
Computer scheduling methods and their countermeasures

by EDWARD G. COFFMAN, JR*
Princeton University
Princeton, New Jersey

A

anu
LEONARD KLEINROCK**
University of California
Los Angeles, California

INTRODUCTION

The simultaneous demand for computer service by
members from a population of users generally results
in the formation of queues. These queues are con­
trolled by some computer scheduling method which
chooses the order in which various users receive at­
tention. The goal of this priority scheduling algorithm
is to provide the population of users with a high
grade of service (rapid response, resource availabil­
ity, etc.(, at the same time maintaining an acceptable
throughput rate. The object of the present paper is to
discuss most of the priority scheduling procedures
that have been considered in the past few years, to dis­
cuss in a coherent way their effectiveness and weak­
nesses in terms of the performance measures men­
tioned above, to describe what the analysis of related
queueing models has been able to provide in the way
of design aids, and in this last respect, to point out
certain unsolved problems. In addition we discuss the
countermeasures which a customer might use in an
attempt to defeat the scheduling algorithm by arrang­
ing his requests m such a way that he appears as a high
priority user. To the extent that we can carry out such
an undertaking, the single most important value of this
consolidation of the results of analysis, experimenta­
tion, and experience will be in the potential reduction
of the uncertainty connected with the design of a
workable service discipline.

By a grade or class of service we mean the availa­
bility of certain resources (both software and hard­
ware), a distribution of resource usage costs, and a
well-defined distribution of waiting or turn-around
times which applies to the customer's use of these re-

*This research was supported in part by the Bell Telephone Lab­
oratories, Murray Hill, New Jersey.

**This research was supported in part, under Contract DAAB07-
67-0540, United States Army Electronics Command, and also

in part by the Advanced Research Projects Agency (SD-184).

sources. In multi-access, multiprogramming systems
throughput may conveniently be measured in terms of
computer operating efficiency defined roughly as the
percentage of time the computer spends in perform­
ing user or customer-directed tasks as compared with
the time spent in performing executive (overhead type)
tasks. We shall avoid trying to measure the program­
mers' or users' productivity in a multi-access environ­
ment as compared with productivity in the usually less
flexible but more efficient batch-processing environ­
ment. For discussions on this subject see References
1 and 2 and the bibliography of Reference 3.

With a somewhat different orientation some of these
topics have been covered elsewhere. In particular,
Coffman,4 Greenberger5 and in more detail Estrin
and Kleinrock6 have reviewed the many applications
of queueing theory to the analysis of multiprogram­
ming systems. In addition, Estrin and Kleinrock have
surveyed simulation and empirical studies of such sys­
tems. However, in contrast to the purposes of the
present paper, the work cited above concentrates on
mathematical models and on service disciplines to
which mathematical modeling and analysis have been
to some extent successfully applied. We shall extend
this investigation to several priority disciplines not
yet analyzed and to others which more properly apply
to batch-processing environments. Furthermore, as
indicated earlier, the present treatment investigates on
a qualitative basis the detailed interaction of the cus­
tomer and the overall system with the service disci­
pline.

Classification of priority disciplines

Before classifying priority disciplines consider the
following very general notion of a queueing system.
In Figure 1 we have shown a feedback queueing sys­
tem consisting of a computer (service) facility, a queue
or system of queues of unprocessed or incompletely

11

Spring Joint Computer Conference, 1968

processed jobs (or more generally, requests for ser­
vice), a source of arrivals requesting service and a
feedback path from the computer to the system of
queues for partially processed jobs. The system will
be defined in any given instance by a description of
the arrival mechanism, the service required from the
computer, the nature of the computer facility, the ser­
vice discipline according to which the selection of ser­
vice requests from the system of users is determined,
and the conditions under which jobs are "fed back"
to the system of queues. In all of the service disci­
plines discussed in the next section we make the fol­
lowing assumptions: 1) the arrival mechanism is
such that if the arrival source is not empty it generates
new requests according to some probability distribu­
tion, 2) the service disciplines are such that the com­
puter facility will never be idle if there exists a job
in the system ready to be executed.

CYCLED (PARTIALLY PROCESSED) UNITS

ARRIVING

UNITS

SYSTEM OF

QUE JES
r
PROC

>i DEPARTURES

J '
ESSOR

Figure I — Feedback queueing system

There are a variety of ways to classify priority ser­
vice disciplines. Indeed, one point of view is expressed
by saying that priorities may be bought (e.g., in disci­
plines where bribing is allowed,7 earned e.g., by a pro­
gram demonstrating favorable characteristics in a
time-sharing system), deserved (e.g., by a program ex­
hibiting beforehand favorable characteristics), or a
combination of the above. For our purposes we shall
classify a given priority method according to the prop­
erties listed below.

A. Preemptive vs. non-preemptive disciplines

This characteristic generally determines how new
arrivals are processed according to the given disci­
pline. If a low priority unit is being serviced when a
higher priority unit arrives (or comes into existence
by virtue of a priority change of some unit already in
the system) then a preemptive service discipline im­
mediately interrupts the server, returns the lower pri­
ority unit to the queue (or simply ejects it from the
system), and commences service on the higher pri­
ority unit. Note that non-preemptive disciplines in­
volve preplanning in some sense. However, the ex­
tent of pre-planned "schedules" may vary widely.

B. Resume vs. restart

This characteristic determines how service is to
proceed on a previously interrupted (preempted) job
when it comes up for service again. With a resume
priority rule no service is lost due to interruption and
with a restart rule all service is lost. Assuming that
the costs of lost service are intolerable in the applica­
tions of concern to us we shall treat only resume rules
and systems in which such rules are feasible.

