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INTRODUCTION 

The simultaneous demand for computer service by 
members from a population of users generally results 
in the formation of queues. These queues are con­
trolled by some computer scheduling method which 
chooses the order in which various users receive at­
tention. The goal of this priority scheduling algorithm 
is to provide the population of users with a high 
grade of service (rapid response, resource availabil­
ity, etc.(, at the same time maintaining an acceptable 
throughput rate. The object of the present paper is to 
discuss most of the priority scheduling procedures 
that have been considered in the past few years, to dis­
cuss in a coherent way their effectiveness and weak­
nesses in terms of the performance measures men­
tioned above, to describe what the analysis of related 
queueing models has been able to provide in the way 
of design aids, and in this last respect, to point out 
certain unsolved problems. In addition we discuss the 
countermeasures which a customer might use in an 
attempt to defeat the scheduling algorithm by arrang­
ing his requests m such a way that he appears as a high 
priority user. To the extent that we can carry out such 
an undertaking, the single most important value of this 
consolidation of the results of analysis, experimenta­
tion, and experience will be in the potential reduction 
of the uncertainty connected with the design of a 
workable service discipline. 

By a grade or class of service we mean the availa­
bility of certain resources (both software and hard­
ware), a distribution of resource usage costs, and a 
well-defined distribution of waiting or turn-around 
times which applies to the customer's use of these re-
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sources. In multi-access, multiprogramming systems 
throughput may conveniently be measured in terms of 
computer operating efficiency defined roughly as the 
percentage of time the computer spends in perform­
ing user or customer-directed tasks as compared with 
the time spent in performing executive (overhead type) 
tasks. We shall avoid trying to measure the program­
mers' or users' productivity in a multi-access environ­
ment as compared with productivity in the usually less 
flexible but more efficient batch-processing environ­
ment. For discussions on this subject see References 
1 and 2 and the bibliography of Reference 3. 

With a somewhat different orientation some of these 
topics have been covered elsewhere. In particular, 
Coffman,4 Greenberger5 and in more detail Estrin 
and Kleinrock6 have reviewed the many applications 
of queueing theory to the analysis of multiprogram­
ming systems. In addition, Estrin and Kleinrock have 
surveyed simulation and empirical studies of such sys­
tems. However, in contrast to the purposes of the 
present paper, the work cited above concentrates on 
mathematical models and on service disciplines to 
which mathematical modeling and analysis have been 
to some extent successfully applied. We shall extend 
this investigation to several priority disciplines not 
yet analyzed and to others which more properly apply 
to batch-processing environments. Furthermore, as 
indicated earlier, the present treatment investigates on 
a qualitative basis the detailed interaction of the cus­
tomer and the overall system with the service disci­
pline. 

Classification of priority disciplines 

Before classifying priority disciplines consider the 
following very general notion of a queueing system. 
In Figure 1 we have shown a feedback queueing sys­
tem consisting of a computer (service) facility, a queue 
or system of queues of unprocessed or incompletely 
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processed jobs (or more generally, requests for ser­
vice), a source of arrivals requesting service and a 
feedback path from the computer to the system of 
queues for partially processed jobs. The system will 
be defined in any given instance by a description of 
the arrival mechanism, the service required from the 
computer, the nature of the computer facility, the ser­
vice discipline according to which the selection of ser­
vice requests from the system of users is determined, 
and the conditions under which jobs are "fed back" 
to the system of queues. In all of the service disci­
plines discussed in the next section we make the fol­
lowing assumptions: 1) the arrival mechanism is 
such that if the arrival source is not empty it generates 
new requests according to some probability distribu­
tion, 2) the service disciplines are such that the com­
puter facility will never be idle if there exists a job 
in the system ready to be executed. 
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Figure I — Feedback queueing system 

There are a variety of ways to classify priority ser­
vice disciplines. Indeed, one point of view is expressed 
by saying that priorities may be bought (e.g., in disci­
plines where bribing is allowed,7 earned e.g., by a pro­
gram demonstrating favorable characteristics in a 
time-sharing system), deserved (e.g., by a program ex­
hibiting beforehand favorable characteristics), or a 
combination of the above. For our purposes we shall 
classify a given priority method according to the prop­
erties listed below. 

A. Preemptive vs. non-preemptive disciplines 

This characteristic generally determines how new 
arrivals are processed according to the given disci­
pline. If a low priority unit is being serviced when a 
higher priority unit arrives (or comes into existence 
by virtue of a priority change of some unit already in 
the system) then a preemptive service discipline im­
mediately interrupts the server, returns the lower pri­
ority unit to the queue (or simply ejects it from the 
system), and commences service on the higher pri­
ority unit. Note that non-preemptive disciplines in­
volve preplanning in some sense. However, the ex­
tent of pre-planned "schedules" may vary widely. 

B. Resume vs. restart 

This characteristic determines how service is to 
proceed on a previously interrupted (preempted) job 
when it comes up for service again. With a resume 
priority rule no service is lost due to interruption and 
with a restart rule all service is lost. Assuming that 
the costs of lost service are intolerable in the applica­
tions of concern to us we shall treat only resume rules 
and systems in which such rules are feasible. 

