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Two Processor Time Warp Analysis:
Capturing the Effects of Message Queueing
and Rollback/State Saving Costs

We present two new models and their exact analysis for
the problem of two processors running the Time Warp
distributed simulation protocol. Our first model addresses
the queueing of messages at each processor while the sec-
ond model adds costs for rollback and state saving. Both
models provide insight into the operation of freerunning
systems synchronized by rollback.

Zweiprozessorsystem mit Time Warp Protokoll:
Pufferung von Nachrichten und Kosten fiir Roll-
back und Einsparung von Zustinden

Das Problem eines Zweiprozessorsystems fiir die verteilte
Simulation nach dem Time Warp Protokoll (Time Warp:
Zeitverschiebung) wird aufgrund von zwei neuen Modellen
exakt analysiert. Das erste Modell betrifft Wartevorgange
von Nachrichten bei jedem Prozessor, das zweite Modell
erfasst die Kosten (Zeitaufwand) fiir die Rollback -Methode
und bei der Einsparungvon Zustianden. Beide Modelle bieten
Einblicke in die Betriebsweise von freilaufenden Systemen,
die mittels Rollback synchronisiert werden.

Keywords: Simulation, time warp, parallel and dis-
tributed processing, optimistic simulation, rollback,
speedup, queueing, performance analysis, Markov
chain.

1. Introduction

The systems that we are able to create become larger
and more complex every day. It has become necessary
to simulate the operation of proposed systems in order
to better understand their behavior before huge invest-
ments are made in their implementation. As the size of
these simulations increase they demand more comput-
ing time. Naturally then, one would like to utilize the
recent advances in parallel computing technology to
speed up the execution of simulations. Unfortunately,
it is a non-trivial task to efficiently implement a paral-
lel simulation system, though several techniques have
been developed to do so. This paper presents analytical
models of the performance of one distributed simula-
tion algorithm, Time Warp (TW) [1].

1.1 Previous Work

Our research focuses on the analysis of the average
case behavior of Time Warp when executing on ex-
actly two processors. In our own previous work [2],
[3], [4] we introduced a new model for the analysis
of two-processor Time Warp. That model did not ad-
dress message queueing nor did it associate a cost with
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rollback. Messages were only used for synchroniza-
tion. This paper examines message queueing in our first
model (something that has not been addressed in any
model) and rollback and state saving costs in another
model. These costs have not been adequately addressed
in the previous work on two-processor models. Laven-
berg et al. [5] and Mitra and Mitrani [6] have examined
models similar to ours, although messages were only
used for synchronization in both those models. Laven-
berg et al. derived an approximation for speedup of two
processors over one processor. Mitra and Mitrani, using
a discrete time, continuous state model, solved (as we
do) for the distribution of the separation in virtual time
between the two processes. Mitra and Mitrani do in-
troduce the concept of a cost for rollback and optimize
the system based on it. Their technique was to calcu-
late the average forward progress of the system per
unit of real time (D), the average distance rolled back
per unit of real time (R), create an objective function
J = D — cR, then optimize the system with respect to
J. Unfortunately this is somewhat artificial. The roll-
back cost should be an integral part of the model itself.
When a process rolls back, it should be forced to pay a
time penalty for rollback. A second criticism is that the
objective function utilizes a rollback cost that is pro-
portional to the distance rolled back. We believe that
the cost is, at most, proportional to the log of the dis-
tance rolled back and is probably best approximated by
a constant time delay regardless of the distance rolled
back. Additionally, Mitra and Mitrani do go on to show
how to allow for a different distribution for the size of
the advance in virtual time depending on whether there
has been a rollback or not. We discussed in more detail
the relationship of the work of Lavenberg et al. and
Mitra and Mitrani to our work in [2] and [3].

Lin and Lazowska [7] have examined Time Warp
and conservative methods by appealing to critical path
analysis. Also in [8] they create a model to reduce the
state saving overhead in Time Warp. Though their work
provides important insights, it generates different types
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of results than ours. Madisetti [9], [10] provides bounds
on the performance of a two processor system where
the processors have different speeds of processing and
move at constant rates, though again, messages are only
used for synchronization. Madisetti extends his model
to multiple processors, something we do not address in
this work. Recently Nicol [11], [12] has attacked the
problem of understanding the behavior of massively
parallel simulations, both conservative and optimistic.
Felderman and Kleinrock [13] have also looked at the
multiple processor case.

1.2 Parallel Discrete Event Simulation

Parallel Discrete Event Simulation (PDES) is generally
accomplished by partitioning the simulation into logi-
cal processes (LP) that simulate some physical process
in the system. Each LP maintains an independent local
clock indicating how far forward in simulation time it
has progressed. Processes interact by sending and re-
ceiving timestamped messages. Each process operates
autonomously by receiving messages, performing in-
ternal computation and sending messages. A process
will terminate once its local clock, the time of receipt
of the message currently being processed, has reached
some user specified value. Certain simulations only
allow the LP to perform operations in response to mes-
sages (the messages carry the work), while other simu-
lations allow each LP to perform internal computations
regardless of whether any messages have arrived. For
example, an LP that is simulating a single server queue
only performs an operation in response to the arrival
of a message (customer). On the other hand, an LP
that simulates a customer arrival process operates with-
out receiving any messages at all. Nicol [11] discusses
these two types of logical processes in more detail.

Each LP could be placed on its own processor, and
one might hope that we could then gain speedup propor-
tional to the number of processors used. Unfortunately,
this is often not the case as the system being simu-
lated may have only limited parallelism [14]. Also, the
PDES algorithms themselves limit parallelism in their
attempt to prevent the simulation from deadlocking and
to ensure correctness. Several competing techniques
have been developed to address deadlocking and cor-
rectness [15], [16]. The algorithm of interest for this
paper is Time Warp [1] an asynchronous approach that
uses a rollback mechanism invoked only when needed
for synchronization. The essential problem to address
when designing an algorithm for distributed simulation
is to maintain causality between events. In the physical
system, event A might have a direct causal effect on
event B. When these two events are executed on two
separate processors, it is non-trivial to efficiently make
sure that event A actually occurs before B in real time.
Time Warp maintains this causality by restoring a pre-
vious state and re-executing any operations it finds to
have violated causality. The next section describes the
algorithm in more detail.

