched in the re-
verse direction as soon as message i-1 arrives and re-
leases its ALL. The critical point is that message

i+l is waiting in the source IMP with two of its three
resources already acquired (namely, its message number
and its ALL) but has yet to receive its third resource
(a PLT). Although only 4 ALLs are available, we see
that 7 message numbers have been assigned, 4 of which
are attached to RFNMs and only 3 of which are attached
to messages. It is ironic that the ALL is not the limi-
tation at the source node, but rather the abundant PLT's
turn out to be the limiting resource in this case since
so many of them are piled up in the destination IMP at
the wrong end of the network! A similar (and worse
effect) occurs when fewer ALLs are permitted (see [3]).
There are two obvious ways to avoid this undesirable
phasing of messages. First, one can avoid sending
superfluous REQALLs that are the underlying cause for
the phasing. Second, one can avoid the piggybacking of
allocates on RFNMs as long as there are other replies
to be sent.

In this section we have succinctly described some
of the known degradations to the two performance
measures (delay and throughput) as observed and remedied
in the ARPANET.

S. CONCLUSIONS

In this paper we have seen that a necessary func-
tion for a computer network is to control the flow of
traffic at its entry points. This flow control not
only throttles traffic but also guarantees some end-to-

20-5

andisi

Ot

end responsibility in the form of proper ordering of
messages, detection and deletion of duplicates, and
prevention of lost messages. We have seen that these
very reasonable goals are capable of leading to dead-
locks and degradations in network performance. In

fact we have seen that any constraint put on the flow

of traffic is capable of producing deadlocks and degra-
dations since if the constraint cannot be met then a
deadlock will occur, whereas if the constraint is slow
in being met then a degradation will result. To avoid
these problems, one is forced to simplify the flow con-
trol functions as well as their implementation as far as
possible and, beyond that, to be on constant alert for
possible difficulties, both through measurement and
observation. Once 2 deadlock or degradation is discov-
ered we have seen how simple it is to remedy, as we
have done in the ARPANET. At this point in the develop-
ment of networks it is not clear to this author how one
can guarantee the absence of deadlocks and degradations
through a reliable and efficient test. Hopefully,
cleaner code and cleaner concepts of flow control will
enhance the ability to conduct such tests in the future.

REFERENCES

(1] Kahn, R.E. and W.R. Crowther, '"Flow Control in a
Resource Sharing Computer Network," Proceedings
of the Second IEEE Symposium on Problems in the
Optimization of Data Communications Systems, Palo
Alto, California, 108-116, October 1971.

(21 Kleinrock, L. and W.E. Naylor, "On Measured Behav-
jor of the ARPA Network,' AFIPS Conference Pro-
ceedings, 1974 National Computer Conference, Vol.43,
767-780, 1974.

[3] Kleinrock, L. and H. Opderbeck, "Throughput in the
ARPANET - Protocols and Measurement," Proceedings

of the Fourth Data Communications Symposium,
Quebec, Canada, 6-1 to 6-11,0ctober 1975.

[4] Kleinrock, L., W.E. Naylor, and H. Opderbeck, "A
Study of Line Overhead in the ARPANET," Communica-

tions of the Association for Computing Machinery,
Vol. 19, 3-13, January 1976.

[s] Kleinrock, L., Queueing Systems, Vol. 2: Computer
Agglications, Wiley Interscience (New York), 1976.

[6] Naylor, W.E., "A Loop-Free Adaptive Routing Algo-
rithm for Packet Switched Networks,' Proceedings
of the Fourth Data Communications Symposium,
Quebec, Canada, 7-9 to 7-14, October 1975.

[7] Opderbeck, H. and L. Kleinrock, 'The Influence of
Control Procedures on the Performance of Packet-
Switched Networks," pProceedings of the National
Telecommunications Conference, San Diego, Califor-
nia, December 1974.

[8] Price, W.L., nFurther Simulation Experiments on
Adaptive Routing Using Locally Available Parame-
ters," U.K. National Physical Laboratory, Division
of Computer Science, NPL Report COM 81, December
1975

[9] Rudin, H., "On Routing and npelta-Routing'': Tech-
niques for packet-Switched Networks,' Proceedings
of the IEEE International Conference on Communica-
Tions, San Francisco, California, 41-20 to 41-24,
June 16-18, 1975.

20-6

IEEE CATALOG NUMBER
76 CH 1085-0 CSCB

CONFERENCE RECORD

1976

INTERNATIONAL
CONFERENCE ON
COMMUNICATIONS

Volume II

COIT] munications .COI‘ nerstone O{: Freedom

ICC76 @ JUNE 14-16
PHILADELPHIA
PENNSYLVANIA

J-04

