i

An Upper Bound on the Improvement of Asynchronous versus

Synchronous Distributed Processing

*

" Robert E. Felderman and Leonard Kleinrock
UCLA Computer Science Department
3732L Boelter Hall
Los Angeles, CA 90024-1596

Abstract

We use simple models of two distributed
processing methods, one asynchronous, the
other synchronous, to calculate the maxi-
mum potential performance gain of the for-
mer over the latter. We show, in the limit
as the number of tasks grows and the num-
ber of processors increases, that the asyn--
chronous method has an expected potential
speedup over the synchronous method of no
more than In P where P is the number of
processors used by each strategy.

1 Introduction

We compare two synchronization methods used in
distributed processing systems and determine how
much better one performs than the other. Our moti-
vation comes from the area of Parallel Discrete Event
Simulation (PDES) which has received much atten-
tion recently [Misra 1986] [Jefferson 1985]. There
are several algorithms used for PDES and this paper
demonstrates the potential improvement by using an
asynchronous approach (e.g. Time Warp), over a
synchronous techmque, (e.g. time-stepped simula-
tion). We first give an introduction to PDES, discuss
briefly the two methods chosen for comparison, and
then follow with our models and analysis. Readers
who are unfamiliar with Discrete Event Simulation
and techniques used to parallelize it are referred to
[Misra 1986 [Jefferson 1985] [Peacock et al. 1979]
for more details.

2 Parallel Discrete Event
Simulation

Parallel Discrete Event Simulation is generally ac-
complished by partitioning the simulation into logi-
cal processes (LP) or entities each of which simulates
some physical process in the system. An example

*This work was supported by the Defense Advanced
Research Projects Agency under Contract MDA 903-87-
C0663, Parallel Systems Laboratory.

- TIO< s> IO

A = Source B,C,D,E=Servers F =Sink

Figure 1: Example queueing network

is the simple queueing network shown in Figure 1.
Entities in our system are the customer arrival pro-
cess(A), the servers(B,C,D,E) and a final sink pro-
cess(F) to collect departing customers. Each process
receives messages, performs internal computations
and sends messages to other processes. FEach LP
maintains a local clock which indicates the current
time of the simulation at that entity, and a process
terminates once its local or logical clock (the simula-
tion time of the message currently being processed)
has reached Tinaz, the total time of the simulation (a
user specified duration). One can think of each log-
ical process as residing.on a separate processor, but
this is not necessary. In fact, all the logical processes
may reside on a single processor. LPs operate in-
dependently and communicate with each other only
if the physical processes being simulated by the LPs
are connected. For exa.mple logical process A (LP4)
connects to LPp which is in turn connected to LP¢
and LPp etc. Every path which can be traversed by
a customer in-the physical system must correspond
to a logical communication path -in. the simulation
system. Messages passed between LPs in our queue-
ing example are the actual customers flowing through
the system.

Each logical process could be placed on its own
processor, and one might hope that we could then
gain speedup proportional to the number of proces-
sors used. Unfortunately, this is often not the case
as the system being simulated may have only limited
parallelism. Also, the PDES algorithms themselves
limit parallelism in their attempt to prevent the sim-
ulation from deadlocking and to ensure correctness.

131

Several competing techniques have been developed
to address deadlocking and correctness. One [Pea-
cock et al. 1979] is described as a synchronous ap-
proach which keeps logical process clocks in synchro-
nization while another [Jefferson 1985] is an asyn-
chronous strategy which uses a rollback mechanism
which is invoked only when needed for synchroniza-
tion.

2.1 Time-Stepped Simulation

Distributed time-stepped simulation [Peacock et al.
1979] is accomplished by keeping all the local clocks
in strict synchronization. At any point in real time
each LP’s local clock will have the same value as
any other LP’s clock. As the simulation runs, the
local clocks take on a sequence of discrete values
(to,t1,ta,...) each differing by an amount A. All
processors must complete execution of events up to ¢;
before any processor begins processing at ¢;4+1. Each
processor may have a different amount of work to
do at each time step or some may operate at differ-
ent speeds so that many processors may have to wait
for the slowest one to complete execution of the #*
step. Time-stepped simulation is attractive due to
its simplicity of implementation. By keeping all the
LPs processing at the same simulation time, dead-
locks cannot occur and no further effort needs to be
expended in guaranteeing the correctness of the sim-
ulation. Time-stepped simulation is an example of
the synchronous approach.