1.3 Time Warp

The basic idea behind Time Warp is to allow each LP to
advance forward as fast as it can without regard to the
operation of the other LPs in the system. A TW process
will choose the message with the minimum timestamp
in its input queue; set its local clock to the time on
that message; process the message; then find the next
smallest message in the queue, etc. It is possible that a
“straggler” message could arrive with a timestamp less
than the local clock time of the LP. When this happens,
the process is forced to “roll back” to a time before
the timestamp of the arriving message This is able to
be accomplished because the system periodically saves
the state of the LP. Any effects of having advanced too
far (i. e. erroneous messages) are canceled through an
elegant technique using anti-messages [1]. Any possi-
ble gain from the aggressive behavior of the Time Warp
mechanism does not come without a cost. One of these
costs is the overhead associated with the aforemen-
tioned state saving. There are two performance trade-
offs to keep in mind when choosing the frequency of
state saving. If we save state very often, we pay a large
time penalty in real time for all the data saving opera-
tions. If we choose to save state less often, we run the
risk of having to roll back much further into the simula-
tion time past than the time of the message causing the
rollback, thus paying the time cost of re-executing cor-
rect events. Lin and Lazowska [8] address exactly this
issue and find an optimum state saving interval based
on certain assumptions about the arrival of messages
and state saving costs etc. We don’t examine this trade-
off in our work. Rather, we force each processor to save
state after the execution of every event so as to keep
the model tractable. The other overhead of state sav-
ing is the space required to save the history of the LP.
Fortunately, we do not need to keep all state informa-
tion back to the beginning of the run. A concept called
Global Virtual Time (GVT) [1] allows the system to
periodically throw away obsolete information. GVT is
defined as the minimum of all the local LP clocks and
the timestamps of all messages in transit. Since noth-
ing in the system has a timestamp less than GVT, no
process could ever be forced to roll back to a time prior
to GVT. Obviously GVT is a very difficult measure to
obtain, since we cannot take a “global” snapshot of this
distributed system [17]. Algorithms have been devel-
oped to calculate a lower bound on GVT [18] that can
be used as an estimate to free up memory space.

2. Message Queueing Model

We now introduce our model for two processor TW that
allows messages that arrive in the virtual time future
of a process to be queued. Additionally, the messages
carry work for the receiving processor.

2.1 A Model for Two Time Warp Processes

Assume we have a job that is partitioned into two pro-
cesses, each of which is executed on a separate proces-



AEU. Vol 47
(1993), No.5/6

R. E. Felderman, L. Kleinrock: Two Processor Time Warp Analysis

355

1 Set local clock (v) to 0.

2 Execute local events for v = 0.

3 With probability ¢(i), send message stamped
with 1.

repeat

4 Advance local clock to v = v + 1.

5 Process message queue with timestamp = v (if
it exists).

6 Execute local events for time v.

7 With probability g¢(i), send message stamped
with v + 1.

until (v > MAXTIME)

* If a message arrives at any time with a time-
stamp tm < v):

— set local clock to t,m,

— goto line 5 and continue from there.
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Fig. 1. Code executed by each processor.

sor. A process at virtual time v operates by first execut-
ing any message in its input queue with timestamp v
and then executing any locally scheduled work. Once
completing its local work at virtual time v, a process
advances its clock one unit and will then send a mes-
sage to the other process with probability g;. A process
places its current virtual time on any message it sends.
We will restrict the virtual times in our system to have
integer values (i. e. 0,1, 2,...). A process will sched-
ule an event for itself at every point in virtual time.
This means that processes will have their own work
to do at every point in virtual time, and occasionally
will have work sent to them from the other process.
If a message arrives with a timestamp v equal to or
smaller than the local clock time of the receiving pro-
cessor, that processor is forced to rollback (discarding
any work performed at a virtual time greater than or
equal to v), execute the arriving message, then proceed
forward again from virtual time v. We show the execu-
tion sequence for each LP in Fig. 1. Let v be the local
clock time kept by the LP and let ,, be the timestamp
on any arriving message.

More formally, we define two processes each exe-
cuting on a separate processor. As these processes are
executed, we consider that they visit the integers on
the z-axis each beginning at z = 0 at time ¢ = 0.
To process a queued message, each processor takes an
exponentially distributed amount of time with mean
1/B:, i = 1,2. To process its locally generated work
takes an exponentially distributed amount of time with
mean 1/);, 1 = 1, 2. We assume that 3; = fA; where
0 < f < oo (f is referred to as the work ratio). Af-
ter process 1 makes an advance along the axis, it will
send a message to the other process with probability
gi, © = 1,2. This message carries a timestamp that is
the time of the sender after making the advance. Upon
receiving a message from the other (sending) process,
this (receiving) process will do the following:

1) If its position along the z-axis is behind the sending
process, it queues the message.

2) If its position is equal to or ahead of the sending

Fig. 2. States of two processors at times ¢; and t3.

process, it will immediately move back (i. e., “roll-
back”) along the z-axis to the current position of the
sending process and begin to process that message.
All work completed at virtual times greater than or
equal to its current position is discarded and must be
re-executed.
Let F(t) be the position of the First process (process
one) at time ¢ and let S(t) be the position of the Second
process (process two) at time t. Further, let

D(t) = F(t) — S(t).

D(t) = 0 whenever Case 2 occurs (i. e., a rollback).
We are interested in studying the Markov process D(t).
From our assumptions that (0) = S(0) = 0, we have
D(0) = 0. Clearly, D(t) can take on any integer value
(i. e, it certainly can go negative, see Fig. 2 that shows
the position of two processors at times ¢; and t;). We
will solve for

tlir&P[D(t) =k], —co<k<oo

namely, the equilibrium probability for the Markov
chain D(t). First, let

M, = Event : Proc. 1 is processing a msg.,
M, = Event: Proc. 1 is not processing a msg.,
M; = Event : Proc. 2 is processing a msg.,
M; = Event : Proc. 2 is not processing a msg.

In order to find the solution, we split the chain into six
regions.

P, = lim P[D(t) = k and M), k>1,
Qr = tl_ing [D(t) = —k and M), k>1,
Si = lim P[D(t) = k and M), k>0,
R, = tl_arg P[D(t) = —k and M,], k>0,
No = :1-1{& P[D(t) = 0 and M, and M;],
By = tl_l.rg P[D(t) = 0 and M; and M;].

Using our solution, we will go on to solve for some in-
teresting performance measures including the average
rate of progress of the two-processor system.