C. Source of priority information 

Service disciplines may be classified according to 
the information on which they base priority decisions. 
Such a list would be open-ended; however, the sources 
of the information may be considered to fall in one of 
three not necessarily disjoint environments: 1) the job 
environment whereby the information consists of the 
intrinsic properties of the jobs (e.g., running time, in­
put/output requirements, storage requirements, etc.), 
2) the (virtual) computer system environment (e.g., dy­
namic priorities may be based on the state of the sys­
tem as embodied in the number of jobs or requests 
waiting, storage space available, location of jobs 
waiting, etc.) and 3) the programmers' or users' en­
vironment in which management may assign priori­
ties according to urgency, importance of individual 
programmers, etc. 

D. Time at which information becomes known 

Classical service disciplines assume that the in­
formation on which priority decisions are based is 
known beforehand. On the other hand, time-sharing 
disciplines are a prime example of service disciplines 
in which decisions are based on information (e.g., run­
ning time and paging behavior, which is obtained only 
during the processing of service requests. Such in­
formation, of course, is used to establish priorities 
based on the predicted service requirements of re­
quests which at some time were interrupted and re­
turned to the queue. 

All of the priority scheduling methods to be dis­
cussed are applicable to the infinite input population 
case (in which the number of possible customers is 
unbounded) as well as to the finite population case 
(in which a finite number of customers use the sys­
tem) — see Reference 6. 

Priorities based only on running times 

The intent of systems using a so-called running-
time priority discipline is that the shorter jobs should 
enjoy better service in terms of waiting times. The 
FCFS (first-come-first-served) system is commonly 
used as a standard of reference to evaluate the sue-
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cess of this intent. The first two algorithms below as­
sume job running times are known at the time they ar­
rive at the service point, while most of the remain­
der, which have arisen primarily in connection with 
multiprogramming systems, assume that no indica­
tions of running times are known until after jobs have 
been at least partially run. 

A. The shortest-job-first (SJF) discipline8 

This is a non-preemptive priority rule whereby the 
queue is inspected only after jobs are completely 
processed (served) at which times that job in the queue 
requiring the least running time is the next to receive 
service to completion (and thus there are no cycled 
arrivals). The SJF descipline has the obvious advan­
tage of simplicity and the somewhat less obvious ad­
vantage that the mean customer waiting time in the 
system is less than in any system (including the FCFS 
system) not taking advantage of known running times. 
However, it is clear that significantly long running 
jobs suffer more in an SJF system than in an FCFS 
system. Thus, the reduction in the first moment of the 
waiting time comes at the cost of an increase in the 
second moment (or variance). We discuss the SJF 
discipline further in connection with the following dis­
cipline. 

B. The preemptive shortest-job first (PSJF) discipline 

With this discipline the SJF priority rule is applied 
whenever a job is completed as well as whenever there 
is a new arrival. If a new arrival has, at its time of 
arrival, a service requirement less than the remain­
ing running time required by the job, if any, in ser­
vice, then the latter job is cycled back to the single 
queue and the computer given over to the new arrival. 
The job returned to the queue is subsequently treated 
as if its running time were that which remained when 
it was interrupted; i.e., we have a preemptive, resume 
discipline. 

The PSJF discipline has the advantages over the 
SJF and FCFS disciplines of further accentuating 
the favoritism enjoyed by the short running jobs and 
further reducing the average waiting time in the sys­
tem. (Again, the variance will be increased.) Indeed, 
it has been shown that the PSJF discipline is the opti­
mum running-time priority discipline in these last two 
respects. This relationship between the SJF and PSJF 
disciplines is seen in part by observing that time-of-
arrival receives some consideration in the SJF disci­
pline but, because of the preemption property, none 
at all in the PSJF discipline. 

The principal disadvantage of the PSJF discipline 
in the computer application is the cost associated with 
interrupting a job in progress, placing it into auxiliary 

(queue) storage, and loading the higher priority job 
for execution. Although this swapping process with 
auxiliary storage devices may not always be neces­
sary, depending on the size of main storage, it may out­
weigh the advantage of PSJF scheduling over SJF 
scheduling. Since it is usually difficult to expect ad­
vance knowledge of exact running times, it is en­
couraging to note that in a thorough study by Miller 
and Schrage9 it is shown that even with partial indi­
cations of running times significant improvements in 
mean flow time are possible at the expense of in­
creases in the second moment. 

It is obvious that the major effect of these disci­
plines on the programmer-users of such systems is 
a salubrious one in that it causes them to produce fas­
ter, more efficient jobs. However, the reaction of a 
user with a job ready to be submitted to an SJF or 
PSJF system depends to some extent on what infor­
mation regarding the state of the system is available 
to the user. If the user can see only the queue length 
(and this is usually available) then whether or not he 
balks (refuses to join the queue) depends on how long 
his job is, his knowledge of the distribution of the run­
ning times of jobs submitted to the system, and his 
assessment of his chances were he to decide to come 
back later. If indications of the running times of jobs 
in the queue are known at arrival time then good esti­
mates of waiting time are possible; thus, longer jobs 
wanting fast service are more likely to balk. With 
knowledge only of queue length, however, it would 
appear that less balking would occur with the SJF 
and PSJF systems than with the FCFS system. On 
the other hand, reneging (leaving the queue after join­
ing it and before being completely serviced) would be 
more likely since long jobs are likely to progress rath­
er slowly toward the service point. 