C. Source of priority information

Service disciplines may be classified according to
the information on which they base priority decisions.
Such a list would be open-ended; however, the sources
of the information may be considered to fall in one of
three not necessarily disjoint environments: 1) the job
environment whereby the information consists of the
intrinsic properties of the jobs (e.g., running time, in­
put/output requirements, storage requirements, etc.),
2) the (virtual) computer system environment (e.g., dy­
namic priorities may be based on the state of the sys­
tem as embodied in the number of jobs or requests
waiting, storage space available, location of jobs
waiting, etc.) and 3) the programmers' or users' en­
vironment in which management may assign priori­
ties according to urgency, importance of individual
programmers, etc.

D. Time at which information becomes known

Classical service disciplines assume that the in­
formation on which priority decisions are based is
known beforehand. On the other hand, time-sharing
disciplines are a prime example of service disciplines
in which decisions are based on information (e.g., run­
ning time and paging behavior, which is obtained only
during the processing of service requests. Such in­
formation, of course, is used to establish priorities
based on the predicted service requirements of re­
quests which at some time were interrupted and re­
turned to the queue.

All of the priority scheduling methods to be dis­
cussed are applicable to the infinite input population
case (in which the number of possible customers is
unbounded) as well as to the finite population case
(in which a finite number of customers use the sys­
tem) — see Reference 6.

Priorities based only on running times

The intent of systems using a so-called running-
time priority discipline is that the shorter jobs should
enjoy better service in terms of waiting times. The
FCFS (first-come-first-served) system is commonly
used as a standard of reference to evaluate the sue-

Computer Scheduling Methods and Countermeasures

cess of this intent. The first two algorithms below as­
sume job running times are known at the time they ar­
rive at the service point, while most of the remain­
der, which have arisen primarily in connection with
multiprogramming systems, assume that no indica­
tions of running times are known until after jobs have
been at least partially run.

A. The shortest-job-first (SJF) discipline8

This is a non-preemptive priority rule whereby the
queue is inspected only after jobs are completely
processed (served) at which times that job in the queue
requiring the least running time is the next to receive
service to completion (and thus there are no cycled
arrivals). The SJF descipline has the obvious advan­
tage of simplicity and the somewhat less obvious ad­
vantage that the mean customer waiting time in the
system is less than in any system (including the FCFS
system) not taking advantage of known running times.
However, it is clear that significantly long running
jobs suffer more in an SJF system than in an FCFS
system. Thus, the reduction in the first moment of the
waiting time comes at the cost of an increase in the
second moment (or variance). We discuss the SJF
discipline further in connection with the following dis­
cipline.

B. The preemptive shortest-job first (PSJF) discipline

With this discipline the SJF priority rule is applied
whenever a job is completed as well as whenever there
is a new arrival. If a new arrival has, at its time of
arrival, a service requirement less than the remain­
ing running time required by the job, if any, in ser­
vice, then the latter job is cycled back to the single
queue and the computer given over to the new arrival.
The job returned to the queue is subsequently treated
as if its running time were that which remained when
it was interrupted; i.e., we have a preemptive, resume
discipline.

The PSJF discipline has the advantages over the
SJF and FCFS disciplines of further accentuating
the favoritism enjoyed by the short running jobs and
further reducing the average waiting time in the sys­
tem. (Again, the variance will be increased.) Indeed,
it has been shown that the PSJF discipline is the opti­
mum running-time priority discipline in these last two
respects. This relationship between the SJF and PSJF
disciplines is seen in part by observing that time-of-
arrival receives some consideration in the SJF disci­
pline but, because of the preemption property, none
at all in the PSJF discipline.

The principal disadvantage of the PSJF discipline
in the computer application is the cost associated with
interrupting a job in progress, placing it into auxiliary

(queue) storage, and loading the higher priority job
for execution. Although this swapping process with
auxiliary storage devices may not always be neces­
sary, depending on the size of main storage, it may out­
weigh the advantage of PSJF scheduling over SJF
scheduling. Since it is usually difficult to expect ad­
vance knowledge of exact running times, it is en­
couraging to note that in a thorough study by Miller
and Schrage9 it is shown that even with partial indi­
cations of running times significant improvements in
mean flow time are possible at the expense of in­
creases in the second moment.

It is obvious that the major effect of these disci­
plines on the programmer-users of such systems is
a salubrious one in that it causes them to produce fas­
ter, more efficient jobs. However, the reaction of a
user with a job ready to be submitted to an SJF or
PSJF system depends to some extent on what infor­
mation regarding the state of the system is available
to the user. If the user can see only the queue length
(and this is usually available) then whether or not he
balks (refuses to join the queue) depends on how long
his job is, his knowledge of the distribution of the run­
ning times of jobs submitted to the system, and his
assessment of his chances were he to decide to come
back later. If indications of the running times of jobs
in the queue are known at arrival time then good esti­
mates of waiting time are possible; thus, longer jobs
wanting fast service are more likely to balk. With
knowledge only of queue length, however, it would
appear that less balking would occur with the SJF
and PSJF systems than with the FCFS system. On
the other hand, reneging (leaving the queue after join­
ing it and before being completely serviced) would be
more likely since long jobs are likely to progress rath­
er slowly toward the service point.

