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ABSTRACT 

To minimize the time for performing a gamma scan in nuclear medicine, optimum 
use must be made of the statistical data from the scan to control the time of observation 
at any given point. In the work described, the sequential sampling technique has been 
applied to the problem of proportioning observation time on the basis of observed 
counts. In the limit of both very high and very low count rates, advantage is taken of 
the rapid decision time afforded by the good statistics of high rates and the a priori 
rejection of areas exhibiting low rates. Areas of intermediate activity require longer 
times to obtain a statistically significant estimate of activity. In this scanning method, 
accumulated counts from a stationary sensor are compared with two (linearly) time- 
varying thresholds: upon crossing either threshold an intensity estimate is made 
(which may be binary) and the scan continued to the next point. This procedure is well 
known in sequential hypothesis testing and the theory developed is pertinent to the 
gamma scanning application. An analysis of the system as compared to a fixed observa- 
tion-time-in-scanning has been made. For a two-level detection system, with a given 
error probability and a given ratio of decay rate for a high-activity region to that for a 
low-activity region, it has been found that the average observation time for a variable 
threshold scanning is approximately half that for fixed-time scanning. 
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1. INTRODUCTION 

Many types of tumors can be detected by a measurement of the rate of 

radioisotope uptake (after an injection of a radioisotope tracer into the 

bloodstream), the rate being greater in the tumorous growth as compared 

to the surrounding normal tissue. A complete understanding of the 

mechanism of the selective pickup of a particular labeled molecule in any 

given tumor is not understood. Suffice to say for this writing that selective 

pickups in many types of brain tumors, eye lesions, and so on do occur, 

and that their presence in the tumor, after a predetermined time interval 

following the injection of the radioisotope, is positive indication of a 

malignancy. The location and geometrical distribution of the radioisotope 

pickup furnish definitive information concerning the nature, extent, and 

condition of any abnormality. 

If a beta-emitting isotope is employed, such as P32, it is necessary to 

insert a nuclear radiation detector in or near the tumor to determine the 

relative concentration of the isotope. This is because beta particles have 

a short range, several millimeters, in tissue. If information on the spatial 

distribution of the beta-emitting isotope is to be obtained, then the probe 

position must be inserted into the patient and transported throughout the 

volume of interest while plotting the relative concentration. Such a 

surgical procedure is only possible in a limited number of cases and is 

rarely desirable. 

If a gamma-emitting isotope is used, the detector may be placed outside 

the body, thus removing the need for surgical implementation. However, 

the use of collimators and other data-handling devices are required to 

determine the nature and the source of the radiation. 

These methods of tumor localization have been under investigation 

and development for the past two decades. For brain tumor detection, 

the methods may utilize P32, Ir31, Hg203, and other isotopes, which are 

selectively absorbed because of the disruption of the normal blood flow 

through the blood brain barrier. 

Gamma Scanning 

Gamma scanning is a method of visualizing the distribution of radio- 

active tracers, which have been selectively absorbed by the tumor, to 

assist in the visualization of the growth, so that more accurate diagnostic 

evaluation for treatment may be made. As an example of scanning, 
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consider a study of the condition of the thyroid gland and the I13i uptake 

in the gland tissue. Although this is not strictly a tumor localization 

problem, the techniques and methods are identical. 

As described by Blahd [l], the normal thyroid gland has a “butterfly” 

appearance. It weighs approximately 20 gm and its right lobe is usually 

larger than its left. The lobes are interconnected by an isthmus, but in 

some instances the isthmus may be entirely absent. In a patient suffering 
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FIG. 1. A scintigram of the normal thyroid. 

with hyperthyroidism the thyroid gland may be three or four times its 

normal size and its specific location is diffused. Figure 1 is a scintigram 

(i.e., the two-dimensional plot of the gamma scan) of the normal thyroid 

gland and Fig. 2 is a scintigram of a hyperthyroid gland. Each dot on the 

scintigram represents a given number of radiation counts in a collimated 

radiation detector. In those areas where the density of points is high, the 

nuclear radiation level is correspondingly high. Clearly, from such thyroid 

scintigrams, the physical size, location, and distribution of the thyroid 

gland may be ascertained. Thyroid nodules are quite common and are 

observed on scintigrams as rarified or nonfunctioning areas. Their 

existence usually denotes thyroid cancer, which means that they must be 

examined with care. Numerous other patterns of iodine uptake in the 

thyroid gland and elsewhere in the body are known that bear a one-to-one 

correspondence with human disorders. 

Although the technique of scanning has been thoroughly established 

in the practice of nuclear medicine, limitations have arisen with regard to 
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FIG. 2. A scintigram of a hyperthyroid gland. 

the speed with which a scan can be performed and the amount of quali- 

tative and quantitative detail that can be surmised. Both speed and spatial 

resolution require the use of greater concentrations of the radioisotope 

in order to provide a maximum statistical estimate of the count rate at 

each point in the field, and also because the aperture of the detection 

system must be minimized to provide the desired collimation to gain the 

required spatial resolution. This requirement is antagonistic to the desire 

to minimize the exposure of the patient to excessive radiation. Efforts 

at minimizing the dose, while maintaining picture quality and speed of 

scanning, have resulted in the use of larger scintillation crystals, efficient 

collimators, careful selection of the radioisotope to be employed, and 

improved procedures of data handling and data displays. In spite of the 

excellent results achieved in these areas, existing systems remain sub- 

optimal in terms of data utilization because of the uniform scanning speed 

that is universally employed. 