The countermeasures available to the users of the 
SJF system in attempts to defeat (or take advantage 
of) the computer scheduling algorithm are rather ob­
vious. Firstly, it is clearly advantageous to submit 
as short a job as possible. The natural consequence 
of this action suggests that a user partition his request 
into a sequence of short independent requests. Sec­
ondly, unless special precautions and penalties are 
provided, the users may purposefully lie about (i.e., 
underestimate) their required running time. Such 
countermeasures lead to a situation in which the at­
tempted discrimination among jobs becomes ineffec­
tive and preferred treatment is given to those users 
displaying the use of clever and/or unethical tactics. 
We will continue to observe this unfortunate result 
in the other scheduling algorithms. 

So far we have been discussing computer operating 
disciplines as if there existed but one queue of jobs 
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waiting in the central processor. This is not generally 
true if we consider also the queue or queues of jobs 
waiting for the use of input/output (I/O) devices. The 
executive or supervisor system itself may be one of 
the "jobs" in the I/O queues. In a general batch-pro­
cessing or time-sharing system it is more realistic to 
assume that jobs consist of phases or tasks whose re­
quirements alternate between the use of the central 
processor and the use of some I/O device. Then the 
SJF policies may be defined just for the central pro­
cessing time (as implied above) or by the sum of cen­
tral processing and I/O time. 

It is not our intention to discuss I/O scheduling 
disciplines in any detail but it should be kept in mind 
that a job completion in the central processor system 
may simply mean that the given job has reached a 
point where it requires an I/O process before continu­
ing. Similarly, an arrival may mean a job returning 
from the I/O system for more computing time. This 
is not to say, however, that I/O and central process­
ing scheduling are independent processes; indeed, it 
may be necessary that one of the criteria for assign­
ing priority (external or internal to the comput sys­
tem) be which I/O devices are required and for how 
much time. This is taken up again below. 

C. The round-robin (RR) discipline 

This well-known scheduling procedure was first 
introduced in time-sharing systems as a means for 
ensuring fast turn-around for short service requests 
when it is assumed that running times are not known 
in advance. As seen below the RR discipline falls 
within a class of so-called quantum-controlled ser­
vice disciplines in which the size (q) of the quantum 
or basic time interval is to be considered as a design 
parameter. In an RR system the service facility (com­
puter) processes each job or service request for a max­
imum of q seconds; if the job's service is completed 
during this quantum then it simply "leaves" the sys­
tem (i.e., the waiting line and the central processor), 
otherwise the job is cycled back to the end of the sin­
gle queue to await another quantum of service. New 
arrivals simply join the end of the queue. 

As can be seen, the use of running time as a means 
of assigning priorities is implicit in the RR disci­
pline, whereas it is explicit in the previous two dis­
ciplines. Running time priorities are assigned after 
a job has been allocated a quantum of service — if the 
job requires additional service it suffers an immediate 
drop to the lowest (relative) priority and sent to the 
end of the queue. Furthermore, it is clear that the RR 
policy uses both running time and time-of-arrival to 
make (implicit) priority decisions. This latter depen­
dence is seen by noting that all jobs arriving at any 

time earlier than a given job will have been allocated 
at least one more quantum of service when the given 
job reaches the service point. 

The extent to which the RR discipline maintains the 
shortest-job-first policy (in a posterior fashion) de­
pends on the quantum size. Ciearly, if q is allowed 
to be infinite we have a FCFS system. On the other 
hand as q approaches zero we have in the limit a so-
called processor-sharing system10 in which the part of 
the processor not devoted to executive or overhead 
functions is "divided up" equally among the jobs cur­
rently in the system. In short, we have a system with 
no waiting line wherein it is possible to execute all 
jobs simultaneously but at a rate reduction for an in­
dividual job which is proportional to the number in 
the system. (The computer systems with multiple pro­
gram counters approximate to some extent the RR be­
havior with q very close to zero). Despite the better 
service for short jobs as q decreases, questions of ef­
ficiency generally dictate against quantum sizes too 
small in conventional computer systems. We elaborate 
on this shortly. 

The extent of discrimination by the RR discipline 
in favor of short jobs also depends on the distribu­
tion of job running times. In particular, the RR disci­
pline clearly does not take advantage of any knowl­
edge gained by the quantum-execution of a job beyond 
the fact that the job simply requires more. For exam­
ple, the distribution of job running times may be such 
that any job requiring more than two quanta will with 
probability .95 require in excess of 10 quanta. In this 
event the desire to favor shorter jobs would indicate 
that all jobs having received two quanta should not 
come to the service point for the third time until all 
jobs in the system have received at least two quanta. 
The distribution of job running times that is applica­
ble to RR scheduling in this respect is the exponential 
distribution, which also corresponds to the assump­
tion that has been found analytically tractable in most 
queueing theoretic studies of the RR discipline. This 
arises from the so-called memoryless property of the 
exponential distribution which means in our applica­
tion that after executing a job for q seconds (with q 
arbitrary) the distribution of the remaining time to 
completion is always the same (and equal to the origi­
nal distribution). Thus, it is the continued identical 
uncertainty in job running times that constitutes the 
primary job characteristic making the simple RR dis­
cipline desirable. 