The countermeasures available to the users of the
SJF system in attempts to defeat (or take advantage
of) the computer scheduling algorithm are rather ob­
vious. Firstly, it is clearly advantageous to submit
as short a job as possible. The natural consequence
of this action suggests that a user partition his request
into a sequence of short independent requests. Sec­
ondly, unless special precautions and penalties are
provided, the users may purposefully lie about (i.e.,
underestimate) their required running time. Such
countermeasures lead to a situation in which the at­
tempted discrimination among jobs becomes ineffec­
tive and preferred treatment is given to those users
displaying the use of clever and/or unethical tactics.
We will continue to observe this unfortunate result
in the other scheduling algorithms.

So far we have been discussing computer operating
disciplines as if there existed but one queue of jobs

14 Spring Joint Computer Conference, 1968

waiting in the central processor. This is not generally
true if we consider also the queue or queues of jobs
waiting for the use of input/output (I/O) devices. The
executive or supervisor system itself may be one of
the "jobs" in the I/O queues. In a general batch-pro­
cessing or time-sharing system it is more realistic to
assume that jobs consist of phases or tasks whose re­
quirements alternate between the use of the central
processor and the use of some I/O device. Then the
SJF policies may be defined just for the central pro­
cessing time (as implied above) or by the sum of cen­
tral processing and I/O time.

It is not our intention to discuss I/O scheduling
disciplines in any detail but it should be kept in mind
that a job completion in the central processor system
may simply mean that the given job has reached a
point where it requires an I/O process before continu­
ing. Similarly, an arrival may mean a job returning
from the I/O system for more computing time. This
is not to say, however, that I/O and central process­
ing scheduling are independent processes; indeed, it
may be necessary that one of the criteria for assign­
ing priority (external or internal to the comput sys­
tem) be which I/O devices are required and for how
much time. This is taken up again below.

C. The round-robin (RR) discipline

This well-known scheduling procedure was first
introduced in time-sharing systems as a means for
ensuring fast turn-around for short service requests
when it is assumed that running times are not known
in advance. As seen below the RR discipline falls
within a class of so-called quantum-controlled ser­
vice disciplines in which the size (q) of the quantum
or basic time interval is to be considered as a design
parameter. In an RR system the service facility (com­
puter) processes each job or service request for a max­
imum of q seconds; if the job's service is completed
during this quantum then it simply "leaves" the sys­
tem (i.e., the waiting line and the central processor),
otherwise the job is cycled back to the end of the sin­
gle queue to await another quantum of service. New
arrivals simply join the end of the queue.

As can be seen, the use of running time as a means
of assigning priorities is implicit in the RR disci­
pline, whereas it is explicit in the previous two dis­
ciplines. Running time priorities are assigned after
a job has been allocated a quantum of service — if the
job requires additional service it suffers an immediate
drop to the lowest (relative) priority and sent to the
end of the queue. Furthermore, it is clear that the RR
policy uses both running time and time-of-arrival to
make (implicit) priority decisions. This latter depen­
dence is seen by noting that all jobs arriving at any

time earlier than a given job will have been allocated
at least one more quantum of service when the given
job reaches the service point.

The extent to which the RR discipline maintains the
shortest-job-first policy (in a posterior fashion) de­
pends on the quantum size. Ciearly, if q is allowed
to be infinite we have a FCFS system. On the other
hand as q approaches zero we have in the limit a so-
called processor-sharing system10 in which the part of
the processor not devoted to executive or overhead
functions is "divided up" equally among the jobs cur­
rently in the system. In short, we have a system with
no waiting line wherein it is possible to execute all
jobs simultaneously but at a rate reduction for an in­
dividual job which is proportional to the number in
the system. (The computer systems with multiple pro­
gram counters approximate to some extent the RR be­
havior with q very close to zero). Despite the better
service for short jobs as q decreases, questions of ef­
ficiency generally dictate against quantum sizes too
small in conventional computer systems. We elaborate
on this shortly.

The extent of discrimination by the RR discipline
in favor of short jobs also depends on the distribu­
tion of job running times. In particular, the RR disci­
pline clearly does not take advantage of any knowl­
edge gained by the quantum-execution of a job beyond
the fact that the job simply requires more. For exam­
ple, the distribution of job running times may be such
that any job requiring more than two quanta will with
probability .95 require in excess of 10 quanta. In this
event the desire to favor shorter jobs would indicate
that all jobs having received two quanta should not
come to the service point for the third time until all
jobs in the system have received at least two quanta.
The distribution of job running times that is applica­
ble to RR scheduling in this respect is the exponential
distribution, which also corresponds to the assump­
tion that has been found analytically tractable in most
queueing theoretic studies of the RR discipline. This
arises from the so-called memoryless property of the
exponential distribution which means in our applica­
tion that after executing a job for q seconds (with q
arbitrary) the distribution of the remaining time to
completion is always the same (and equal to the origi­
nal distribution). Thus, it is the continued identical
uncertainty in job running times that constitutes the
primary job characteristic making the simple RR dis­
cipline desirable.

It is immediately evident from the definition of the
RR discipline that the basic disadvantage consists of
the swapping (removing one job from and placing an­
other job into service) necessary for jobs requiring
in excess of q seconds of service. Many approaches

Computer Scheduling Methods and Countermeasures

to the solution of this problem have been taken. For
example, increasing the size of main memory so that
many jobs may coexist there eliminates much of the
need for swapping. Of course, this is a limited and
possibly expensive solution. Also, overlapping the
swapping of one job with the execution of another in
systems with appropriate memory control and storage
capacity makes the swapping process a latent one so
that the suspension of the central processor for input/
output processes is reduced. Nevertheless, with mod­
ern, large-scale multiprogramming systems, the swap­
ping process remains a principal bottleneck to effi­
cient operation with many users.