AEU, Vol. 47

356 R.E. Felderman, L. Kleinrock: Two Processor Time Warp Analysis (1993), No. 5/6
o0 [o o]
fBo = aq192 Y _ P: +aq192 ) Qs (6)
i=1 =1
ASy = aSk-1+aq;q1Pe1, k>0, (7
(o]
ASo = agyq1 Py + aq1q; Z Qi +afBo, (8)
=1
BRi = @Rk-1+03,92Qk+1, k>0, (9)
oo
BRo = ag,2Q1 + 428, »_, Pi +3fBo,  (10)
=1
(==} co oo o)
1= P, + i + S; i +
Fig. 3. State diagram for the Message Queueing Model. Z; ' ; @ ‘.zz;) . g R
+No + Bg. (11)

There are some implicit assumptions in our descrip-
tion. Our model assumes that states are stored after
every event, otherwise a rollback would not necessar-
ily send the processor back to the time of the tardy
message; rather it might have to rollback to a much
earlier time, namely, that of the last saved state. When
process ¢ causes the other process to rollback, process
+ immediately discards any messages it has queued
in its future. This is as if the rolled back processor
is able to transmit anti-messages instantaneously. This
is not an unrealistic assumption in a shared-memory
environment [19]. Another implicit assumption is that
each process always schedules events for itself. We as-
sume that communication between processors incurs
no delay from transmission to reception. Finally, the
interaction between the processes is probabilistic.

2.2 Analysis of the Message Queueing Model

In this section we provide the exact solution for the con-
tinuous time, discrete state model introduced in Section
2.1First, we provide some definitions.

) = Rate at which proc. i executes local events,
Bi = A,

Rate at which proc. ¢ processes messages,
A1/(A1 + A2),

/\2/(;\1 + Ag) =1-a,

=a+ af)

a+af,

¢i = P[ith proc. sends a msg. after advancing |,
3 = 1-q.

e Qe
[ [

A state diagram for this system is shown in Fig. 3.
Note that state By is duplicated to reduce clutter in the
figure.

The balance equations for our system are:

P, = aPp_1 +34;q; Pe41+3fSk, k 2 2,

P, = aNo + aq;q, P2 +af 5, 2
Qr =
Q1 = aNo + a3,3,Q2 + af Ry, 4

(1)
(2)
aQk-1 + 03,3;Qr+1 +afRe, k> 2, (3)
(4)
(5)

No = a§,3,Q1 + 8459, P1 + afRo + @fSo,

This system will have a steady-state solution if A; > 0,
g; > 0and f > 0. These are fairly straightforward re-
strictions. The A; must be greater than O or the system
makes no progress at all. The g; must be greater than
zero so that there is some probability that a proces-
sor will be rolled back once it gets ahead. Finally, the
work ratio (f) must be greater than zero so that when a
message is being processed the system will eventually
complete the operation.

We define the following z-transforms (note the dif-
ferent ranges on k):

P(z) =Y Pud*, Q(z)=)_ Quz*,
k=1 k=1

S(z) = ZSkz", R(z) = Z Riz*.
k=0 k=0

Using the above equations we can solve for P(z),Q(z2),
S(z) and R(z) by multiplying the appropriate equation
by z* and summing over the applicable range of k.
We will only solve explicitly for P(z) and S(z) since
Q(z) and R(z) are symmetric in (a, @), (91,92) and
(B1,B2) to P(z) and S(z). To simplify the expressions
we define the following:

Fs = agaP(1) + (1 - aga) Q(1),
Fr = aq1Q(1) + (1 — aq1) P(1).
Solving for P(z) in terms of 5(z) we get
P(z) =z x (12)
x—AS(z)&f+FsaE.f¢h+P16(A—aq1)E,—ANoaz
A(aq,8; — 2 + a2?)

and for S(z) in terms of P(z)
a1 (P(2)ag, + Fsaz)

5(z) =  (Ag) (13)

Solving them simultaneously we arrive at
P(z) = N(2)/D(z), (14)
S(z) = N'(2)/D(2), (15)
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with yielding
Nlz) = —z(—Fsa,zEfqlz + P (Fsa@fqy + ANy (A — ary))
=

+ Pya(A — aq1)q,(A — az)
— ANpaz(A — az)), (16)
N'(z) = —P1a%q1(A — aq1)3,° — ANoa@q13,z +
+ Fsaq1(a(A — aq1)q; — Az + Aaz?),
D(z) = A(-a(A - aq1)7; + (A + adq,3,)z
— (1 + A)az? + a%23).
Moreover, the denominator polynomial, D(z), for P(z)
may be factored as follows:
D(z) = Ad® (z — 1) (z —r3) (2 — 73).

where 71,72 and 73 are the roots of the cubic polynomial
in D(z).

ro cos((27 + 6,)/3)
= 3a !

ro cos(6, /3)
B =y

3a

ro cos((4m + 6,)/3)

r3 = )
3a

where
ro = 1+ A —2y/1— A+ A? — 3aag,3,,
6, = arccos {[—(A -2)(1+A)(24-1)+

+ 9aag,(—3A + 3aq: + (1 + A)g,)]
/ [2(1 = i 3aa—q@,)3/’] }

Symmetric roots (s1, 82, 83) for the denominator of
Q(z) can be written down directly

_ %0 cos((27 + 6,)/3)
3a '
_ % cos(6,/3)
3@’
3o cos((47 + 6,)/3)
3a :

83 =
where
so = 1+ B —2y/1 - B + B? — 3aaq,q,,
6, = arccos {[—(B -2)(1+B)(2B-1)+

+ 9aag,(—3B + 3agz + (1 + B)q,)]
/ [2(1 - B+ B - 30a7,3,)"%| }

See Appendix A for a derivation of the roots. It can be
shown [20] that 7y, r; and r3 are real and that |r3| < 1
while |r1], |r3| > 1. Since P(z) is the z-transform of a
probability distribution, it must be analytic in the range
|z| < 1, and we know that N(z) in eq. (16) must go
to zero at z = r5. We can use this fact to solve for P,

a(A-aq1)q,(A—ary)

Substituting this value back into N(z) in eq. (16) we
may write

N(z) =
_ Aaz(z—r3)(Fsaafq,+No(A—ar;)(A—az))
- A —arg

and thus

, =2FSaEfQ1+No(A—a1‘z)(A—az)
P(z) sA=an)lr ol ms) ~ 0

A similar procedure can be carried out on S(z) in eq.
(15) resulting in
Noaq,; + Fs (1 — ar; — az))

» ='11(
a8 a(ry—z)(rs — 2)

(18)

Moreover, Q(z) and R(z) are symmetric in (a,d),
(91, 92) and (81, B2) to P(2) and S(z) so we can write
them down directly.