In those portions of the field in which intense concentration of the 

radioisotope exists, a good estimate of the concentration at any point can 

be obtained in a very short period of time. In gray areas, in which the 

concentration is less, more scanning time must be allocated in order to 

obtain sufficient statistical certainty in the level of activity. To acquire 

the same level of statistical accuracy in areas of very low activity, the time 

required to scan would be excessive. Thus, providing a uniform scan time 

that is determined by a uniform level of statistical accuracy is not desirable. 

If, however, in areas of low intensity levels, sufficient time were provided 
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to establish that a low-level intensity level indeed exists at one point, 

before passing on to the next point in the field, the scan procedure could 

be improved by reducing the scan time. This procedure has been for- 

malized in the mathematical theory of sequential sampling and has been 

applied successfully to problems of radar search, optimum sampling 

procedures for quality control, and other similar problems. Let us 

consider some of these applications to attain a better feel of the nature of 

the theory of sequential sampling before applying it to the subject at 

hand. 

Qualitatioe Descriptiorz of the Application of the Theory of Sequential 

Sampling 

Quality Control Problem 

In the quality control problem, by which we attempt to evaluate the 

properties of a large population by withdrawing samples and testing them, 

it is clearly desirable to use a minimum number of samples, both to 

minimize the amount of testing that must be done and to conserve the 

product being evaluated, since the testing process is frequently destructive. 

The proper sample size depends on the desired degree of confirmation of a 

given property of the population. As the requirement for assurance 

increases, the size of the test lot similarly increases, to the point where all 

units must be subjected to the test. If the test should be destructive, this 

is clearly catastrophic and impractical. For this reason, a process of 

sampling is adopted in which the size of the sample is adjusted for the 

desired degree of confirmation from an estimation of results obtained. 

For example, a lot of ten units may be tested. If no defective unit is 

found, a degree of confirmation of the quality of the population can be 

affirmed. If a certain number, say two, of these units tested are found to 

be defective, the lot can be rejected without further testing. However, a 

third alternative exists. If only one defective unit is discovered, the alter- 

native is to take another sample of, for example, ten units; since one 

defective unit in ten may not in this case convey sufficient information to 

warrant either accepting or rejecting the lot. The essence of sequential 

sampling is that each trial results in three, rather than two, possible 

alternatives. These are (1) accept; (2) reject; or (3) take another sample. 

In some quality control instances, the adoption of this method has resulted 

in a reduction, by a factor of ten, in the number of units tested to obtain a 

given degree of confirmation concerning the lot as a whole. 
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Radar Scanning 

In the radar scanning problem, the same principle is involved. If an 

antenna scans at a fast rate, targets will be lost or false alarms generated 

due to the insufficient time on target to integrate the echo to a value 

sufficiently above the noise. On the other hand, a scan that is excessively 

slow will permit fast-moving objects to pass out of the range of the radar 

without ever being detected. If it is necessary to choose a single scanning 

rate, we must choose an intermediate compromise that permits some lost 

targets from both lack of sufficient time on target or too much delay in 

scanning a given portion of the field. If, however, we scan in accordance 

with sequential sampling techniques, it is possible to enhance the target- 

detecting efficiency of the radar. The procedure is similar to the quality 

control problem. The radar antenna looks at a particular volume of 

space and integrates the signal obtained over a given period of time. If 

the integrated echo signal fails to exceed a certain threshold, the output is 

indicated as “no target” and the antenna moves on to another volume. 

On the other hand, if the signal exceeds a second threshold, which is 

higher, the volume of space is indicated as containing a target and again 

the antenna moves on to another volume. For those cases where the 

signals fail to cross either threshold, the antenna remains stationary until 

the integration process causes the signal level to cross either the upper or 

lower threshold. Thus again, a three-level decision is made: (1) yes, 

there is a target in the beam; (2) no, there is not a target in the beam; 

or (3) there is not sufficient information to make a decision, and therefore 

it is necessary to continue to observe. 

Radioiscope Scanning 

The application of this technique to the scanning of a gamma-emitting 

isotope is now clear. The detector is positioned at the first point to be 

observed and the counting rate applied to a three-level (two-threshold) 

system. If the counting rate is below a certain threshold, the detector is 

moved since this area can definitely be regarded as background. If the 

counting rate exceeds a higher threshold, the detector can likewise be 

moved to another position since the statistics accumulated are adequate 

to permit us to decide that an “intense” level exists. If neither of these 

thresholds is crossed, the detector remains stationary until sufficient 

statistics can be accumulated to enable us to estimate the intensity level of 

that area to the required accuracy; thus, the majority of the scanning time 
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is occupied in scanning the transition areas between intense and back- 

ground levels in an attempt to obtain better information where an imme- 

diate decision concerning the intensity cannot be inferred. The precise 

setting of the threshold levels and the criteria for proper statistics will, 

of course, be determined by a detailed study of the nature of the lesions, 

tumors, gland, and so forth being observed with some a priori knowledge 

concerning the types of patterns expected. Thus, these thresholds can be 

set to yield the maximum amount of information for the least scanning 

time. 