Several analytical studies of RR disciplines have
been carried out11'12'26 with the goal of determining,
for a system defined by a given arrival process and job
running time distribution, the interaction between sys­
tem performance (efficiency, throughput, or waiting
times) and the swap-time and quantum size param­
eters. As verified by experience, analysis has shown
how performance deteriorates sharply when the quan­
tum size for a given swap time and system loading is
made lower than a certain minimum range of values (or
alternatively when loading becomes too heavy for a
given quantum size). The priority disciplines described
in the next section illustrate techniques whereby this
excessive deterioration of service is avoided to some
extent.

As regards countermeasures, the mere reduction
of one's job length gains little. However, if a user were
to partition his job into many smaller jobs, then he
would achieve superior performance than a user with
an identical job which was left intact. Again, the clever
user wins. An interesting property of the q = 0 case
is worthy of note, namely, that all customers have
identical ratios of service time to mean time spent in
system!

D. The multiple-level feedback (FB) discipline

The FB discipline differs from the RR discipline in
a way which is analogous to the way in which the
PSJF rule differs from the SJF rule. In an FB system
a new arrival preempts (following the quantum, if
any, in progress) all jobs in the system and is allowed
to operate until it has received at least as many quanta
as that job(s) which has received the least number of
quanta up to the time of the new arrival. Alterna­
tively, the FB system may be viewed as consisting of
multiple queue-levels number 1, 2, 3 , . . . with new ar­
rivals put in queue^level 1, jobs having received 1.
quantum and requiring more in queue-level 2, etc.
After each quantum-service the next job to be oper­
ated will be the one at the service point of the lowest
numbered, non-empty queue-level.

Once again, shorter jobs receive better service at
the expense of the longer jobs, and large jobs are not
allowed to interfere or delay excessively the execution
of small jobs. However, the mean flow time is the
same in the RR and FB systems. (In this regard, we
note the existence of a conservation law13 which
gives the contraint* under which one may trade the
speed of response among a population of users.) The
choice between the RR and FB priority disciplines
is determined basically by how much one wants to
favor short jobs, for the basic algorithms involve the
same amount of swapping. It is true* however that the
FB discipline is somewhat more costly to implement
in the sense that indicators must be used to keep
track of the amount of service received by each job.

In the FB system, the users' countermeasure is
again to partition his work into many smaller jobs each
requiring a small number of quanta (one quantum each,
optimally).

Observe that the RR, FB, and FCFS disciplines
may be combined in a variety of useful ways. Two
combinations that have been used are described be­
low.

E. The two-level FB or limited RR discipline

With this discipline jobs are permitted to "round-
robin" only until they have received a fixed number
of quanta. At this point they are put into a "back­
ground" which is only serviced when there are no
other jobs in the system. The background queue may
be executed in a FCFS fashion or in a RR fashion with
perhaps a larger quantum size. Here, the user counter-
measures by forming many jobs from one, each such
requiring no more than the fixed number of quanta
which prevent his falling into the background queue.

F. The FB discipline with a finite number of levels

In this system a job after receiving a fixed maximum
of quanta according to the FB rule (case D) is made to
join a background which is to be serviced in one of the
ways mentioned above. A further degree of freedom
may be added to this or the simple FB rule by remov­
ing the constraint that the quanta allocated at differ­
ent queue-levels be the same.

A question that immediately arises is how one goes
about establishing the values of the quanta, the num­
ber of levels, or any of the other parameters of these
running time priority disciplines. With a specified
arrival proce*ss and job running time distribution,
analysis has been only partly successful in the attempt

*In particular, the sum of the products for each class of users of
the utilization factor (mean arrival rate times mean- service time)
and the mean waiting time remains constant.

16 Spring Joint Computer Conference, 1968

to relate the performance measures of interest to the
structural parameters of the system.12 For further
results simulation or empirical study25 will, in many
cases, prove the more rewarding approach.

U U J V I T V CAlClL AX VI lO l i l U U V L V 1 U 111 U 1 V U U O I V J. J_J>

system we have a processor-sharing type of system
in which the jobs sharing the processor at any point
in time are those which have received the least amount
of service. Thus, a new arrival immediately preempts
those jobs sharing the processor and is allowed to
operate until its attained service is equal to that of
the former or until it completes. It can be seen that
the RR and FB processor-sharing disciplines differ
in structure in precisely the same way as the SJF
and PSJF disciplines. Furthermore, from our earlier
remarks it is evident that the former priority rules
represent the best that one can do with, respectively,
non-preemptive and preemptive priority disciplines
designed to favor shorter jobs when running time is
not known in advance.

G. Declaration of mode—interactive or batch
The time-sharing system at the University of Cali­

fornia at Santa Barbara14 uses an interesting varia­
tion of the above methods. A user is required to state
whether his job is interactive (short, frequent requests)
or batch (longer, usually single requests). Time is
divided into fixed length segments such that during
the first half of each segment, the interactive jobs are
served in a round robin fashion until their half-seg­
ment is exhausted (or until their collective requests
are satisfied). The remainder of the segment is then
used to service (to completion, if possible) as many of
the batch jobs as possible. During the first half-seg­
ment, some interactive jobs will drop from the queue
after one quantum of service (e.g., those requiring
the acceptance of a single button-push), etc; thus in
this system, there is a benefit in declaring the nature
of your job in an honest way, since in the case where
there is only one batch job and many interactive jobs,
the batch job receives better service if that user de­
clares himself as being in the batch mode.