Fra@fqa+ No (B—as;) (B—az)
a(B-as;)(s1-2)(sa—z) '
o q2 (Noag, + Fr (1 — @s; — az))

B e = a—

Q(z) = 2 (19)

(20)

Recalling that F's and Fg are functions of both P(1)
and Q(1), we see that P(z) and Q(z) are functions
of P(1), @(1) and No. We solve for P(1) and Q(1)
by solving the eqgs. (17) and (19) of P(z) and Q(z)
simultaneously with z = 1.

P(l) = CpNo Q(l) = CQNO

where
Cp = Cono + CpgCono — CpnoClyq
1= Cpp — CpgCyp — Cgq + CppCly’
O = Cono — CppCano + CpnoCop
1 —Cpp — CpgCp — Cgq + CppCoq
and
af
C =
e ™ a(ry—=1)(ra—1)’
C.. = a’fq1q2
PP (7‘1 — 1) (A—arg) (7‘3 — l),
C. = afq: (1 —aqa)
e (7‘1 s 1) (A—afg) (1‘3 == 1),
af
Cne = = Dilsa=1)"
C. = af (1 - ag1)qs
g (31 = 1) (B—Eaz)(aa—l),
a’fq1q
Co =

- (81 - 1) (B == 532) (83 = 1).
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Notingthat P(1)+Q(1)+S(1)+ R(1)+ No+Bo =
1 we solve for Ng.

(Cqa+ Cpa)q192
f
Crsaafqy +af (A —ary)
a(ry—1)(A—ary)(rs —1)
q1(ag; + Crs (@ — ar3))
a(ry—1)(rs—1)

Crraafq; + af (B — as;)
5(31 == l) (B = 532) (33 = l)
92 (a3, + Cry (a —3s2))] 7"
a( =D (51 ] - (a0

No= |1+ +

+

Finally, by inverting the transforms we find the prob-
ability of being in any state (other than Np).

P, = K, (i)k+K, (l)k, k> 1, (22)

T1 T3

%" 15"
Qr = K3 (—) + Ky <—> , k>1,(23)
81 83
1\* 1\*
S = Ks (—-) + K¢ (-—) , k>0, (24)
™ T3
%" %"
Ry = Ky (—) + Ks (—) » k>0, (25)
81 83
By = Ny (Cqa + Cpa) 4192, (26)
f
where
Kl _ No (Cpstu-lfql + (A = 01‘1) (A = GTQ))
= b

a(A—ary)(rs—ry)
No (Crsaafq + (A — ar3) (A — ar3))

Hig = a(A—ary)(ry —r3) :
K = No (Crraafqs + (B — @sy) (B — a@s3))
8 = E(B—-ESQ) (33—31) :
K. = Mo (Crraafqa + (B — @s3) (B — as3))
25 a(B —as3) (s; — 33) ’
Ke = Nog: (621'3 + Cps (1 —-ar; — afg))
B = ary (1‘3 - 1‘1) !
Ke — Nog1 (aq; + Cr; (1 — ary — ar3))
- a(ry—r3)r3 ’
K, = Not2(a81 + Cra (1 ~ 351 — 353))
as) (33 - 81) 2
B e Nogz (ag; + Cry (1 — @s; — @s3))
8 5(31 - 33)83 :
Crs = Cpaga + Cq(1 — aqa),

CFR = CQaq1 + Cp(l - aql).

This completes our calculation of the explicit expres-
sions for the equilibrium state probabilities of our chain.

2.3 Performance Measures

Using the solution to the Markov chain that was calcu-
lated above, we may solve for any performance mea-
sure of interest. In the following sections we examine
a few important ones.

2.3.1 State Buffer Use

When a processor completes its local processing it ad-
vances its clock by one time unit. Therefore, if a pro-
cessor is ahead by k units of virtual time (k units of
distance on the axis), then it will need to have saved k
states. The expected number of buffers (B;) needed to
save state at each processor can be found from

B-l = iZ(P, +S.) =
i=1
- (Kl + Ks)7‘1 (Kg + Ks)r;;
= o o1t @
B; = Zi(Qa+Rs)=
—Ks + K7)s (K4 + Kg)s
RSy I Py R G

More interestingly, we find that the probability that a
fixed size buffer of size b > 1 overflows at processor 2
(9"_5) is

B = i (Pi+ S;) =
i=b+1
oo b
=) (R+S)-) (Pi+5)=
i=0 i=0
_ (K14 Ks) | (K3 + Ke)
T omb(ri—1)  rab(rz—1)’ (24)
O = Z (Qi + R) =
i=b+1
oo b
=D (Q+R)-) (Qi+R)=
1=0 1=0
_ (K3 + K7) (Kq, + Ks)
T osd(s1 - 1) L s3b(s3 — 1) (30)

2.3.2 Message Queue Distribution

Messages that arrive in the virtual time future are
queued until the processor completes all work with
a virtual time less than the arriving message. We define
the size of the message queue as the number of mes-
sages queued in the virtual time future of the processor,
plus any message that is currently being processed. The
distribution of message queue length at each processor
is found by summing over the appropriate ranges of the
state probabilities.

my, = P [k messages queued at Processor 1],
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The mean number of message buffers needed at each
processor is
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2.3.3 Normalized Rate of Progress

From the complete solution of the Markov chain we cal-
culate the average rate of progress of the two processor
system. We define v as the average rate of progress in
virtual time of the two-processor system. This value is
simply the average “unfettered” rate of progress of the
two processors minus the average rollback rate.

00 oo
72 = (M +A) (ZQ; +N0+ZPI:) +
k=1 k=1
(o] (=]
+Alzsk+AZZRk
k=0 k=0

~202)  Pu(k—1) - a1 ) Qu(k-1) =
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~ K, | K,
_(/\1+A2)< +1‘3~—1

K3 K,
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81 — 1 83 — 1
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We can calculate a “normalized” rate of progress (T')
by dividing the above equation by (A1 + A2). We arrive

at
K K K
P = g B i B ‘>+
ri—-1 r3-1 s1—1  s3-1
K K
5 Luﬂ)dr
1'1—1 7‘3—1
K Kgs
+a 781+ ss)__
31—1 33—1

=ik ((7'11?1)2 N (7‘3[-{-21)’> -

~on (ot o) o




360 R.E. Felderman, L. Kleinrock: Two Processor Time Warp Analysis

AEU, Vol. 47
(1993), No 5.6

008

006

004 §§§
NIEA
002 NE
NE/ 7
A §54 ’ 2 v.
76054 (] 7890
L/ NI m P,
R, o R, as
a ¥,
a 8,

Fig. 4. T versus work ratio f and interaction parameter g for the
Symmetric, Balanced Case.
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Fig. 5. T versus g for the Symmetric, Balanced Case.