2.2 Time Warp

Our asynchronous example comes from one of the
more recent developments in the area of PDES; the
so-called optimistic strategies. One such strategy is
called Time Warp and was developed by Jefferson
[Jefferson 1985]. The basic idea is that the require-
ment of keeping each LP in strict synchronization
(keeping local clocks the same), even when it isn’t
necessary, may lead to a degradation in performance.
The Time Warp mechanism allows LPs to race for-
ward as quickly as possible. If a message arrives
which has a lower timestamp than the value of the
LP’s clock, indicating the LP proceeded with incom-
plete information, the LP is “rolled back” to the time
of the incoming message. This can be accomplished
because the system periodically saves the state of the
LP. Any effects of having advanced too far (i.e. er-
roneous messages) are canceled through an elegant
technique using anti-messages [Jefferson 1985].

3 The Models

We have opted to use very simple models of the two
approaches in order to assess the potential improve-

[] = No execution time, synchronization only
O = A task.

Figure 2: Synchronous Task Graph

ment of the asynchronous versus the synchronous
strategy. Our model of the time-stepped (syn-
chronous) strategy will provide us with an accurate
estimate of its time to complete a simulation, while
the model for the asynchronous strategy will provide
us with an overly low estimate of its expected comple-
tion time. Therefore, we establish an upper bound
on the potential improvement of the asynchronous
strategy over the time-stepped method.

To analyze the two techniques, we propose the fol-
lowing model: P processors each execute K tasks
(events) sequentially. Each processor p must per-
form tasks Tp1 - -+ Tpk - - - Tpk in sequential order. K
determines the “size” of the simulation. A task will
take a random amount of time to complete execution
on any processor.

Our model of the synchronous approach is based
on the idea that an LP must wait for all other LPs
to complete a step before continuing. Each processor
must wait until every processor has completed its
it task prior to beginning execution of the (i + 1)**
task. This is essentially a “staged” execution with K
stages where each stage takes as long as the slowest
processor. This task graph is shown in Figure 2 for
H'=4 andP=T

The asynchronous strategy has no such ”staging”
restriction, and, moreover, in the best possible cir-
cumstance no rollbacks will occur. We allow each
processor to execute its tasks in order as fast as it
can, without waiting for the other processors to fin-
ish. The total time to finish is simply the time that
the slowest processor takes to complete its K tasks.
To keep the model simple we are assuming no roll-
backs; it is as if each processor never has to wait for
any messages from other processors, and that all mes-
sages arrive in timestamp order. The asynchronous
task graph is shown in Figure 3.

132

Y S

A4 N

P ~

7 7

0 0

A 4 A 4

o P

2 ®, 2 &, =7
O o

A A

o Pt

Nl A

™\ o

A4 7

- K=4 -

[= No execution time, synchronization only
Q= A task

Figure 3: Asynchronous Task Graph

4 Space of Synchronization
Methods

Though the models we are using are extremely sim-
ple, we believe they provide us with very impor-
tant information. Our time-stepped model (Fig-
ure 2) requires the most synchronization, and there-
fore will take the longest time to complete execution
of any system which exhibits full parallelism in each
stage. Our asynchronous model (Figure 3) shows the
least amount of internal synchronization (none) and
should complete execution in less time than any other
method. Therefore, we believe that these two models
span the range of possibilities and give a good indica-
tion of the maximum performance improvement that
could be gained by using the asynchronous strategy.

5 Exponentially Distributed
Task Times

If we model each task execution time with an expo-
nential distribution and treat the processors as iden-
tical, the expected time for the synchronous strategy
is K times the maximum of P exponentials, while the
expected time for the asynchronous strategy is the
maximum of P K-stage Erlangs. We now proceed
to calculate the ratio R, of the expected completion
times for exponentially distributed task times.

5.1 Time-Stepped (Synchronous)
Model

Let T' = the maximum of P exponentials with mean
+. The cumulative distribution (PDF) of T is

Fr(z) = (1—e)", (1)
with density function
fr(z) = P(1— ™) " pemre, 2)

Using the PDF we can calculate the expected value
of T [Kleinrock 1975].

E[T] = /000(1 — Fr(z))dz
/ow [1- (1 - em)7] da
/ow [1 - i (‘:.)) 1P*‘(—e“”=)*] dz

=0
,Z:;(1:)(_1)"+1/:°(e—mz)dz

Since [Graham et al. 1989]
P

ea P
>(§)eum=2s

ga=1

1l

E[T] = %Z% 3)

We now define T, as the time for all K stages to
complete. Clearly, E[T,] = KE[T]. So the final
equation for E[T;] where P is the number of pro-
cessors and K is the number of steps is:

P
BLl= 2 @
i=1

An excellent approximation for this is [Jolley 1961]:
1 1/12

2P~ P(P+ 1)) : 8)

where E = Euler’s Constant ~ 0.57722.