It is immediately evident from the definition of the 
RR discipline that the basic disadvantage consists of 
the swapping (removing one job from and placing an­
other job into service) necessary for jobs requiring 
in excess of q seconds of service. Many approaches 
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to the solution of this problem have been taken. For 
example, increasing the size of main memory so that 
many jobs may coexist there eliminates much of the 
need for swapping. Of course, this is a limited and 
possibly expensive solution. Also, overlapping the 
swapping of one job with the execution of another in 
systems with appropriate memory control and storage 
capacity makes the swapping process a latent one so 
that the suspension of the central processor for input/ 
output processes is reduced. Nevertheless, with mod­
ern, large-scale multiprogramming systems, the swap­
ping process remains a principal bottleneck to effi­
cient operation with many users. 

Several analytical studies of RR disciplines have 
been carried out11'12'26 with the goal of determining, 
for a system defined by a given arrival process and job 
running time distribution, the interaction between sys­
tem performance (efficiency, throughput, or waiting 
times) and the swap-time and quantum size param­
eters. As verified by experience, analysis has shown 
how performance deteriorates sharply when the quan­
tum size for a given swap time and system loading is 
made lower than a certain minimum range of values (or 
alternatively when loading becomes too heavy for a 
given quantum size). The priority disciplines described 
in the next section illustrate techniques whereby this 
excessive deterioration of service is avoided to some 
extent. 

As regards countermeasures, the mere reduction 
of one's job length gains little. However, if a user were 
to partition his job into many smaller jobs, then he 
would achieve superior performance than a user with 
an identical job which was left intact. Again, the clever 
user wins. An interesting property of the q = 0 case 
is worthy of note, namely, that all customers have 
identical ratios of service time to mean time spent in 
system! 

D. The multiple-level feedback (FB) discipline 

The FB discipline differs from the RR discipline in 
a way which is analogous to the way in which the 
PSJF rule differs from the SJF rule. In an FB system 
a new arrival preempts (following the quantum, if 
any, in progress) all jobs in the system and is allowed 
to operate until it has received at least as many quanta 
as that job(s) which has received the least number of 
quanta up to the time of the new arrival. Alterna­
tively, the FB system may be viewed as consisting of 
multiple queue-levels number 1, 2, 3 , . . . with new ar­
rivals put in queue^level 1, jobs having received 1. 
quantum and requiring more in queue-level 2, etc. 
After each quantum-service the next job to be oper­
ated will be the one at the service point of the lowest 
numbered, non-empty queue-level. 

Once again, shorter jobs receive better service at 
the expense of the longer jobs, and large jobs are not 
allowed to interfere or delay excessively the execution 
of small jobs. However, the mean flow time is the 
same in the RR and FB systems. (In this regard, we 
note the existence of a conservation law13 which 
gives the contraint* under which one may trade the 
speed of response among a population of users.) The 
choice between the RR and FB priority disciplines 
is determined basically by how much one wants to 
favor short jobs, for the basic algorithms involve the 
same amount of swapping. It is true* however that the 
FB discipline is somewhat more costly to implement 
in the sense that indicators must be used to keep 
track of the amount of service received by each job. 

In the FB system, the users' countermeasure is 
again to partition his work into many smaller jobs each 
requiring a small number of quanta (one quantum each, 
optimally). 

Observe that the RR, FB, and FCFS disciplines 
may be combined in a variety of useful ways. Two 
combinations that have been used are described be­
low. 

E. The two-level FB or limited RR discipline 

With this discipline jobs are permitted to "round-
robin" only until they have received a fixed number 
of quanta. At this point they are put into a "back­
ground" which is only serviced when there are no 
other jobs in the system. The background queue may 
be executed in a FCFS fashion or in a RR fashion with 
perhaps a larger quantum size. Here, the user counter-
measures by forming many jobs from one, each such 
requiring no more than the fixed number of quanta 
which prevent his falling into the background queue. 

F. The FB discipline with a finite number of levels 

In this system a job after receiving a fixed maximum 
of quanta according to the FB rule (case D) is made to 
join a background which is to be serviced in one of the 
ways mentioned above. A further degree of freedom 
may be added to this or the simple FB rule by remov­
ing the constraint that the quanta allocated at differ­
ent queue-levels be the same. 