It is interesting to note that as the work ratio increases
(f — oo) the message processing time approaches
zero, therefore messages are only used for synchro-
nization and our system reduces to our original model
[4]. In Fig. 4 we show the value for I' whena = 1/2
and ¢q; = g3 = g which we refer to as the Symmetric,
Balanced case. The figure shows I versus g for various
values of the work ratio (f). We see that for the best
performance we want the interaction to be small and
the work ratio to be large (¢ — 0 and f — o0). This
is the case where there is little interaction between the
processors and it takes zero time to process a message
from the other processor. By setting f = 1 we can
examine I' versus g only. This plot is shown in Fig. 5
compared to the average rate of progress for the same
system where messages are only used for synchroniza-
tion (f = oo). We see that the system where messages
carry work performs more poorly than where they are
only used for synchronization. This is no surprize since
there is more work to do. It is interesting to note that this
system is not twice as bad as the synchronization-only
system even at ¢ = 1. In fact, at ¢ = 1 we can verify
the T result for f = 1 by realizing that each processor
will always have a message to process. Therefore, the
rate of progress at each step is governed by the maxi-
mum time it takes for the two processors to each finish
a message and local work. This is simply the expected

Fig. 6. State probabilities.

value of the maximum of two 2-stage Erlangs at rate A
which is equal to :—i Taking the reciprocal and divid-
ing by A to find the rate, we get I' = 4/11 which is the
value plotted in Fig. 5.

2.4 A Specific Example

To better understand the above results we explicitly
calculate values of our performance measures for a
specific instance of the parameters of our system. The
values chosen are given below.

Ai=11, A\ =9, a=11/20,
f=1 a=1/2, q2=1/3.

Note that processor one will move slightly faster than
processor two while the cost of processing a message
is the same as processing a locally generated event.
Finally, processor one will send a message with prob-
ability 1/2 while processor 2 will send a message with
probability 1/3 after advancing.

a=9/20,

2.4.1 State Probabilities and State Buffer Use

The resulting equations for the probability of being in
any state are

No ~ 0.0781,
Bo =~ 0.0423,
0.114  0.0359
P, = e Tl sy o k 1,
1.281F  2.086
0.1385  0.0605
T T
@™ o0 T ae F2 0
. 0175
s,,z°°453 001“ B
1.281F * 2.086
. .0203
D080 0003
1.702* ' 2.468

These probabilities are plotted in Fig. 6. As you would
expect, P, > Q and Sp > R} since processor one is
moving at a faster rate than processor two. The expected
number of buffers needed to save state at each processor
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(B;) is given by
B, = Zi(P,- +5;) ~ 2.5489,

By = ) _i(Qi + Ri) ~ 0.5429.

From the values for @, ; and @3 ;

o  _ 0-5663 0.0169
VT T281°  2.086°"
0.2428  0.0273

@2 by =

* 7T 17028 2.468°

we find that with probability greater than 0.99 processor
one (p;) will not need more than seventeen buffers. A
similar value can be found for processor two (pz).

P [p; needs > 17 state buffers |~ 0.00841 < 0.01,
P[p; needs > 6 state buffers |~ 0.00988 < 0.01.

2.4.2 Message Queue Distribution and Buffer Use

The distribution of messages at each processor is given
below.

mio ~ 0.7569,
mi1 N 0.1805,

ONONS

1=k-1
N 0.0203> ( i )+
2.468¢ k-1

Q

mi,k

(0.0319
x| ——
1.702°
oo k i—k
1 2
2066
0.1385 0.0605 )
(L2 (), s
1.702*  2.468' ) \k
ma,0 = 0.4074,
ma,1 = 0.2441,
f: 1\ /0.04517 L0175\ (i
m ~ = 3 3
»h T 2a\2) 12877 " 2.086" ) \k -1
0 i )
1 0.114 0.0359) /(1
+ - - - — , k> 2.
;(2) (1.281‘ 2.086')(1:) -
The values of these functions are plotted in Fig. 7.
The mean number of message buffers needed at each
processor is
my =~ 0.3346, my ~ 1.5562.

As with the state buffers we can find the number of
message buffers needed to store messages such that the
buffers will overflow with probability less than 0.01.

P [p; needs >3 msg. buffers] ~ 0.0063 < 0.01,
P [p; needs >9 msg. buffers] ~ 0.0097 < 0.01.
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Fig. 7. Distribution of the number of messages queued at each
processor.

Finally, the value for the normalized rate of progress
isI' ~ 0.5071.

2.5 Summary

We introduced and solved exactly a new model for two-
processor Time Warp operation. The importance of our
new model is that it explicitly accounts for the work
that must be performed by each processor in response
to the receipt of a message. Messages that arrive in
the past cause rollbacks, while messages that arrive in
the future are queued until the LP moves forward in
simulation time. In all cases the messages create work
for the LP.

With the complete Markov chain solution we calcu-
lated the normalized rate of progress of the two pro-
cessors, and the distribution of the number of messages
queued at each processor. Further, we found the ex-
pected number of buffers needed to save state and/or
messages at each processor. Since we have the exact
solution to the complete Markov chain we can calculate
nearly any parameter that might be of interest.

3. A Model for Rollback and State Sav-
ing Costs

If the costs for rollback and/or state saving are high, TW
may perform poorly. The following sections examine
the two-processor system when we account for rollback
and state saving costs.