The discussion of balking and reneging when run­
ning time is assumed unknown applies without change
to the RR and FB disciplines analogous to the SJF
and PSJF disciplines, respectively. Another effect
that may need to be taken into account in the design
of a time-sharing discipline is that of "jockeying"
among queues of users awaiting service at a console.
(This complication of balking and reneging has re­
ceived little attention in the literature.) As before,
users are encouraged to produce fast running jobs
for the RR and FB disciplines. In time-sharing
applications this might be better stated by saying that

users are encouraged to produce "frequently interact­
ing" jobs. In a given multiple-level RR system, for
example, long jobs may avoid being put into a back­
ground by communicating (artificially, if necessary)
w n i i iiiC i/ii~iui* u 5 u cli a n^i^uCiiv}' o u v i i n i d i n o

running time never exceeds the foreground quantum
during any operation interval. In effect, the job is
alternating between the foreground and input/output
queues in a way* that provides better service than
if it were put into the background. Obviously, this
is an example where the more clever users of a sys­
tem tend to defeat the purpose of the service disci­
pline.

As a final remark it should be noted that the exist­
ence of saturation in a system with any of the dis­
ciplines we have discussed, except for the RR dis­
cipline, depends on the ciass of jobs being considered.
For example, in an SJF, PSJF, or FB system it is
clearly possible that loading be such that jobs with less
than say five minutes running time will have a finite
expected wait while those with greater than five min­
utes running time will have an infinite expected wait
(in the infinite population case). Of course, the sys­
tem as a whole is saturated if a finite threshold of this
nature exists, since the processor is not able to com­
plete all jobs submitted to it. For the RR discipline
(as with the FCFS system) there exists a single satura­
tion point which, when reached, causes all jobs to
have an infinite expected wait. (This stems from the
continued interference of long jobs with the execution
of short jobs.)

State-dependent running time priority disciplines

The principal motivation behind state-dependent
disciplines is the desire to reduce the overhead and
swapping costs in the execution of quantum-controlled
service. It is of particular interest to prevent or mini­
mize the collapse of RR system performance under
heavy loading; i.e., to provide a more graceful dete­
rioration of service with increases in loading.

A. Cycle-oriented RR disciplines

A basic design parameter of such systems is the so-
called cycle or response time which is set and used
to control as desired the maximum amount of time
required to execute one round-robin through all
active jobs. In one variation,12 after completing a
given cycle or round-robin, the subsequent round-
robin quantum is determined by dividing the fixed
cycle time parameter by the number of jobs requiring
service; the time represented by the result of this
division is then allocated to each of the jobs requir­
ing service at the beginning of the cycle. Subsequent
cycles are then determined in the same fashion. Usu-

Computer Scheduling Methods and Countermeasures

ally, some minimum allocation time (quantum) is
always given because of the otherwise seriously de­
grading effects of swapping during heavy loading.
Although the cycle time therefore increases at ex­
cessive loading, it is clear that system performance
degrades more gracefully than otherwise in that the
loss of swapping is reduced as the load increases.
The present discipline is state-dependent in the sense
that the amount of time received by a given job in a
given cycle depends on the number of active jobs in
the system at the beginning of the cycle.

In another (two-level) RR variation26 a maximum
cycle time is similarly imposed on the amount of time
taken to process a "foreground" queue (i.e., a queue
of interactive, on-line user jobs) and a background
queue consisting of conventional production type
jobs. In this time interval each foreground job is given
a fixed quantum; if there is any time remaining in the
cycle it is devoted to the background job processing,
otherwise another cycle is initiated. To limit swapping
overhead (and thereby provide graceful degradation
during periods of heavy loading) the cycle is extended
in the event there are too many foreground jobs to
process for one quantum in one cycle.

It is clear that the advantage of a reduced variance
in RR response times is compensated in cycle-orient­
ed disciplines by the slower reaction to changes in
loading or input activity (we have implied that the
queue is examined only at the end of the round-robin
cycles). Statistically, however, this disadvantage
would seem to be a minor one. Of course, it is also
possible to make the value of the cycle time param­
eter dependent on system loading (number in the
system). Just how this is to be done in a useful way,
however, presents a difficult problem. In these dis­
ciplines, the countermeasure of partitioning a long
job into many small jobs is extremely effective.

B. Input-dependent disciplines
In one such (RR) discipline each time a new arrival

occurs the job, if any, in service is allocated an addi­
tional quantum of execution time.15 In this way the
RR discipline reacts to heavy input activity by in­
creasing time allocation and thereby reducing the
amount of overhead and swapping. During light to
moderate input activity the straight RR discipline is
little effected by this change.

Another such discipline orders the queue of inter­
active user's jobs by interarrival time. Thus, those
users communicating with the system at the faster
rates will receive the shorter response time. The
obvious countermeasure here is to initiate false I/O
commands. This technique, of course, may be com­
bined in various ways with both RR and FB disci­
plines.

C. Priorities based on storage allocation

Apart from the number in the system the most
important other source of internal priority infor­
mation is the current allocation of storage and the
availability of I/O devices to perform storage alloca­
tion functions. This, of course is tied in with the swap­
ping problem discussed earlier. In batch processing
systems requiring maximum efficiency this infor­
mation may serve as the only criterion for assigning
oriorities: at a decision ooint with this tvne of dis-
cipline a schedule of job operations is computed as
far as necessary in advance such that storage is well
utilized in some reasonable sense.