A question that immediately arises is how one goes 
about establishing the values of the quanta, the num­
ber of levels, or any of the other parameters of these 
running time priority disciplines. With a specified 
arrival proce*ss and job running time distribution, 
analysis has been only partly successful in the attempt 

*In particular, the sum of the products for each class of users of 
the utilization factor (mean arrival rate times mean- service time) 
and the mean waiting time remains constant. 
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to relate the performance measures of interest to the 
structural parameters of the system.12 For further 
results simulation or empirical study25 will, in many 
cases, prove the more rewarding approach. 
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system we have a processor-sharing type of system 
in which the jobs sharing the processor at any point 
in time are those which have received the least amount 
of service. Thus, a new arrival immediately preempts 
those jobs sharing the processor and is allowed to 
operate until its attained service is equal to that of 
the former or until it completes. It can be seen that 
the RR and FB processor-sharing disciplines differ 
in structure in precisely the same way as the SJF 
and PSJF disciplines. Furthermore, from our earlier 
remarks it is evident that the former priority rules 
represent the best that one can do with, respectively, 
non-preemptive and preemptive priority disciplines 
designed to favor shorter jobs when running time is 
not known in advance. 

G. Declaration of mode—interactive or batch 
The time-sharing system at the University of Cali­

fornia at Santa Barbara14 uses an interesting varia­
tion of the above methods. A user is required to state 
whether his job is interactive (short, frequent requests) 
or batch (longer, usually single requests). Time is 
divided into fixed length segments such that during 
the first half of each segment, the interactive jobs are 
served in a round robin fashion until their half-seg­
ment is exhausted (or until their collective requests 
are satisfied). The remainder of the segment is then 
used to service (to completion, if possible) as many of 
the batch jobs as possible. During the first half-seg­
ment, some interactive jobs will drop from the queue 
after one quantum of service (e.g., those requiring 
the acceptance of a single button-push), etc; thus in 
this system, there is a benefit in declaring the nature 
of your job in an honest way, since in the case where 
there is only one batch job and many interactive jobs, 
the batch job receives better service if that user de­
clares himself as being in the batch mode. 

The discussion of balking and reneging when run­
ning time is assumed unknown applies without change 
to the RR and FB disciplines analogous to the SJF 
and PSJF disciplines, respectively. Another effect 
that may need to be taken into account in the design 
of a time-sharing discipline is that of "jockeying" 
among queues of users awaiting service at a console. 
(This complication of balking and reneging has re­
ceived little attention in the literature.) As before, 
users are encouraged to produce fast running jobs 
for the RR and FB disciplines. In time-sharing 
applications this might be better stated by saying that 

users are encouraged to produce "frequently interact­
ing" jobs. In a given multiple-level RR system, for 
example, long jobs may avoid being put into a back­
ground by communicating (artificially, if necessary) 
w n i i iiiC i/ii~iui\* u 5 u cli a n^i^uCiiv}' o u v i i n i d i n o 

running time never exceeds the foreground quantum 
during any operation interval. In effect, the job is 
alternating between the foreground and input/output 
queues in a way* that provides better service than 
if it were put into the background. Obviously, this 
is an example where the more clever users of a sys­
tem tend to defeat the purpose of the service disci­
pline. 

As a final remark it should be noted that the exist­
ence of saturation in a system with any of the dis­
ciplines we have discussed, except for the RR dis­
cipline, depends on the ciass of jobs being considered. 
For example, in an SJF, PSJF, or FB system it is 
clearly possible that loading be such that jobs with less 
than say five minutes running time will have a finite 
expected wait while those with greater than five min­
utes running time will have an infinite expected wait 
(in the infinite population case). Of course, the sys­
tem as a whole is saturated if a finite threshold of this 
nature exists, since the processor is not able to com­
plete all jobs submitted to it. For the RR discipline 
(as with the FCFS system) there exists a single satura­
tion point which, when reached, causes all jobs to 
have an infinite expected wait. (This stems from the 
continued interference of long jobs with the execution 
of short jobs.) 

State-dependent running time priority disciplines 

The principal motivation behind state-dependent 
disciplines is the desire to reduce the overhead and 
swapping costs in the execution of quantum-controlled 
service. It is of particular interest to prevent or mini­
mize the collapse of RR system performance under 
heavy loading; i.e., to provide a more graceful dete­
rioration of service with increases in loading. 

A. Cycle-oriented RR disciplines 

A basic design parameter of such systems is the so-
called cycle or response time which is set and used 
to control as desired the maximum amount of time 
required to execute one round-robin through all 
active jobs. In one variation,12 after completing a 
given cycle or round-robin, the subsequent round-
robin quantum is determined by dividing the fixed 
cycle time parameter by the number of jobs requiring 
service; the time represented by the result of this 
division is then allocated to each of the jobs requir­
ing service at the beginning of the cycle. Subsequent 
cycles are then determined in the same fashion. Usu-
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ally, some minimum allocation time (quantum) is 
always given because of the otherwise seriously de­
grading effects of swapping during heavy loading. 
Although the cycle time therefore increases at ex­
cessive loading, it is clear that system performance 
degrades more gracefully than otherwise in that the 
loss of swapping is reduced as the load increases. 
The present discipline is state-dependent in the sense 
that the amount of time received by a given job in a 
given cycle depends on the number of active jobs in 
the system at the beginning of the cycle. 

In another (two-level) RR variation26 a maximum 
cycle time is similarly imposed on the amount of time 
taken to process a "foreground" queue (i.e., a queue 
of interactive, on-line user jobs) and a background 
queue consisting of conventional production type 
jobs. In this time interval each foreground job is given 
a fixed quantum; if there is any time remaining in the 
cycle it is devoted to the background job processing, 
otherwise another cycle is initiated. To limit swapping 
overhead (and thereby provide graceful degradation 
during periods of heavy loading) the cycle is extended 
in the event there are too many foreground jobs to 
process for one quantum in one cycle. 