3.1 The Model

We use a model similar to the one introduced in Sec-
tion 2.1, a continuous time, discrete state model where
each processor makes only single step state advances
whenever it advances. Right after a processor is forced
to rollback, it pays a cost for restoring state by mak-
ing the expected rate of forward progress smaller than
normal for one event. When processing the “rollback
event” each processor moves at a rate 3; = fA; where
0 < f < 1.Once this event is completed, the processor
moves again at its normal rate of A;. Note that when
f = 1 there is no additional cost for rollback and this
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The balance equations for this new system are

(A1 +B2)Sk = A1Sk-1, k21, (33)

(A1 +B2)So = Aw:ZQi +51¢I1Z R;, (34)
=1 1=1

(A2 +B1)Re = AaRp_1, k21, (35)

(A2 +B1)Ro = A2qa Z P; + Ba2q2 Z Si,  (36)
=1 i=1

(A1 +22)Pr = A Pe_y+ Aa@y Peyr +

+B2q3Sk+1, Kk 2>2, (37)
Fig. 8. State diagram for the Rollback Cost Model. (A1 +2A2)P1 = A Po+ A0, Py +
+ 23352 + B1 Ro, (38)

M+ A2)Py = 1@ A2g
model reduces to the one in [4]. We add a cost for state e 245 101@1 + a8y Py +

saving in Section 3.3.2 +A10, Ry + B2 Sy, (39)
First, let (A2 +A1)Qk = A2Qr-1+ M7, Qrt1 +
RB; = Event : Proc. 1 isin a rollback state, + AT Ra, k22 (49
e . . (A2 + A1)Q1 = X3Py + B2So +
RB; = Event : Proc. 1 is not in a rollback state, +MTQs + BT, R (41)
RB; = Event : Proc. 2 is in rollback state, B o: i
— . . 0o oo
RB; = Event : Proc. 2 is not in a rollback state. 1=Py+ Z Py Z [ RN Z S; + Z B
To solve the system we separate the Markov chain into : ' : '
five different regions. As before we define the following z-transforms
- (note, S(z) and R(z) are defined fromk = 1 notk = 0
P, = tlim P[D(t) = k and RB3], k> 1, asinthe previous model):
— 00
= lim P —k and RB E>1 o =
Wi = I = ~kand 5 = P(z)=Y Rzt Q) =) Qust,
Sk = lim P[D(t) = k and RB,), k>0, k=1 k=1
oo (o]
R, = 11m P[D(i) —k and RB1], k > 0, S(z) = Z ngk, R(z) = E szk‘
Py = hm P[D(t) = 0 and RB; and RB;]. e

We proceed to find P(z), Q(z), S(z) and R(z) by
multiplying the appropriate equation above by z* and

32 Analysis of the Cost Model summing over the valid range of k. This leads to

In this section we find the exact solution for the model P(z) = [—Aa(P, 3

that addresses rollback and state saving costs. The pa- (a)=1 _a.( O; Rof)zAP s

rameters of this system are — aq,(AS(2)f — AP1z — Soafz)]
/1A(aT; — 2+ a2?)], (42)

J; = Rate at which Proc. 7 processes events,
B; = fA: = Rate at which Proc. i
processes after a rollback,

Q(z) = [-Ba(Po + Sof)z2
- ag,(BR(2)f - BQi2 — Roafz)]

= o peed
a = A1/(A1 + A2), /[B(ag; — z +az7)), - (43)
e R S(e)= 22 R = O
A =a+af, -az’ az
B =a+af, Substituting the value for S(z) in eq. (42) for P(z)
¢i = P[ith proc. sends a msg. after advancing], "¢ 3TVe at the following equation that defines P(z).
%G =1-q P(z) = [2(-Soa’afq,z + AP1aq; (A — a2)
A state diagram is shown in Fig. 8. Note that the S and —Aa(Po + Rof) 2 (A — az))]
R, states were duplicated to keep the figure from being { [A (A - az) (@2 = e 0,33)] . (49)

too cluttered with transition arcs. As with the previous
model, this system will have an equilibrium solution ~ The denominator of P(z) in eq. (44) can be factored
when A; > 0,¢; > 0and f > 0. into A(A — az)(z — r1)(z — r2) and the denominator
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of Q(z) into B(B — @z)(z — s1)(z — s2) where

1+ /1T - 4aagq,
r1,2 = ——27‘——,
1+ — 4aaq,
31,2 = “T,

It is simple to show that r; and r; are real and that
ry > 1 while 0 < r; < 1 [3]. Since P(z) must be
analytic in the region |z| < 1 the numerator of P(z)
must go to zero when z = r3. Using this information
we solve for P;.
ar; (Soaafg, + A(Po+ Rof) (A — ary))

Aqu: (A sl ar:) ’
We substitute this value back into the equation for P(z)
and arrive at

P(z2) = (45)
_ 2(S0a@fg; + (Po + Rof) (A — ar3) (A — az))

- (A —ary)(r1 — z) (A — az) ’
Similarly for Q(z) we find

Q(2) = (46)
_ z(Roaafq; + (Po+ Sof) (B — @s3) (B — az))

- (B —@s3) (81 — z) (B —az) ’
Our task now is to find the values for the unknown

constants Py, So and Ro. We can solve egs. (34) and
(36) for Sp and Rg simultaneously to find

_a (@%q2P(1) + BaQ(1))

P, =

S
° AB — aaq1q3
g2 (AaP(1) + a’q;Q(1))
Ro = = .
AB - aaqiq;

The above values are substituted into the equations for
P(z) and Q(z) and we find P(1) and Q(1) by solving
eqgs. (45) and (46) simultaneously with z = 1 to arrive

at
P(l):CpPo, Q(l) =CohPo
where
O 2 Crpo + CpgClapo — CppoClag
1 — Cpp — CpgCqp — Cyqq + CppCyq
Co = CopoCap + Cipo — CopClpo
- )
1 = Cpp — CpgCop — Cyq + CppCoq
and
1
Copo = 1
c. = aqz (AfA + adq1q, — afArs)
PP ™ (AB — adqiq3) (r1 — 1) (A —ary)’
C. = a?q; (Afqa + B, — afqars)
PI™ (AB - a@g192) (r1 — 1) (A —ary)’
£
Covo = ;1
c a’qy (Bfq1 + Ay — afq153)
ap

~ (AB - aagiq3) (s1 — 1) (B — as;)’

aq; (BfB + aag,q; — af Bs;)
(AB — aaq193) (81 — 1) (B —asy)’

Py is derived from the fact that the probabilities must
sumto 1.

Finally, the equations for P(z), Q(z), S(z) and R(z)
can be inverted to find the complete solution to the
Markov chain.

Co =

Pk=(Po+Rof)(1)k+

T1

swat (&) -@")

(A—ary)(A-ary) '’ k2 L (47)
a\k
Sk = So (Z) y k20, (48)
1\*
% =(rrsn) (L) +
1
= k =\k
maaafy, ((2)" - (8))
>
T Ban)Boga) L)
Sr B
Ry = Ro (%) ) k > 0, (50)
So = Cs, P,
RO = CRQPO’
Cs. = q1 (CQaB + CpEzqg)
° AB — aaqiq;
(CPEA + anqu) q2
CRo = = )
AB - aaq1q3
Cs,a Cpgr.,a
Po= |1 —°_ 2
() (+CR.,+C's°+ af + af+
1+Cs,f 1+4Cpg,f
+
(31 - 1) (7‘1 — 1)
A CSoa-q_Z
(ri—1)(A—arg)
Cﬁoﬁl )—1
4 — a 51
(81— 1)(B - as,y) 81)

3.3 Performance Measures
3.3.1 State Buffer Use

Using the state probabilities we find the average state
buffer occupancy at processors one and two.