2. THE MODEL 

In order to analyze the performance of the proposed scanning method, 

it is necessary to formulate a precise mathematical model of the radio- 

active source. Once this is accomplished, any completely defined scheme 

for sampling the source can be evaluated and compared to other proposed 

schemes on the basis of their relative performance. 

Given a two-dimensional radioactive area that must be scanned, at 

any position (x, 1)) of this area there exists a radiation decay whose average 

number of counts per second is 2(x, y). It is assumed that the half life 

of the source of this radiation is significantly longer than the duration of 

any scanning method it is proposed to analyze. It is well known [2, 31 

that a radioactive decay source is accurately represented by a Poisson 

process with stationary independent increments. (The stationarity here 

comes from the assumption of the long half life to scanning time ratio.) 

This representation allows us to state that the probability P(n, r) that the 

source at position (x, _y) generates n decays in a time interval of T seconds 

is 

P(n, T) = vr exp(-A(.u, y)T). 
n. 

Thus the expected number of counts in T seconds is just A(.x, y)T. 

The purpose of any scanning procedure is to determine the continuous 

two-dimensional intensity function 2(x, v). This, however, is overly 

ambitious and it usually suffices to present an array of values of 2(x, y) 

at the NM points (x,,y,) where x, takes on the values xi, x2, . . . , _Y.\ 
and ynz takes on the values y,,y2, . . . ,yAtf. We are then faced with the 

problem of devising methods for finding A(xn, y,). In Section 3, a 

number of such methods are described, and in Sections 4 and 5 they are 

compared to the performance of the more interesting of these. It is 

31 
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recognized that jl(x,, y,) (hereafter referred to as il for convenience) can 

take on a continuum of values; clearly, it is sufficient for any practical 

purpose to quantize this continuum into a discrete set of L allowable 

values ii,, jl,, . . . , ii, where ii, < AZ < . . . < I,. Such a quantized 

system is referred to as a multilevel scanning system (indeed, an L-ary 

system). In order to present the results of an L-ary scanning system, 

we may print one of L gray levels at each point (x,, y,) on a two-dimen- 

sional plot. In order to determine the exact gray level at any point, a 

fairly careful measurement of 1, must be made at each point if L is 

reasonably large; this then involves a fairly long scanning time per point. 

On the other hand, if L is rather small, the accuracy of representation 

of 1 will be less, but so also will be the required scan time. Indeed, if L 

is taken to be L = 2, the crudest possible quantization is obtained, as 

well as the shortest scan time per point; such a system is referred to as 

a hinary scanning system. In the binary case, only black and white 

coloring appears at each point; however, the two-dimensional function 

1(x,, y,) will nevertheless appear to take on gray tones due to the varying 

density of black points, not unlike the gray levels that are produced in 

newspapers using halftone photographs. The quality of a picture pro- 

duced with a binary scanning system can be made rather high by increasing 

the density of points looked at (i.e., by increasing N and M); in so doing, 

of course, we pay the price of increasing the total scan time. In Section 3 

various multilevel and binary (L = 2) scanning systems are described and 

their relative advantages and disadvantages discussed. 

Because of the essential simplicity of the mathematics and implemen- 

tation of a binary scanning method, an analysis of the system with L = 2 

will be made. In Section 4, an analysis of a binary fixed-time scanning 

system is carried out, and a binary threshold scanning system is analyzed 

in Section 5. The model in both of these systems is that of a binary source, 

which is now to be described. 

The binary system L = 2 quantizes all possible radiation intensities J. 

into two allowed levels 2, and 2, (2, < 1,). Specifically, as shown in Fig. 

3, the quantizer output is A1 for all input radiation intensities il < R, 

and the output is ;i, for all I > i, where L, is the critical input intensity. 

An extensive theory of sequential hypothesis testing has been developed 

[5] that is applicable to the problem at hand. The assumption usually 

made in that theory is that one of two mutually exclusive hypotheses HI 

or Hz is true. The goal is to sample the process being tested until a 

sufficiently reliable estimate is obtained as to which of the hypotheses is 
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FIG. 3. Binary quantizer. 

true. Applying this theory to our problem, it is seen that a suitable prob- 

lem formulation is one in which it is assumed that each radiation intensity 

A(x,, y,) can take on only one of two values, ;1, or &; that is, the 

hypotheses are HI and H, where 

H, is the hypothesis that 1 = il,, 

H, is the hypothesis that 1 = &. 

Observe that the binary quantizer model is distinctly different from this 

two-hypothesis model in that the latter allows 1, to take on only one of two 

levels (2, or 2,) and the former allows 1 to take on a continuum of levels 

and then maps (quantizes) this continuum into one of two levels. The 

two-hypothesis theory is so appealing in its mathematical tractability, 

however, that it is advisable to accept it for this analysis, recognizing that 

it is only a gross simplification of the true state of affairs. Nevertheless, 

it is felt that the adoption of such a model allows precise mathematical 

results to be obtained, which then provide a basis for understanding and 

comparing scanning procedures. In Sections 4 and 5, a discussion is 

presented of the effect of using the results of the two-hypothesis model in a 

situation where there exists a continuum of values for 1. In particular, 

there is a discussion of a “transfer function” that describes the probability 

of printing a black spot (i.e., deciding on hypothesis H,) when the true 

radiation intensity is some real number 1. 