It is clear that the advantage of a reduced variance 
in RR response times is compensated in cycle-orient­
ed disciplines by the slower reaction to changes in 
loading or input activity (we have implied that the 
queue is examined only at the end of the round-robin 
cycles). Statistically, however, this disadvantage 
would seem to be a minor one. Of course, it is also 
possible to make the value of the cycle time param­
eter dependent on system loading (number in the 
system). Just how this is to be done in a useful way, 
however, presents a difficult problem. In these dis­
ciplines, the countermeasure of partitioning a long 
job into many small jobs is extremely effective. 

B. Input-dependent disciplines 
In one such (RR) discipline each time a new arrival 

occurs the job, if any, in service is allocated an addi­
tional quantum of execution time.15 In this way the 
RR discipline reacts to heavy input activity by in­
creasing time allocation and thereby reducing the 
amount of overhead and swapping. During light to 
moderate input activity the straight RR discipline is 
little effected by this change. 

Another such discipline orders the queue of inter­
active user's jobs by interarrival time. Thus, those 
users communicating with the system at the faster 
rates will receive the shorter response time. The 
obvious countermeasure here is to initiate false I/O 
commands. This technique, of course, may be com­
bined in various ways with both RR and FB disci­
plines. 

C. Priorities based on storage allocation 

Apart from the number in the system the most 
important other source of internal priority infor­
mation is the current allocation of storage and the 
availability of I/O devices to perform storage alloca­
tion functions. This, of course is tied in with the swap­
ping problem discussed earlier. In batch processing 
systems requiring maximum efficiency this infor­
mation may serve as the only criterion for assigning 
oriorities: at a decision ooint with this tvne of dis-
cipline a schedule of job operations is computed as 
far as necessary in advance such that storage is well 
utilized in some reasonable sense. 

This sort of scheduling is also applicable to the 
cycle-oriented RR disciplines described earlier. Thus 
a job is executed once per cycle, but where it exe­
cutes in the cycle is made dependent on what turns 
out to be the best way (or at least a good way) to 
sequence the use of main storage so that I/O is mini­
mized and overlapped as much as possible with com­
putation. Clearly, the cost that must be compensated 
in this operation is the (potentially substantial) over­
head time required to produce "good" schedules. 

In the latest generation of multiprogramming sys­
tems, storage structure and the processes of storage 
allocation have been made more elegant by the con­
cepts of virtual memory and paging.16 In paging 
systems jobs (programs and data) are paginated into 
sets of fixed length pages or blocks of computer words 
so that the logical unit of information transfer within 
the supervisory system becomes a page. This also 
means that jobs may be operated (at least in part) 
when only a proper subset of the job's pages are in 
main storage. The synthesis and analysis of efficient 
storage dependent, running time priority disciplines 
that take advantage of this added flexibility is a dif­
ficult, important, and as yet unsolved problem. 

Inclusion of externally generated priorities 

The classical priority disciplines in which priorities 
are determined external to the computer system are 
described as follows. At any point in time with pre­
emptive rules or just after service completions with 
non-preeemptive rules the job next to be serviced 
is the one with the highest priority (i.e., the job having 
been assigned the lowest priority number). That 
discipline receiving the most attention in the litera­
ture is one for which the number of priorities is 
finite or countably infinite; i.e., in one-to-one cor­
respondence with the integers.17 This gives rise to 
levels of queues containing jobs of the same priority; 
these queues are generally ordered by time of arrival 
to the system. The advantages and disadvantages 
of preemptive vs. non-preemptive priority rules are the 
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same as those discussed for the PSJF and SJF rules 
in an earlier section. 

There has been a variety of ways by which exter­
nally generated priorities have been included in 
the running time priority disciplines described in 
previous sections. These are classified as follows. 

A. RR disciplines with external priorities 
A technique used with RR disciplines consists of 

making the quantum size to be allocated dependent 
on the priorities of the active jobs.10 Thus, a higher 
priority job would be allocated a larger quantum 
than a lower priority job. In the limit where the 
quantum size is zero we have a processor-sharing 
system in which the fraction of the processing rate 
received by a job is determined by an externally 

Another technique which smacks of the multiple 
level schemes given below involves the specification 
of (relative) time delays as priorities.28 Consider the 
following implementation, for example: Each arriving, 
job is assigned a (priority) number which is based 
on the given job's externally assigned priority and 
on the number currently possessed by the other active 
jobs in the system. After a given quantum-service 
(which may consist of multiple quanta) the next job 
to receive service is the one having the lowest prior­
ity number. The jobs having the same priority number 
are ordered by time of arrival and serviced in that 
sequence. Each time a job is serviced for one quantum 
its priority number is increased by one. Thus, with 
a non-preemptive system we see that the number 
assigned to an arriving job indicates how much time 
it is to be allocated for operation before it joins 
the round-robin of jobs already in the system; this 
in turn is determined by an external priority assign­
ment. 