By=) i(R+8)=
i=1
ASoa (PO + Rof) o |
62f2 ("_1 _ 1)2
5003/, (27 — A1)
(A—ar)(A-ary) '’

% (52)
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By =) i(Qi+R)=
i=1
_ BRoa  (Po+Sof) s
a 62f2 (81 - ].)2
Roaa 1 (25 — &Fe)
(B —as,) (B —as3)

As with the previous model we also find ©; 3, the
probability that a fixed sized buffer of size b > 1 over-
flows.

- (53)

[}

O, = Z (Pi+ Si) =

1=b+1
_ Soa (a b (Py+ Rof)
~ af (Z) * (re—1)r®

So0aa T (=i =

%(2)")

) (A —ar)(A —ar3) » (54)
O3 = Z (Qi+ Ri) =
1=b+1
_ Rea (3", (Po+Sof)
= af (z) (- Do
Roaa 7, (Griy - & (8)’) -

(B —asy)(B — as3)

3.3.2 Speedup

From the complete solution of the Markov chain we
calculate the speedup S of the two processor TW sys-
tem over an equivalent single processor. The speedup is
simply the rate of the two processor system §; divided
by the rate of progress for a single processor system
1. The rate of forward progress for one processor is
defined simply as the average rate of progress of the
two processes

6 = (A]_ + ,\2)/2.

At this point we add an additional cost for state saving
by allowing a single processor to move at a rate that
is C times faster than the TW processors. Thus, state
saving increases the average execution time of an event
from 1/); to C/); when running TW. The revised rate
of progress for a single processor is

6, = C(M1 + X2)/2,

while the rate of progress for the two-processor TW
system is found from the following equation.
62 = (M +A2)Po+ (A1 +B2)So + (A2 + B1)Ro +
+ (A1 +2)P(1) + (A2 + A)Q(1) +
+ (A1 +B2)S(1) + (A2 + B1)R(1)

- A2q2 Z Pp(k—1) - g1 ZQk(k - 1)
k=1

k=1

~ B2z Y Si(k—1) = Brar ) Re(k - 1).
k=1

k=1

Taking theratio S = §,/6 (i. e., the speedup) we arrive
at
B?Ry 5 A?S,

af af

5 % (Po+P(1)+Q(1)+

_ Ro@’qy  Soa’ga

af af
_ 3 (Po + Rof
(Fr=1)

b (A—ary)(A —ar3)
il (Po + Sof
(s1-1)°

= 1 a2
Roaafql (('1'1) B W) (56)
(B —@s,)(B —as;)

We note here that this measure S is different from the
measure I' used with the message queueing model in
Section 2.3.3In that model we were unable to calculate
the average rate of progress for a single processor due
to the effect of messages. Since messages carried work,
it would be unfair to compare the two processor TW
system to a single processor system without messages.
The TW system would be doing more work. On the
other hand, it is non-trivial to attempt to account for
this extra work caused by messages and add it to the
single processor system. We finally settled on a mea-
sure that was a normalized rate of progress by dividing
the rate of progress for two processors by (A1 + Az).
For the rollback cost system the rate of progress on a
single processor is well defined and therefore, we use
a speedup measure S.

For the Symmetric, Balanced case where A=A =
X and g1 = g3 = g we get the following equation for

speedup.
e 4f(f+m/[c<zf=+f(z+f)ﬁ+

+(z—f>fq+2(1—f)q3“)]. (57)

We show a plot of this function in Fig. 9 for no addi-
tional cost for state saving (C' = 1).

Using this simple formula for speedup we find the
values of £, ¢,and C that allow two processors running
TW to progress faster than a single processor without
TW. This is the region where S > 1. We solve eq. (57)
for C when S > 1 resulting in the inequality

c< 4f(f+m/(zf=+f(2+f)ﬁ+
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Fig. 11. State diagram when each processor stops when one step
ahead.

Fig. 9. Speedup versus ¢ and f for the Symmetric, Balanced
Case with no additional cost for state saving (C = 1).
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Fig. 10. Region of ¢ — f space where speedup is possible.

+(2-1) fq+2(1—f)q3/’>. (58)

Therefore, we find that C' must lie below the surface
plotted in Fig. 9 for S > 1. It is clear for C > 2 that
TW on two processors is always slower than using a
single processor without TW. Further, since C' must be
greater than or equal to one (cost of state saving is > 0),
there is a region in the ¢ — f space where speedup is
not possible. That is the shaded region shown in Fig.
10.

Since rollbacks can be costly (C' > 1), there may
be an advantage to slowing down or stopping the faster
processor when it gets ahead so as to avoid rollbacks.
Mitra and Mitrani [6], using their optimization function
J = D—cR (see Section 1.}, find regions of the param-
eter space where the maximum of the function is found
at the boundary where the processors have zero process-
ing capacity (don’t perform the task at all). Essentially,
they found that Time Warp could perform poorly if the
cost for rollback was high. We, on the other hand, will
look to improve TW by slowing down or stopping the
processor that gets too far ahead. Looking again at the
Symmetric, Balanced case where Ay = Az = A and
g1 = g3 = q we find that region of ¢ — f space where
it is better for a processor to stop processing when
it gets exactly one step ahead. The state diagram for

Fig. 12. Achievable Speedup for C = 1.

such a system is shown in Fig. 11. Each processor will
stop when it gets exactly one step ahead of the other
processor. There will be no rollbacks and therefore no
need for state saving. When A; = A; = A we find
that P, = Q; = Py = 1/3, and that speedup over the
equivalent single processor system is 4/3. Therefore,
we can always get a speedup of 4/3 regardless of the
values of f, ¢ and C. For general values of A; and A;
the speedup is

S =4a(l —a)/(1 —a+a?)

that has its maximum of 4/3 at @ = 1/2. For the Sym-
metric, Balanced case we show in Fig. 10 the area of
the ¢ — f plane where waiting at one step is better than
rushing ahead when C' = 1. Fortunately this area in-
cludes all the area where we would not have been able
to get speedup with two processors. Finally, in Fig. 12
we show the achievable speedup when C' = 1. The
shaded region is where a processor waits when it gets
one step ahead of the other. In the unshaded region, if
C is less than the value plotted in the figure we are able
to gain at least some speedup over the equivalent single
processor not running Time Warp.