Let us summarize the assumptions that have been made in arriving 

at a precise model of the two-dimensional radioactive source n(x, _JJ): 
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1. The space-continuous distribution 2(x, JJ) is approximated by 

a space-discrete distribution /I(s,,,v,~) where X, = sl, .yZ, . . . , xiv and 

.11111 = Y121'21 . . . > Yx. 

2. The half life of each radiation intensity 31(,~,,,y,,) is assumed to 

be significantly longer than the duration of the scanning methods. 

3. Each radiation source at (s,,, jl,,) is assumed to generate a sequence 

of decay particles that may be described by a Poisson process with an 

average of 3,(x,, y,) counts per second. 

In Section 3 there are described multilevel and two-level scanning 

methods using assumptions I, 2, and 3. Furthermore, in Sections 4 and 

5 there are analyzed some binary (two-level) systems; for these analyses 

the following additional assumption is made. 

4. Each 1.(x,, JJ,J is assumed to take on one of the two values I1 or I:, 

(2, < &J. 

As mentioned earlier, consideration is given to the effect of assumption 

4 on the performance of the binary scanning methods in the analysis. 

3. MAPPING OF RADIATION LEVELS 

The problems associated with the mapping of the radiation level in 

a body can be described with the aid of Figs. 4 and 5. Let Fig. 4 represent 

the one-dimensional distribution of radioactivity in a body. The device 

for measuring the radioactivity at a particular point, say x, in the body will 

generally consist of a radiation detector, which detects the decay of 

radioactive particles; a counting system, which counts the number of 

decays; and a decision element, which interprets the counter output and 

translates it into a radioactivity level. The block diagram of such a 

system is shown in Fig. 5. 

Suppose that the counter has been set to zero and the radiation 

detector has been positioned over the point x1 as indicated in Fig. 4. The 

number of radioactive decays is counted (for either a fixed or variable 

time) and translated into a radioactivity level by the decision element. 

The counter is then reset to zero, the radiation detector moved to a new 

point, say x.,, and the radioactivity level at this point is measured. The 

device continues until the radioactivity levels at all positions are measured. 

Apparently, the ideal measurement device would exactly reproduce the 

curve in Fig. 4; however, because of the probabilistic nature of radio- 

active decay, such a device is impossible to construct. The relationship 
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t 

Radioactivity Level 

FIG. 4. One-dimensional distribution of radioactivity. 

between the radioactivity level at a point and the measured level is then 

best represented in a probabilistic manner. The nature of this repre- 

sentation is completely determined by the decision element, and this 

representation dictates the design of the decision element. 

The output of the counting device is a Poisson process [2, 31 whose 

expected rate depends on the radioactivity level at the particular point in 

the body being examined. The decision element examines the Poisson 

process (i.e., counter output) and assigns to it an estimate of the radio- 

activity level. There are six basic methods by which this assignment 

Detector Element 

(Scintillator Plus 
Photodetector) 

Frc. 5. Radioactivity measuring system. 

Muthemutical Biosciences 4 (1969), 499-530 



510 HENRY S. KATZENSTEIN ef al. 

might be made. Other techniques as well as hybrid combinations of 

these six will now be discussed. 

Multilevel Decision Elements (Quantizers) 

The first class of decision elements are quantizers of the multilevel 

type. It is apparent from Fig. 4 that there is a continuum of radioactivity 

levels. From an engineering standpoint, distinguishing between all of 

these levels is impractical. For this reason, it is best to consider only 

discrete levels of radioactivity. That is, all activity levels I. that lie in the 

Typical Counter 

T Time t 

FIG. 6. Fixed-time decision element. 

interval ii < 3, < 3.,+1 (where & and &+, are fixed levels) are assumed to 

be at level (;ii + &+,)/2. Theoretically, this discrete approximation to 

the continuous curve can be made as close as desired by increasing the 

number of levels. 

Consider a fixed-time multilevel decision element. The characteristics 

of such a device can be explained with the aid of Fig. 6. Consider a 

position x in the body with an average radiation level of 1 decays per 

second (Poisson process). A count of radioactive decays is made by the 

counter for a fixed period of time T. The output of the counter at time T, 

say z*, will lie in some interval zi Q z* < z+~. Let 1 be the discrete 

output of the decision element, which is considered to estimate /I (the 

number of counts or decays per second for the position being examined). 
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Choose a (given zi < z* < zi+J as 

511 

IL = zi+l + zi 

2T 

(a is, of course, only an estimate of the true value A). 

Having obtained a value of 1 for each point in the body, it is then 

possible to construct a picture of the distribution of radioactivity. This 

may be done by assigning to each fl a shade of gray. Corresponding to 

counter 
output 

z* 

t 
Tl Tz TX T4 T5 T6 T7 

Typical Counter Output 

FIG. 7. Fixed-count decision elements. 

each point in the body, a spot may be made on a flat recording surface 

with the color gray corresponding to the estimate fl in the body at that 

position. The result is, of course, a “picture” of the radiation level. 

The two disadvantages of this scheme are (1) a fixed time is used to 

distinguish the radioactivity level at every point (a significant saving in 

time can be had by making the time interval variable, as in the multilevel 

threshold technique described subsequently); and (2) it is generally 

difficult to maintain the various decision levels zi using simple electronic 

equipment (i.e., if several levels zi are used, the loss of accuracy due to 

drift may be a problem). 