B. Multiple level disciplines with externally assigned 
priorities 

The simplest and most natural method of including 
external priorities applies to the multiple level 
disciplines in which each level is used to correspond 
to an external priority number as well as to a given 
level of attained service.12 In this way conventional 
priority scheduling is combined directly with the 
various FB disciplines described earlier. However, 
variations in these types of disciplines may be ob­
tained by the selection made for the means of order­
ing the queue-levels. Specifically, the queues may be 
ordered by time of arrival to the system, by time 
of arrival to the queue, or by a combination of one 
of these with ordering by priority; i.e., by the queue 
level of original entry to the system. (Note that 
ordering by time of arrival to the queue and by 

time of arrival to the system amounts to the same 
thing in the basic FB discipline without external 
priorities.) 

One time-sharing scheduling discipline of the 
above type that has received considerable attention 
is one in which priorities are assigned at arrival 
time according to job size (storage requirements), 
queues are ordered by time of arrival to the queue, 
and quantum sizes are exponentially increasing 
with the queue level (i.e., level one provides on 
quantum, level two provides two quanta, level three 
provides four quanta, and so on.2 Priorities based 
on storage requirements are assigned so that the 
larger jobs receive the lower priorities (enter at the 
higher queue leVels). In this fashion efficiency is 
kept high by reduction in swapping time, since large 
jobs are given more time to operate between swaps. 
Furthermore, the large jobs are not allowed to interfere 
with the small, presumably faster, and more efficiently 
scheduled jobs. Clearly, users of such systems are 
further encouraged to write small jobs, again possibly 
by breaking larger jobs up into autonomous and small 
sub-jobs. 

For a given application the design of the general 
disciplines just discussed requires a means for evalua­
tion of the best values for the quantum distribution, 
the specification of the storage-dependent priority 
assignment rule, and the selection of the best method 
for ordering queue levels. Here again is a synthesis 
problem similar to the one mentioned earlier. At 
present no generally applicable, well-defined proce­
dure exists; experiment by simulation and empirical 
study has been used thus far. Some encouraging work 
towards the optimal synthesis of such systems has 
been reported by Fife.18 

In all of the externally assigned priority methods, 
the user who can influence the assignment of external 
priorities has a great advantage over the others. 
This is taken up next. 

C. User controlled priority assignment 
According to this type of discipline the user is al-1 

lowed in some way to bid for, or simply buy the prior­
ity he desires (or can afford) for his job. One such dis­
cipline is the so-called bribing model7 in which system 
users offer a bribe (based on an "impatience" factor 
of their own) to obtain a preferred position in the 
queue of waiting jobs. All those bribing strategies 
are then considered which minimize an appropriately 
defined cost function over the set of users. 

Another (quantum-controlled) system19 of this 
sort has been used which provides a quantum size 
that is proportional to the priority a user decides 
to assign his job, and which increases with the size 
of his job (in order to maintain a reasonable operating 
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efficiency). What constrains the priority a user assigns 
to his job is the fact that he is charged a fee for use 
of the system which is proportional to the product 
of the priority he has selected times the sum of the 
computing and I/O time required by the job. In this 
particular case, as well as in the bribing case, if a 
user is capable of learning what all the other users 
have assigned as their priorities (or bribes) then 
he need merely "go one better" and choose a slightly 
higher priority (or bribe) to achieve superior service. 
Note when the system is heavily loaded that all 
users see a "slow" system and so they tend to in­
crease their self-assigned priorities (or bribes) in 
an iterative fashion; the result is an ever increasing 
cost to the user for a constantly decreasing grade of 
service! Clearly, the user population as a whole 
should in such case, act in collusion to prevent such 
runaway conditions. 

Dynamic or time-dependent priorities 

There have been a number of priority disciplines 
proposed in which jobs receive an external priority 
that changes in a dynamic way once the job is in 
the system. These disciplines were motivated by 
other applications but it will be clear that they may 
be considered candidates for scheduling computer 
operations. 

So far we have treated disciplines in which the 
waiting time experienced by a job is not used to 
directly influence the priority decision. The dis­
ciplines below are structured so that this information, 
weighted by an external priority number is used 
in the process of selecting from the queue which 
job is to be serviced next. 

A. Delay-dependent disciplines 
In the first variation to be discussed20 a job's 

priority is increased, from zero at the time of arrival, 
linearly with time in proportion to a rate (externally) 
assigned to the job's priority class. Each time a new 
job is to be selected for service according to the 
non-preemptive or preemptive variations of this 
scheme the "attained" priorities of jobs in the system 
are compared, and that job with the highest attained 
priority is selected next for service. If the priority 
classes are assigned according to a shortest-job-
first policy it can be seen that this rule moderates 
the SJF and PSJF rules by reducing the probability 
of excessively long waits. 

In another variation21 jobs are similarly assigned 
external priorities related to the urgency of service. 
However, with this discipline a given job takes 
precedence over another job in the queue if, and only 
if, the difference between the former's (external) 

priority and that of the latter is not less than the 
time the latter has spent waiting. This scheme may 
be implemented as a preemptive as well as a non-
preeemptive discipline. Again, this is an example 
in which management becomes concerned about 
a job that has waited for a long time. 