E[T,]z%(E+lnP+

5.2 Time Warp (Asynchronous)
Model

We define T, as the maximum of P K-stage Erlangs
where each stage has mean %" The probability den-

sity function of a single K-stage Erlang is

_ pe HE(uz)t
The PDF can be found either by direct integration of
the density function, or by realizing that the prob-
ability that a K-stage Erlang takes time less than
or equal to ¢ is one minus the probability that it
takes time greater than ¢, which is simply one minus
the probability that there are less than K arrivals in
the interval [0 — ¢] from a Poisson process at rate u.
Therefore

z K-1 :Bi
Fy(z) :/0 fi(z)dz =1—e#° 2—:0 -(#1—')-)

133

Te Versus P

1 P (Number of Processors) 10
(log scale)

Figure 4: T, versus In P.

The cumulative distribution of the maximum of P
K-stage Erlangs is:

K ey
o Bl
Fr.(z)=|1-c¢ ;:0 i : (8)
Using Fr, (z) we can calculate the expectation of 7.

BT = [1 Fre)ds

Thus,

35 K=1 N
E[Ta]zf0 Hp (1-e-‘w 2_; %) dz

-5 (5) e S

Unfortunately, this equation has no closed form ex-
pression for the integral. By decomposing E[T,] into
two components: the mean of a K-stage Erlang and
8 2 the difference between the mean and the ex-
pected value of the max of P K-stage Erlangs, we
can approximate E[Tg].

E[T,] = Mean of K-stage Erlang + T

K
= —+Te
7

An excellent approximation for 7, when K > 1 and
P>1is

T. ~ % ((Cn®K + D)InP + AK + B). (9)

Regression Slope Values versus Ln(K) 2

2.254
1.50
0.75 . . 5 i
0 2 4 8 10
Ln(K)"2
Regression Intercept Values versus K
0.4 -
0.2 1
0.0
=02 T T T T T T v 1
0 5 10 15 20
K (Number of Steps)
Figure 5: Regression Values
Where

A=0.02244~0.02 B =1.14571~1.15
C =0.22278 2 0.22 D =0.55957 =~ 0.56.

This approximation was developed by using least
squares regression techniques three times. It was first
noticed that for a fixed K, T, seemed to be directly
related to In P. This is clearly seen in Figure 4. For
each value of ¥ < K we performed a linear regres-
sion for T, such that (T¢), = m(InP) + b, thus
generating K slopes and intercepts, one set for each
value of k. Then, it appeared that the slopes for each
k approximation were linearly related to In?k, while
the intercepts seemed linearly related to k. This can
be seen in Figure 5. Therefore, a second regression
was performed on the slope values versus In“k (gen-
erates the values for the constants C and D), while a
third regression was performed on the intercept val-
ues versus k (generates the values for the constants
A and B). Figure 6 shows the approximation com-
pared to simulation for values of K and P between
one and ten and Figure 7 shows the comparison for
K, P>=.100.

5.3 Relative Performance

Let us look at the ratio, R, of the two approxima-
tions.

1 1/12)

K
E[ﬂ]~7<E+lnP+ﬁ_m

134

Comparison of E[Tal Approximation with
Simulation (Confidence 98%) (u = 1/4)

65 + K=10
55 =
45 -
E[Ta}
35 1 : z = K=4
=
=
25 - - =
B = K=2
L _J
15 49 =/':———- = = =
=
5 v e v 1
0 10

2 4 6 8
P (Number of Processors)

Figure 6: Comparison of Approximation and Simu-
lation for K < 10.

Comparison of E[Tal] Approximation with
Simulation (Confidence 98%) (u =.1/4)

2500 -
K=500
PRS-

2000 K=400

E[Tal
1500 o KmIng
K=200
1000 - - - >
- K=100
500 e : —

50 150 250 350 450

P (Number of Processors)

Figure 7: Comparison of Approximation and Simu-
lation for K > 100.

K:. 1

E[T,] ~ T ((Cn®’K + D)In P + AK + B)
_ E[T]
R = Tm

K (E+m(P)+ 5 - bt
1 ((Cln*(K) + D)In(P) + (1 + A)K + B)
_ E+hmP+ - gy

= !Cln2K+D!lnP+(1+A)+%

Taking the limit as the size of the simulation in-
creases (K — oo) and assuming that K >> InP

we get
E+InP+ 1 _1/12
lim R, = Liid ﬂéﬁ
—00 (1 - A)
Finally, for large P
: In P In P

~lnP. (10)

lim R, ~
K —00,P—00

aA+4) 102

Thus, in the limit as the size of the simulation in-
creases to infinity, the asynchronous approach could,
at most, complete In P times as fast as the time-
stepped method on average. We can derive this re-
sult by appealing to intuition. We have exponential
task times where each task takes, on average, % sec-
onds to complete. For synchronized execution, basic
principles (Section 5.1) tell us that each stage will
take time proportional to -};lnP on .the average for

a total expected time of % In P. The asynchronous
execution on average takes time equal to -’E- plus T

a term which is small compared to % for large K.
Therefore, the ratio of the two times should be In P.
It should be noted that a trivial lower bound on T,
(thus an upper bound on R.) is found by simply using
the mean of P K-stage Erlangs. Our approximation
(Equation 9) confirms this result since A,B,C and D
are all non-negative.