A jixed-count multilevel decision technique, which is similar to the 

preceding one, can be described by Fig. 7. In this technique the Poisson 

process at a point x is monitored until its count exceeds a given level z* 
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This takes place at some time T where, for a given set of Ti, Ti < T < 

ri-11. The estimate j of the expected decay rate ;1 is then determined as 

As in the fixed-time technique, 1 is a random variable and gives only an 

estimate of the radioactivity level A at the point. Generation of a picture 

from these measurements would be the same as for the fixed-time tech- 

nique. The disadvantages of this technique are (1) several decision levels 

A 
counter 
output 

Threshold 

c 
Time 

FIG. 8. Multilevel threshold decision element. 

(in time) must be maintained without significant drift; and (2) a very 

large amount of time might be spent in waiting for the counter outputs to 

exceed z* (radioactivity levels corresponding perhaps to a low background 

level would take a long time to exceed z*). 

The third multilevel decision element, a threshold device, can be 

described with the aid of Fig. 8. The “picture” of the radioactivity level 

in the body again would be produced by printing spots with various shades 

of gray, which represent measured radioactivity levels. Two thresholds 

(which are linear with time) are chosen as shown in the figure. As soon as 

the counter output crosses either one of the two thresholds, a decision is 
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made as to the level of radiation at that position in the body being 

examined. If the counter output at the crossing point is z and the crossing 

time is T, then the estimate fl of the time average decay rate is taken as 

fi= zi+1 + zi 
7;:+1+ K 

where zi < z < z~+~ and Ti < T < Ti+l. This defines a radioactivity 1 

(an estimate of the true value) at the point and a spot with a corresponding 

shade of gray is then printed. The reason for introducing the two thresh- 

olds is to ensure that a sufficiently reliable sample is taken before an 

estimate of 1 is made. 

The last technique appears to be much more promising than the first 

two techniques and probably deserves further study. This report includes 

a study of two-level decision elements only. 

Two-Letlel Decision Elements 

Two-level decision elements are of interest since they are simple to 

construct and operate. We consider three such elements in the following 

paragraphs. 

One possible binary (two-level) technique (which is a special case of 

the fixed-time multilevel technique) can be described with the aid of Fig. 9. 

The “picture” of the radioactivity pattern is generated in this technique as 

follows. At a particular point on the recording surface corresponding to a 

point x, either a black spot is recorded or it is not. If an analogy is made 

to the fixed-time multilevel technique, there are two shades of gray: 

black and white. The picture then is generated by the density of points 

rather than by shades of gray. The decision whether or not to print a spot 

at a particular position is made on the basis of the counter output z at a 

fixed time T. If this quantity exceeds a critical decision level, a spot is 

printed. If not, then nothing is printed. The transfer function of this 

device is apparently probabilistic in nature. This type of element is 

discussed in more detail in a later section. The disadvantage of this 

technique is that for each position, a fixed amount of time is necessary to 

make a decision, whereas it might be possible to make an adequate 

decision in much less time for certain extreme activity levels. 

A binary technique that is similar to the preceding one (see Fig. 10) 

is now described. Tndeed, it is a special case of the fixed-count multilevel 

technique. The counter output continues until it exceeds some fixed 

level z*. If the time it takes for z* to be attained is less than some critical 
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counter 
Output 

- 

- Critical Decision 

Level 

T Time 

FIG. 9. Two-level fixed-time decision element. 

I 

I 
FIG. 10. Two-level fixed-count decision element. 
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decision time, a spot is printed. If not, no spot is printed. This technique 

has basically the same disadvantage as the fixed-time technique in that it 

may not be necessary to attain a given count level z* in order to make an 

adequate decision about the radioactivity level at a point in the body. 

Another binary decision element can be formed as a special case of 

the multilevel threshold element. Consider Fig. 11. In this technique 

FIG. 11. 

Upper Threshold 

* 
Time 

Two-level threshold decision element. 

two thresholds (which are linear with time) are chosen, as shown in the 

figure. The$rst time that the counter output crosses either threshold, a 

decision is made. The technique of generating a picture of the radioactivity 

is the same as for the other two binary decision elements. That is, the den- 

sity of spots generates the picture. If the counter output crosses the 

upper threshold, then a spot is printed and the detector moves on to the 

next sample point in the body. If the lower threshold is crossed, then no 

spot is printed and the detector moves on. There is, of course, always 

the possibility that neither threshold will be crossed. In a practical design, 

this possibility is handled by terminating any measurement whenever a 
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maximum measuring time has been exceeded and nothing is printed. 

The advantage of this technique over the fixed-time and fixed-count 

techniques is that a decision on the radioactivity level can be reached 

much more quickly in most cases. This is particularly true of extreme 

(high or low) radiation levels. (That this is true will be justified later.) 

The disadvantage of this technique is that two thresholds must be gener- 

ated and maintained. 

4. BINARY FIXED-TIME SCANNING 

It is assumed that there is a binary source of radiation that emits 

at an average intensity of either A, or AZ (A, > A,) counts per unit time. 

It is agreed to observe the source for T seconds, at which time there will 

be n counts. The selected decision rule is as follows. 

If n > n,, decide that AZ is the source intensity; 

if n < n,, decide that ii, is the source intensity; 

where n, is such that (P,(X) denotes the probability of the event x) 

Pl(n,, T) = Pz(ne, T) (1) 
and 

Pi(n, T) = P, [n counts observed in T seconds given 

that the source intensity is A,]. 