B. Priorities based on general cost accrual5 

In the most general such system arriving jobs have 
associated with them a cost accrual rate which is 
some arbitrary function of time. In a preemptive or 
non-preemptive mode the discipline is executed by 
servicing (at each decision point) that job which 
minimizes over all jobs the cost accrued by the sub­
sequent waiting time. The cost accrual attributable 
to a given job over a given time interval is calculated 
simply by integrating the cost rate curve over the 
given time interval. It is of interest also that one may 
introduce deadlines by making the slope of the cost 
rate function infinite after a suitable interval of 
time. 

The simplest case of the general discipline exists 
when the cost functions are constant and identical 
for each user. It can be seen that this corresponds 
to a system in which cost accrues linearly with 
time and where the priority minimizes the average 
wait (i.e., we have the PSJF or SJF rules depending on 
whether or not we have preemption). If we assume 
constant valued functions that may differ for each 
job we have the so-called c/t rule. This rule amounts 
to selecting for service that job whose ratio of constant 
cost rate (c) to known or average service time (t) 
is the smallest. 

In these systems, it is not usually to one's advantage 
to partition jobs into smaller ones in an attempt to 
defeat the system. In fact, it may pay to group many 
jobs together so that they all enjoy an early arrival 
time to the system. 

Priority disciplines in multiprocessor systems 

In providing the additional degree of freedom of the 
number (and perhaps types) of processors many 
different possibilities come into existence, most of 
which have not been fully tested or analyzed as yet. 
In this section we shall examine briefly the application 
of previously discussed disciplines to multiprocessor 
systems and certain disciplines for which analyses 
exist in the literature but which arose out of other 
applications. 

A. Processors-in-series systems 
Multiple channel (server) queueing systems are 

broadly classified in the literature according to 
whether the servers are being used in parallel or in 
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phase type service. By phase type service we mean 
that the processors are being used in sequence:22 

one phase of a given job are being serviced on a given 
processor. In general, each processor will have a 
queue of jobs (phases) which is fed by the output 
of some other processor or by an external source. 
Such a system applies, for example, to the alternating 
I/O and computing job structure described in another 
section. Here, we assume that at least one central 
processor and at least one I/O processor is being used 
in a cyclic way by a given job. Other applications of 
this discipline )which may be combined with other dis­
ciplines at each of the separate queues) are to be 
found in computer systems dedicated to the processing 
of certain, large phase-structure jobs. 

B= Processors used in parallel 
The simplest extension of the previous disciplines 

to multiple processors is simply to treat the processors 
in a first-available-first-used fashion. 8 In large, 
general-purpose systems in which the processors 
are identical this single queue approach offers the 
advantages of simplicity, flexibility, and efficiency. 
The disciplines may be made more effective in those 
systems where jobs are designed to operate on one 
or more processors depending dynamically on avail­
ability.23 

However, several other variations of "parallel" 
priority disciplines exist when the set of processors 
or the input jobs are not homogeneous. The simplest 
such case arises when jobs fall into one of two 
categories; a foreground of fast service jobs and a 
background of perhaps less important production 
type jobs. These conditions are appropriate to the 
so-called variable-channel discipline in which the 
number of processors made available to the fore­
ground jobs is made dependent on (increases with) 
the number of foreground jobs in the system. The 
number of foreground processors increases only 
after a maximum queue length has been reached; 
i.e., with each newly arriving job after the fixed 
maximum has been reached a new processor is made 
available (if possible) to serve the job at the head 
of the queue. 

Two other possibilities are 1) the existence of 
special purpose processors, and 2) processors of 
different computing speeds that may be allocated 
by external priority or by job requirements. In 
this regard, we may ask that a user estimate his job 
length or type and then assign him to a processor 
which has been optimized for such jobs. If, after 
some processing, it is found that a user has made 
a poor estimate, he is penalized in some way (e.g., 
by being forced to move to the end of a queue on 

another processor). His penalty for overestimating 
his work is to be placed on a processor which is not 
"tuned" to jobs of this type.6 

The coming importance of networks of computers29 

creates another source of applications for the above 
types of multiple-queue disciplines. Computer net­
work disciplines will also have to be dependent on 
transmission delays of service requests and jobs or 
parts of jobs from one computer to another as well 
as on the possible incompatibilities of various types 
between different computers. The synthesis and 
analysis of multiprocessor and multiple processor 
network priority disciplines remains a fertile area of 
research whose development awaits broader multi­
processor application and an enlightening experience 
with the characteristics of these applications. 

CONCLUSION 

We have listed above a variety of possible computer 
scheduling methods suitable for many situations. 
This list is by no means complete. In fact, this wealth 
of possible algorithms produces an "embarrassment 
of riches" in that we do not really know how to select 
the most useful scheduling methods. As we have in­
dicated, the possibilities are considerable. 

We have also attempted to discuss briefly the 
possible counter-measures available to a user of the 
computer which would allow him to defeat or take 
advantage of the system for the various algorithms 
described. Indeed we have shown that in most 
cases, there is such a countermeasure! One hopes 
that there exists an efficient scheduling method 
which is immune to such manipulations. 
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