This sort of scheduling is also applicable to the
cycle-oriented RR disciplines described earlier. Thus
a job is executed once per cycle, but where it exe­
cutes in the cycle is made dependent on what turns
out to be the best way (or at least a good way) to
sequence the use of main storage so that I/O is mini­
mized and overlapped as much as possible with com­
putation. Clearly, the cost that must be compensated
in this operation is the (potentially substantial) over­
head time required to produce "good" schedules.

In the latest generation of multiprogramming sys­
tems, storage structure and the processes of storage
allocation have been made more elegant by the con­
cepts of virtual memory and paging.16 In paging
systems jobs (programs and data) are paginated into
sets of fixed length pages or blocks of computer words
so that the logical unit of information transfer within
the supervisory system becomes a page. This also
means that jobs may be operated (at least in part)
when only a proper subset of the job's pages are in
main storage. The synthesis and analysis of efficient
storage dependent, running time priority disciplines
that take advantage of this added flexibility is a dif­
ficult, important, and as yet unsolved problem.

Inclusion of externally generated priorities

The classical priority disciplines in which priorities
are determined external to the computer system are
described as follows. At any point in time with pre­
emptive rules or just after service completions with
non-preeemptive rules the job next to be serviced
is the one with the highest priority (i.e., the job having
been assigned the lowest priority number). That
discipline receiving the most attention in the litera­
ture is one for which the number of priorities is
finite or countably infinite; i.e., in one-to-one cor­
respondence with the integers.17 This gives rise to
levels of queues containing jobs of the same priority;
these queues are generally ordered by time of arrival
to the system. The advantages and disadvantages
of preemptive vs. non-preemptive priority rules are the

18 Spring Joint Computer Conference, 1968

same as those discussed for the PSJF and SJF rules
in an earlier section.

There has been a variety of ways by which exter­
nally generated priorities have been included in
the running time priority disciplines described in
previous sections. These are classified as follows.

A. RR disciplines with external priorities
A technique used with RR disciplines consists of

making the quantum size to be allocated dependent
on the priorities of the active jobs.10 Thus, a higher
priority job would be allocated a larger quantum
than a lower priority job. In the limit where the
quantum size is zero we have a processor-sharing
system in which the fraction of the processing rate
received by a job is determined by an externally

Another technique which smacks of the multiple
level schemes given below involves the specification
of (relative) time delays as priorities.28 Consider the
following implementation, for example: Each arriving,
job is assigned a (priority) number which is based
on the given job's externally assigned priority and
on the number currently possessed by the other active
jobs in the system. After a given quantum-service
(which may consist of multiple quanta) the next job
to receive service is the one having the lowest prior­
ity number. The jobs having the same priority number
are ordered by time of arrival and serviced in that
sequence. Each time a job is serviced for one quantum
its priority number is increased by one. Thus, with
a non-preemptive system we see that the number
assigned to an arriving job indicates how much time
it is to be allocated for operation before it joins
the round-robin of jobs already in the system; this
in turn is determined by an external priority assign­
ment.

B. Multiple level disciplines with externally assigned
priorities

The simplest and most natural method of including
external priorities applies to the multiple level
disciplines in which each level is used to correspond
to an external priority number as well as to a given
level of attained service.12 In this way conventional
priority scheduling is combined directly with the
various FB disciplines described earlier. However,
variations in these types of disciplines may be ob­
tained by the selection made for the means of order­
ing the queue-levels. Specifically, the queues may be
ordered by time of arrival to the system, by time
of arrival to the queue, or by a combination of one
of these with ordering by priority; i.e., by the queue
level of original entry to the system. (Note that
ordering by time of arrival to the queue and by

time of arrival to the system amounts to the same
thing in the basic FB discipline without external
priorities.)

One time-sharing scheduling discipline of the
above type that has received considerable attention
is one in which priorities are assigned at arrival
time according to job size (storage requirements),
queues are ordered by time of arrival to the queue,
and quantum sizes are exponentially increasing
with the queue level (i.e., level one provides on
quantum, level two provides two quanta, level three
provides four quanta, and so on.2 Priorities based
on storage requirements are assigned so that the
larger jobs receive the lower priorities (enter at the
higher queue leVels). In this fashion efficiency is
kept high by reduction in swapping time, since large
jobs are given more time to operate between swaps.
Furthermore, the large jobs are not allowed to interfere
with the small, presumably faster, and more efficiently
scheduled jobs. Clearly, users of such systems are
further encouraged to write small jobs, again possibly
by breaking larger jobs up into autonomous and small
sub-jobs.

For a given application the design of the general
disciplines just discussed requires a means for evalua­
tion of the best values for the quantum distribution,
the specification of the storage-dependent priority
assignment rule, and the selection of the best method
for ordering queue levels. Here again is a synthesis
problem similar to the one mentioned earlier. At
present no generally applicable, well-defined proce­
dure exists; experiment by simulation and empirical
study has been used thus far. Some encouraging work
towards the optimal synthesis of such systems has
been reported by Fife.18

In all of the externally assigned priority methods,
the user who can influence the assignment of external
priorities has a great advantage over the others.
This is taken up next.

C. User controlled priority assignment
According to this type of discipline the user is al-1

lowed in some way to bid for, or simply buy the prior­
ity he desires (or can afford) for his job. One such dis­
cipline is the so-called bribing model7 in which system
users offer a bribe (based on an "impatience" factor
of their own) to obtain a preferred position in the
queue of waiting jobs. All those bribing strategies
are then considered which minimize an appropriately
defined cost function over the set of users.