Since the sources are from a radioactive decay, it is known that the 

Poisson model is accurate [2], thereby giving 

P,(n, T) = (n,T)” exp(-&T). 
n. 1 

Thus, Eq. (1) becomes 

(A, T),Q 
- exp(--IiT) = WF exp(-&T). 

n,! n, ! 

Consequently, the condition on n, becomes 

;i;C exp(--I,T) = $cexp(--A,T) 
or 

Taking logarithms, 

(2) 
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or, finally, 

n, = (A2 - m-. 
log Wl 

517 

(4) 

This is the value of the “critical” count n,. 

Define 

CQ = P, [an error is made in decision, given 

that the source intensity is Ai]. 

From the decision rule, it is seen that 

CI~ = P,[n < n, given that the intensity is AZ] 

Q-1 

= 2o&h v. 

Using Eq. (2), we have 

u2 = :z: (+ exp( - h,T). (5) 

Similarly, 

Ml = P, [n 2 n, given that the intensity is AJ 

=.$ P,(n, T), 
c 

or 

ccl =ng y exp(--l,T). (6) 
E . 

E. C. Molina [4] gives tables of 

S(ner AT) = 2 O”exp(-AT). 
n=71c n! 

Writing c(~ and a2 in terms of S(n,, Air), we obtain 

Zl = S(% &T), (8) 

a2 = 1 - S(n,, AJ). (9) 

It is intended to make a comparison between fixed-time sampling and 

threshold sampling. In order to do this, define 

Tj = observation time of the process in order to achieve 

an error probability xi, for fixed I, and for A, = 1 

(at no loss of generality). 
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Then define the average observation time T as 

T, + TI:, T=-------” 
2 . 

S. KATZENSTEIN et al. 

(10) 

In Fig. 12 are shown the results of such calculations for i; using Eqs. (4), 

(8), (9), and Molina’s tables, for various 1, and a,; a1 = GC~ = c( has been 

chosen in all curves shown, as a means of standardizing the error. 

It is necessary to plot a transfer function for this fixed-time method 

in order to evaluate its performance for a continuous range of values for 

1. Therefore, a plot of the probability of printing a point as a function of 

i is made. For any ;1 and T it is observed that the expected value E(n) 

of the count n will be E(n) = AT. Therefore, n, = ACT or 1, = n,/T is 

obtained. Thus the critical intensity 2, (using Eq. (4)) will be 

2 
e 

= 2, - 21 

log ?.,/A, * 
(11) 

Letting ?., = 1 for normalization purposes, Eq. (11) then yields 

i, exp(--ii,) = ii, exp(-1,). (12) 

Any pair (A,, 1,) satisfying Eq. (12) will give the same value for prob- 

abilities of printing a black spot. That is, with probability I - t(2 black 

is printed if 1 = )LZ, and with probability a1 black is printed if i = 2,. 

For any T then, we obtain a transfer function as required. The results of 

this calculation are shown in Fig. 13. These results are compared to those 

for binary threshold sampling (Section 5) in Section 6. 

5. TWO-LEVEL THRESHOLD DECISION ELEMENT (VARIABLE TIME) 

In this section some of the more important properties of the two-level 

threshold decision elements are discussed and analyzed. This element was 

explained earlier with the use of Fig. 11, which is also pertinent to the 

discussion in this section. 

If the two-level threshold decision element is used, the picture of the 

radiation pattern is generated by varying the density of black spots on a 

recording surface. Regions of high, medium, and low spot densities 

correspond to high, medium, and low radioactivity levels, respectively. 

The decision whether or not a spot is printed at a particular point depends 

on whether the counter output crosses the upper or lower threshold. 

Since these crossings are probabilistic in nature, the pattern will be 

somewhat random in nature. For example, even though the radioactivity 
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FIG. 
time 

VERTICAL AXIS: NORMALIZED EXPECTED 
32 - DECISION TIME n/l, 

HORIZONTAL AXIS: PROBABILITY OF ERROR 

30 - 
a (a,= cl2’ca) 

28 - 

26 - 

24 - 

0 0.02 0.04 O.O~O.lO 0.12 0.14 0.16 0.113 
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12. Relationship between average decision time and error probability for 
fixed- 

element. 
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I I I I I I I I I 

Probability of Printing a Spot 
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level at a particular point is very high, the counter output may cross the 

lower threshold and no spot will be printed. If measurements are made 

at many points in a region with a high radioactivity level, then the prob- 

ability of spots being printed for many of these points will be high. The 

nature of this decision element cannot be completely described by a simple 

decision rule that relates the radioactivity level and the corresponding 

decision whether or not a spot is printed. Instead it must be described by 

a representation (referred to as a transfer function) that relates the 

radioactivity level and the probability that a spot is printed. Such a 

representation has been shown in Fig. 13 (for fixed-time sampling). It is 

apparent that above a certain radioactivity level, say 1, the probability 

of a spot is essentially unity. These decision elements cannot practically 

distinguish (probabilistically) between various levels above the level 1. 

Another variable of importance in this technique is the time it takes to 

reach a decision whether a spot should be printed or not. It is desirable 

to make the decision time as short as possible without excessively degrading 

the accuracy of the decision. 