Additionally, if we believe that no method could
achieve a speedup greater than P for P processors
over execution on a single processor, then any time-
stepBed method is limited to a maximum speedup
of 5. These results depend on the assumption of
an exponential distribution for task times. The next
section uses a uniform [0-X] distribution for task ex-
ecution times.

6 Uniformly Distributed Task
Times ‘

If we make the assumption that the task times are
uniformly distributed between 0 and X, we calculate

135

a different limiting value for the ratio of completion
times. It is easy to show that the maximum of P
uniformly distributed random variables is X 75%. We
immediately find that
E[T)) = KX=2 (11)
2% Pl
Fortuitously, we can use the same regression tech-
nique used with the exponential distribution in Sec-
tion 5.2 to develop an accurate approximation for
E[T,]. Therefore

E[T,) = % +Te
i % + X ((Cln*K + D)In P+ AK + B) . (12)
Where

A =0.012384 ~ 0.01 B =0.330691 ~ 0.33
C =0.053147 ~ 0.05 D = 0.125102 ~ 0.13.

Finally, we look at the ratio of the expected com-
pletion times.

it
]
. XK phy
X ((Cln*(K) + D) In(P) + (A + 1/2)K + B)

P

Pir
!Cln’K-fD!]nP +(A+ 1/2)+%

Taking the limit as the size of the simulation in-
creases (K — oo) and assuming that K >> InP
we get

P

iy = A+1FP+1)

K—o00

Finally, for large P

* = (A+1/2) .08

Thus, when using a uniform distribution, the asyn-
chronous strategy is only able to complete in roughly
half the time, regardless of the number of processors
used (as compared to our previous case where the
task execution times had exponential tails and the
asynchronous strategy was able to gain its In P per-
formance improvement). This result should apply to
any distribution with finite support since the maxi-
mum of many such random variables will invariably
approach the upper limit.

Again, we can appeal to intuition to find the
speedup ratio. For large P the synchronized exe-
cution will take X seconds per stage (the max) on

lim R

K—;oo,P—-»oo

2 @)

average for a total time of K X. The asynchronous

system, on average, will take time equal to % +Te.

Since T, is small compared to -’%ﬁ for large K, the

speedup ratio should be 2.

As before, if we assume that no method can achieve
speedup greater than P over a sequential execution,
then the synchronous strategy could possibly have
speedup proportional to P when the task times are
uniformly distributed.

7 Conclusions

We have shown that an asynchronous distributed
simulation strategy can have at most a In P per-
formance improvement over a time-stepped method,
in the case where task times are exponentials. We
conjecture that this result is due to the infinite tail
on the exponential distribution and may therefore
be applicable to distributions with exponential tails.
The improvement when using a distribution with fi-
nite support (e.g. uniform) is reduced to a constant
amount independent of P.

References

[1] Ronald L. Graham, Donald E. Knuth, and Oren
Patashnik. Concrete Mathematics. Addison-
Wesley Publishing Co., 1989.

[2] David R. Jefferson. Virtual time. ACM Trans-
actions on Programming Languages and Systems,
7(3), July 1985.

[3] L.B.W. Jolley. Summation of Series. Dover Pub-
lications, Inc., second revised edition, 1961.

[4] Leonard Kleinrock. Queueing Systems: Volume
1: Theory. John Wiley and Sons, Inc., 1975.

[6] Jayadev Misra. Distributed discrete-event simu-
lation. Computing Surveys, 18(1), March 1986.

[6] J. Kent Peacock, J.W. Wong, and Eric G. Man-

ning. Distributed simulation using a network
of processors. Computer Networks, 3(1):44-56,
1979.

Bob Felderman was born in Chicago, Illinois in
1962. He graduated Magna Cum Laude from Prince-
ton University in 1984 with a double major in Elec-
trical Engineering & Computer Science and Systems
Engineering. After spending a year at Hughes Air-
craft Company working on guidance systems for tor-
pedos, he returned to the good life of academia, com-
pleted his Master’s degree in Computer Science at
UCLA in 1986 and is currently pursuing a Ph.D.
in Computer Science specializing in distributed sys-
tems. In his spare time he can be found in the great
outdoors usually with frisbee in hand.

136