Another (quantum-controlled) system19 of this
sort has been used which provides a quantum size
that is proportional to the priority a user decides
to assign his job, and which increases with the size
of his job (in order to maintain a reasonable operating

Computer Scheduling Methods and Counter-measures 19

efficiency). What constrains the priority a user assigns
to his job is the fact that he is charged a fee for use
of the system which is proportional to the product
of the priority he has selected times the sum of the
computing and I/O time required by the job. In this
particular case, as well as in the bribing case, if a
user is capable of learning what all the other users
have assigned as their priorities (or bribes) then
he need merely "go one better" and choose a slightly
higher priority (or bribe) to achieve superior service.
Note when the system is heavily loaded that all
users see a "slow" system and so they tend to in­
crease their self-assigned priorities (or bribes) in
an iterative fashion; the result is an ever increasing
cost to the user for a constantly decreasing grade of
service! Clearly, the user population as a whole
should in such case, act in collusion to prevent such
runaway conditions.

Dynamic or time-dependent priorities

There have been a number of priority disciplines
proposed in which jobs receive an external priority
that changes in a dynamic way once the job is in
the system. These disciplines were motivated by
other applications but it will be clear that they may
be considered candidates for scheduling computer
operations.

So far we have treated disciplines in which the
waiting time experienced by a job is not used to
directly influence the priority decision. The dis­
ciplines below are structured so that this information,
weighted by an external priority number is used
in the process of selecting from the queue which
job is to be serviced next.

A. Delay-dependent disciplines
In the first variation to be discussed20 a job's

priority is increased, from zero at the time of arrival,
linearly with time in proportion to a rate (externally)
assigned to the job's priority class. Each time a new
job is to be selected for service according to the
non-preemptive or preemptive variations of this
scheme the "attained" priorities of jobs in the system
are compared, and that job with the highest attained
priority is selected next for service. If the priority
classes are assigned according to a shortest-job-
first policy it can be seen that this rule moderates
the SJF and PSJF rules by reducing the probability
of excessively long waits.

In another variation21 jobs are similarly assigned
external priorities related to the urgency of service.
However, with this discipline a given job takes
precedence over another job in the queue if, and only
if, the difference between the former's (external)

priority and that of the latter is not less than the
time the latter has spent waiting. This scheme may
be implemented as a preemptive as well as a non-
preeemptive discipline. Again, this is an example
in which management becomes concerned about
a job that has waited for a long time.

B. Priorities based on general cost accrual5

In the most general such system arriving jobs have
associated with them a cost accrual rate which is
some arbitrary function of time. In a preemptive or
non-preemptive mode the discipline is executed by
servicing (at each decision point) that job which
minimizes over all jobs the cost accrued by the sub­
sequent waiting time. The cost accrual attributable
to a given job over a given time interval is calculated
simply by integrating the cost rate curve over the
given time interval. It is of interest also that one may
introduce deadlines by making the slope of the cost
rate function infinite after a suitable interval of
time.

The simplest case of the general discipline exists
when the cost functions are constant and identical
for each user. It can be seen that this corresponds
to a system in which cost accrues linearly with
time and where the priority minimizes the average
wait (i.e., we have the PSJF or SJF rules depending on
whether or not we have preemption). If we assume
constant valued functions that may differ for each
job we have the so-called c/t rule. This rule amounts
to selecting for service that job whose ratio of constant
cost rate (c) to known or average service time (t)
is the smallest.

In these systems, it is not usually to one's advantage
to partition jobs into smaller ones in an attempt to
defeat the system. In fact, it may pay to group many
jobs together so that they all enjoy an early arrival
time to the system.

Priority disciplines in multiprocessor systems

In providing the additional degree of freedom of the
number (and perhaps types) of processors many
different possibilities come into existence, most of
which have not been fully tested or analyzed as yet.
In this section we shall examine briefly the application
of previously discussed disciplines to multiprocessor
systems and certain disciplines for which analyses
exist in the literature but which arose out of other
applications.

A. Processors-in-series systems
Multiple channel (server) queueing systems are

broadly classified in the literature according to
whether the servers are being used in parallel or in

20 Spring Joint Computer Conference, 1968

phase type service. By phase type service we mean
that the processors are being used in sequence:22

one phase of a given job are being serviced on a given
processor. In general, each processor will have a
queue of jobs (phases) which is fed by the output
of some other processor or by an external source.
Such a system applies, for example, to the alternating
I/O and computing job structure described in another
section. Here, we assume that at least one central
processor and at least one I/O processor is being used
in a cyclic way by a given job. Other applications of
this discipline)which may be combined with other dis­
ciplines at each of the separate queues) are to be
found in computer systems dedicated to the processing
of certain, large phase-structure jobs.

B= Processors used in parallel
The simplest extension of the previous disciplines

to multiple processors is simply to treat the processors
in a first-available-first-used fashion. 8 In large,
general-purpose systems in which the processors
are identical this single queue approach offers the
advantages of simplicity, flexibility, and efficiency.
The disciplines may be made more effective in those
systems where jobs are designed to operate on one
or more processors depending dynamically on avail­
ability.23

However, several other variations of "parallel"
priority disciplines exist when the set of processors
or the input jobs are not homogeneous. The simplest
such case arises when jobs fall into one of two
categories; a foreground of fast service jobs and a
background of perhaps less important production
type jobs. These conditions are appropriate to the
so-called variable-channel discipline in which the
number of processors made available to the fore­
ground jobs is made dependent on (increases with)
the number of foreground jobs in the system. The
number of foreground processors increases only
after a maximum queue length has been reached;
i.e., with each newly arriving job after the fixed
maximum has been reached a new processor is made
available (if possible) to serve the job at the head
of the queue.