If the radioactivity level is constant over a region and measurements 

are made at a large number of points in this region, then the density of 

spots should be approximately equal to the probability of a spot for that 

radioactivity level. The transfer function might then be considered to be 

the transfer function between radioactivity level and spot density. It is 

probably desirable for such a transfer function to be approximately 

linear; however, without additional knowledge about the averaging and 

smoothing properties of the human eye, this is only conjecture. 

It is clear that two important properties of the binary threshold tech- 

nique are (1) the expected time needed to reach a decision at each point 

in the body; and (2) the ability to distinguish accurately between two 

fixed radioactivity levels. As might be expected, these two properties are 

not independent. That is, the expected time to reach a decision, the 

accuracy of the decision (in a probabilistic sense), and the radioactivity 

levels are functionally related. 

To generate (graphical) relationships that describe the properties of 

the binary threshold decision element, the theory of sequential hypothesis 

testing [5-81 has been used. The problem of sequential hypothesis testing 

can be defined as follows [7, 81. 

Let {zl(t), t > 0} and {zz(t), t > 0} be two different stochastic 

processes. An observer, beginning at t = 0, continuously monitors 
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a stochastic process {z(t), t > O> that is either {zl(t)} or {zz(t)> and 

wishes to decide, as SOOT as possible, whether {z(t)} is {zl(t)} or {zz(t)}. 

The phrase “as soon as possible” is defined as follows. Let T be the 

time when a decision is reached. T is clearly a random variable. Let 

E,(T) and E,(T) be the expected values of T when {z(t)} = {zl(t)} and 

(z(t)} = {zz(t)}, respectively. Let tll and CQ be two positive constants 

such that CI~ + u2 < 1. If the restriction is made that the probability 

of an incorrect decision when {z(t)} = {zi(t)} is fixed at xi, then the 

problem is to find a procedure for deciding between {zi(t)} and {zz(t)} 

such that El(T) and E,(T) are minimized, given CQ and Q. 

In this writing, the two processes {zl(t)} and {zz(t)} are assumed to be 

Poisson processes with stationary independent increments and mean 

occurrence times l/1, and l/1,, respectively. This model was described 

in Section 2. The problem in this case is deciding whether or not the 

mean occurrence time of the observed process is l/d, or l/n,. The 

optimal test procedure (in the sense that E,(T) and E2(T) are minimized 

for fixed or and CCJ is given by a Wald sequential probability ratio test 

[5,61. 
More specifically, let z(t) be the observed process and define 

Z(t) = z(t) log $ - (a2 - a& 
1 

where L, > il,. Then the best decision rule is specified by two numbers, 

a, b (b < 0 < a) in the following manner. As long as I(t) lies between a 

and b, observation of z(f) continues. As soon as Z(t) < b, stop observing 

{z(t)} and decide I = 3L1. As soon as Z(t) > a, stop observing {z(t)} and 

decide 3, = 2,. Now for any other procedure with error probabilities ct: 

and u,* and expected decision times E,*(T) and E,*(T), then CC: < CQ, 

CX,* < tc2 implies Et(T) > E,(T) and E:(T) > E,(T). Figure 14 is a 

sketch of how this type of decision rule works. In this case, the process 

I(t) crosses the decision level at a time t, and at that time it is decided that 

L = 2,. 

To put this decision rule into the form of the binary threshold decision 

rule, it should be noted that b Q l(t) < a implies that 
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“0 
I 

FIG. 14. Sketch of decision function. 

Now let 

Then the two linear time functions 

J + @, - 4)t 

log &I& 

and K + (& - 4)t 

log &I& 

are, respectively, the upper and lower thresholds of the two-level threshold 

decision rule; Fig. 11 is a sketch that illustrates this type of decision rule. 

The values for J and K are completely determined by the values A,, A.,, 

a, and b. The values for a and b are calculated from the given error 

probabilities CI~ and tcz. In particular, 

and 

b = log -2% 
1 - ctl 

1 - c?z 
log? + log- 

1 -a2 
< a Q log - . 

2 Nl El 

Note that a is not uniquely given by these expressions, but is merely 

bounded from above and below. There are no simple analytic expressions 
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for J and K that can be used for design purposes due to the difficulty in 

uniquely specifying a; in [8], however, tables have been prepared that 

relate il,, AI, x3, x1, J, K, E,(T), and E,(T). Using these tables, it is 

possible to fix certain of these variables and determine from the tables 

the values of the remaining variables. For instance, if &, AI, Q, and c(r 

are specified then J, K, E,(T), and E,(T) have fixed values that can be 

determined from these tables. Or, if J, K, &, and iI are specified, then 

r.1, $3 E,(T), and E,(T) have fixed values that can be determined from 

these tables. 

Using these tables, curves have been plotted in Fig. 15 that represent 

the relationship among the expected time to reach a decision, the radio- 

activity levels A1 and A,, and the probabilities of errors scr and C+ Since 

it is difficult to represent the dependence of all these quantities in a 

reasonable graphical form, the relationships have been somewhat simpli- 

fied by making certain assumptions. It is assumed that c(t = tlZ = o! 

and that the processes defined by A1 and AZ are equally likely. This 

second assumption allows us to define an average time of decision as 

In addition, it is intuitively apparent (and can be shown rigorously) that 

the time to reach a decision varies inversely as the radioactivity levels. 

For example, let 3,, = 1, &/A1 be fixed, and A be the corresponding 

expected time to reach a decision; if A1 = 2 and &/Al has the same value, 

the expected time to reach a decision is x/2. Figure 16 is then a family of 

curves of the normalized expected time versus the probability of error tc 

with the ratio 3.,/A, as the parameter. These curves can be used in either 

of two ways. First, suppose &/I., is fixed and it is desired to determine 

how much time it takes to make a decision with expected error CC Find 

the given value of I on the abscissa and go vertically from this value to the 

intersection with the curve defined by the given ?,,/A,. The expected 

decision time is then the ordinate of this intersection. The second way in 

which this family of curves can be used is as follows. Let a be a fixed 

expected error and 2 be a fixed decision time. The intersection of these 

two values will lie on a member of the family of curves and therefore fix 

the ratio AZ/A1 = I.*. That is, for a given time and given allowable error 

the decision element can distinguish between levels A1 and A, only if 

/?,/A, > ;I”. 
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I I I I I I 

Probability of Errors a (aI = a2 = d 

FIG. 15. Relationship between expected decision time and error probability for thresh- 
old element. 
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In Figs. 16 and 17 transfer functions for the binary threshold decision 

element have been plotted. These are, of course, curves of the probability 

of a spot versus radioactivity level 1. These curves were obtained by using 

the tables of [8] in the following manner. The values for J and K are fixed, 

il, is assumed to be unity, and jl is allowed to take on values greater than 

one. In the tables, values of ;1 are obtained from the & entries since 

ii > &. From the tables for fixed values of J, K, A,, and ii, the values 

for c(i and CI~ can be obtained. Since a2 represents the probability of an 

error if A is the true value, 1 - a2 is the probability of a correct decision 

and therefore is the probability of a spot. That is, if the decay rate at a 

particular point is jl > A,, then the probability of a point is the probability 

of making a correct decision (i.e., 1 - CQ). This value of probability is the 

optimum value and is attained only if the thresholds are the optimum ones 

given by 

The curve generated in this manner is an idealized curve in that for each 

value of L > 2, it is assumed that the optimum threshold is being used. 

This, of course, is not the case since the thresholds are fixed linear time 

functions and are optimum for only a single value of &, say A*. For 

other values of 1 # A*, the curve provides an upper bound on the true 

transfer function curve. This can be seen from the following argument. 

The slope 

can be shown to increase monotonically with 1; therefore, for a value of 

L > 2; the optimal slope of the threshold would be greater than 

and therefore the expected time to decision for this value of slope would be 

less than for the optimal slope for A. As a result, the error CQ would be 

larger than the optimal value and 1 - CI~ smaller than the optimal values, 

This optimal curve thus provides an upper bound on the true curve. On 

the other hand, this value of aZ will be less than the value a,*, which 

corresponds to ;2*. This is apparent since processes with values of il > 1* 

will tend to cross the upper threshold faster than the process defined by 
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?,*. This optimal transfer function then provides both upper and lower 

bounds on the true transfer function. 

For those values of 1 such that il < 1 a dual argument is used to 

generate that portion of the idea1 transfer function. Similar upper and 

lower bounds on the time transfer function can also be generated in 

similar ways. A number of these curves have been plotted for various 

values of J and K in order to get an idea as to the dependence of the 

transfer function on these parameters. 

6. COMPARISON OF BINARY FIXED-TIME AND THRESHOLD SCANNING 

In Sections 4 and 5, the binary fixed-time and binary threshold 

(variable time) scanning procedures, respectively, were analyzed. A 

comparison of the performance of these two systems is now presented. 

The significant measure of performance for these two systems is 

contained in the plot of the family of average scan times versus error 

probability with il,/jl, as a parameter (Figs. 12 and 15). It is seen im- 

mediately that, for a given &/jll and cc, 2 m T/‘/2, which indicates that at 

the same binary source intensities and at the same error probabilities, 

the threshold system will take approximately one half as long a scan time 

as the fixed-time system. Alternatively, we see that for a given average 

scan time and a given error probability, the required ratio AZ/Al is always 

larger for fixed-time sampling (the relative difference depends on the 

particular values used). Lastly, for a given average scan time and given 

&/A,, the threshold scanning is seen to be significantly superior to the 

fixed-time sampling in terms of probability of error (ratios as large as 10: I 

are easily found). 

The transfer functions for both systems are given in Figs. 13 and 16. 

The only pertinent statement here is that both systems provide enough 

degrees of freedom to allow a variety of transfer functions to be chosen. 

In the fixed-time case, the parameter is T, the transfer function becoming 

sharper as T increases. In the threshold scanning method, the parameters 

are J and K, where J - K is merely the vertical height separating the 

two parallel linear thresholds; as J - K increases, the transfer function 

becomes sharper. If the transfer function is chosen to be relatively flat, 

then boundaries separating high- and low-intensity regions will be wide and 

relatively indistinct. On the other hand, if the slope is steep, then the 

boundaries will be sharp, but the gray levels will be suppressed. An 

optimum choice here depends on the medical investigator’s purposes. 
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7. EXPERIMENTAL PROGRAM 

An experimental program to develop a sequential sampling computer 

and to evaluate it in conjunction with a gamma scanner has been under- 

taken. (This work was supported by the Division of Biology and Medi- 

cine, U.S. Atomic Energy Commission, under contract AT(04-3)-627.) 

The preliminary results have been reported elsewhere [9]. A final report, 

for publication, is in the process of preparation [lo]. 
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