Two other possibilities are 1) the existence of
special purpose processors, and 2) processors of
different computing speeds that may be allocated
by external priority or by job requirements. In
this regard, we may ask that a user estimate his job
length or type and then assign him to a processor
which has been optimized for such jobs. If, after
some processing, it is found that a user has made
a poor estimate, he is penalized in some way (e.g.,
by being forced to move to the end of a queue on

another processor). His penalty for overestimating
his work is to be placed on a processor which is not
"tuned" to jobs of this type.6

The coming importance of networks of computers29

creates another source of applications for the above
types of multiple-queue disciplines. Computer net­
work disciplines will also have to be dependent on
transmission delays of service requests and jobs or
parts of jobs from one computer to another as well
as on the possible incompatibilities of various types
between different computers. The synthesis and
analysis of multiprocessor and multiple processor
network priority disciplines remains a fertile area of
research whose development awaits broader multi­
processor application and an enlightening experience
with the characteristics of these applications.

CONCLUSION

We have listed above a variety of possible computer
scheduling methods suitable for many situations.
This list is by no means complete. In fact, this wealth
of possible algorithms produces an "embarrassment
of riches" in that we do not really know how to select
the most useful scheduling methods. As we have in­
dicated, the possibilities are considerable.

We have also attempted to discuss briefly the
possible counter-measures available to a user of the
computer which would allow him to defeat or take
advantage of the system for the various algorithms
described. Indeed we have shown that in most
cases, there is such a countermeasure! One hopes
that there exists an efficient scheduling method
which is immune to such manipulations.

REFERENCES

1 J I SCHWARTZ E G COFFMAN C WEISSMAN
A general purpose time-sharing system
ProcSJCC 1964

2 F T CORBATO M MERWYN-DAGGETT
R C DALEY
An experimental time-sharing system
ProcSJCC 1962

3 G BELL M W PIRTLE
Time-sharing bibliography
Proc IEEE December 1966

4 E G COFFMAN
Studying multiprogramming systems through the use of
queueing theory
Datamation July 1967

5 M GREENBERGER
The priority problem
MIT Project Rep MAC-TR-22 November 1965

6 G ESTRIN L KLEINROCK
Measures models and measurements for time-shared computer

utilities
Proc ACM Natl Conf August 1967

Computer Scheduling Methods and Countermeasures 21

7 L KLEIN ROCK
Optimum bribing for queue position
Journal of operations research (to appear)

8 T E PHIPPS JR
Machine repair as a priority waiting-line problem
Operations Research vol 4 1956

9 L W MILLER L E SCHRAGE
The queue M\G\l with the shortest remaining processing
time discipline
Rand Corp Report P 3263 November 1965
See also
L E SCHRAGE
Some queueing models for a time-shared facility
PhD Dissertation Dept of Indust Engineering Cornell Univ
February 1966

10 L KLEINROCK
Time-shared systems: A theoretical treatment
Journal of the ACM April 1967

11 L KLEINROCK
Analysis of a time-shared processor
Naval Res and Log Quart March 1964

12 E G COFFMAN
Stochastic models for multiple and time-shared computer
systems
PhD Dissertation Dept of Engineering UCLA June 1966

13 L KLEINROCK
A conservation law for a wide class of queueing disciplines
Naval Res and Log Quart June 1965

14 G CULLER
Univ of Calif at Santa Barbara (Private Communication)

15 E G COFFMAN
Analysis of two time-sharing algorithms designed for limited
swapping
Journal of the ACM (to appear)

16 J B DENNIS
Segmentation and the design of multiprogrammed computer
systems
Journal of the ACM October 1965

17 A COBHAM
Priority assignment in waiting line problems
Operations Research Feb 1954

18 D W FIFE

An optimization model for time-sharing
Proc SJCC 1966

19 G SUTHERLAND
Paper presented at the symposium: Computers and commu­
nication: Their system interaction
Sponsored by the IEEE groups on Communication Tech­
nology and Electronic Computers Santa Monica Calif January
1967

20 L KLEINROCK A FINKELSTEIN
Time-dependent priority queues
Journal of ORSA (to appear)

21 J R JACKSON
Waiting time distribution for queues with dynamic priorities
Naval Res and Log Quart March 1962

22 L KLEINROCK
Sequential processing machines (SPM) analyzed with a
queueing theory model
Journal of the ACM April 1966

23 D F MARTIN
The automatic assignment and sequencing of computations
on parallel processor systems
PhD Dissertation Dept of Engineering UCLA January 1966

24 A L SCHERR
A n analysis of time-shared computer systems
PhD Dissertation Dept of Electrical Engineering MIT
June 1965
(See also the bibliography in reference 6)

25 B KR1SHNAMOORTHI R C WOOD
Time-shared computer operations with both interarrival and
service times exponential
Journal of the ACM July 1966

26 Time-sharing systeml360 development workbook
IBM Internal Document

27 E T IRONS
A rapid turn-around multi-programming system
Comm of the ACM March 1965

28 E G COFFMAN
Bounds on the parallel processing of bulk queues
Naval Res and Log Quart September 1967

29 T MAR1LL L G ROBERTS
Toward a cooperative network of time-shared computers
Proc FJCC 1966