Since it sometimes pays to stop a processor when it
gets one step ahead, we might surmise that there are
ranges of the parameters where stopping a processor
when it gets k (k > 1) steps ahead improves perfor-
mance. For our model, this turns out not to be the case.
By examining the Markov chain for k = 2 we find that
the speedup is never greater than the speedup gained
by the standard algorithm. Therefore, it is never prac-
tical to stop a processor once it gets more than one
step ahead. The Markov chain in Fig. 11 is unique in
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the respect that at no point in time will a processor
incur a cost for state saving or rollback. Once we al-
low the processors to get more than one step out of
synchronization, we must save state since rollbacks are
possible. Intuitively, the fact that we might only stop
at one step ahead makes sense since a process at vir-
tual time v can only send a message to the other at
time v + 1. By getting two or more steps ahead, a roll-
back is already possible and we will incur a cost for
rollback if a message is sent regardless of whether we
wait further down the line. Waiting now only causes the
system to have a smaller speedup. In a more general
system where a processor may send a message to an
arbitrary point in the future we may find that there are
regions of the parameter space where it pays to stop a
processor- when it gets further than one step ahead. We
are currently extending the rollback cost model so that
the processors are able to make arbitrary sized jumps
when advancing (not restricted to single-steps). This
model will give us a better opportunity to examine the
improvements we might gain by stopping or slowing
down the lead processor when it gets more than one
step ahead.

3.4 Summary

Our second model incorporated costs for rollback and
state saving. In addition to calculating the complete
solution to the Markov chain and the speedup over
a single processor, we were able to find regions of
the parameter space where it was better to stop either
processor when it was exactly one step ahead. We could
also show that stopping the lead processor when it was
two or more steps ahead led to no performance gain.
As with our previous model, since we have the exact
solution to the Markov chain, we are able to calculate
nearly any performance measure of interest.

4. Conclusions and Future Work

In this paper we presented two new models to extend
our understanding of the Time Warp distributed sim-
ulation protocol when it runs on two processors. Our
first model allowed messages to be queued that had
not been previously addressed in any of the work on
two-processor models. Our second model incorporated
costs for both rollback and state saving. In this second
model we were able to find regions of the parameter
space where it was better to stop a processor when it
got ahead of the other one rather than let it rush ahead
and potentially incur a cost for state saving and roll-
back. Both models have given us a clearer and more
thorough understanding of the operation of systems
synchronized by rollback when run on two processors.
In addition to extending the rollback cost model to
accommodate arbitrary sized state advances, our fu-
ture work will be in the area of extensions to multiple
processors. Extending our Markov chain approach has
proven to be unwieldy, and we have been pursuing ap-
proximations for multiple processors [13].
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Appendix

A Solution to the Cubic Equation

This material is taken directly from the CRC Handbook
of Mathematical Sciences [21}.
A cubic equation, ¥ + pyy

reduced to the form,

+4qyy +ry = 0 may be

22 +a,z+b, =0
by substituting for y the value z — p, /3. Here
az = (3¢ —py°)/3, b= = (27, —9pyqy +27ry)/27.

The form z3 +az+b = 0 withab # 0 can always be
solved by transforming it to the trigonometric identity

4 cos®(8) — 3 cos(f) — cos(36) = 0.

Let z = mcos(8), then

2 +az+b=0

= m3cos®(8) + amcos(6) + b
= 4cos®(6) — 3 cos(d) — cos(36)
=0.

Hence

4 3 _ —cos(36)
= S .
from which it follows that
m = 24/—a/3, cos(30) = 3b/(am).

Any solution 8, which satisfies cos(36) = 3b/(am),
will also have the solutions

6, +2x/3, and 6+ 47/3.
The roots of the cubic 3 + az + b = 0 are therefore

z; = mecos(f; + 27/3),
z3 = mcos(6,)
z3 = mcos(f, + 47/3).

For the denominator of P(z) in eq. (14) we have

_ d(A-aq1)q
vy — = a3 )
_ A+aaq,q;
Qy . 62
1+ A4
pv e & .

These values can then be substituted into the solutions
given above to find r1, r3, and r3. The values for s; are
symmetric in (@, @) and (g1, ¢3) to the r; values.



AEU, Vol. 47
(1993), No. 5/6

R.E. Felderman, L. Kleinrock: Two Processor Time Warp Analysis

367

References

[1] Jefferson, D. R.: Virtual time. ACM Trans. Programming
Languages and Systems 7 (1985), 404-425.

[2] Felderman, R. E.; Kleinrock, L.: Two processor time warp
analysis: Some results on a unifying approach. Proc.
Sth Workshop on Parallel and Distributed Simulation
(PADS’91), Jan. 1991. 3-10.

[3] Kleinrock, L.; Felderman, R. E.: Two processor time warp
analysis: A unifying approach. Int. J. Computer Simulation
2(1992), 345-371.

[4] Kleinrock, L.: On distributed systems performance. Proc.
7th ITC Specialist Seminar, Adelaide, Australia, Sep.
1989. (Also published in “Computer Networks and ISDN
Systems” vol. 20, no.1-5, pp. 206-215, Dec. 1990.).

[5] Lavenberg, S.; Muntz, R.; Samadi, B.: Performance anal-
ysis of a rollback method for distributed simulation. - In:
Performance '83. Amsterdam: North-Holland, 1983, 117~
132.

[6] Mitra, D.; Mitrani, I.: Analysis and optimum performance
of two message-passing parallel processors synchronized
by rollback. — In: Performance '84. Amsterdam: North-
Holland, 1984, 35-50.

[7] Lin, Y.-B.; Lazowska, E. D.: Optimality considerations for
“Time Warp” parallel simulation. Proc. SCS Multiconf.
Distributed Simulation, Jan. 1990. Society for Computer
Simulation, 29-34.

[8] Lin, Y.-B.; Lazowska, E. D.: Reducing the state saving
overhead for time warp parallel simulation. Tech. Rept.
90-02-03. Dept. Computer Science and Engg., University
of Washington, Feb. 1990.

[9] Madisetti, V. K.: Self synchronizing concurrent computing
systems. Tech. Rept. UCB/ERL M89/122. Electron. Res.
Lab., University of California, Berkeley, Oct. 1989.

[10] Madisetti, V.; Walrand, J.; Messerschmitt, D.: Synchro-
nization in message-passing computers: Models, algo-
rithms and analysis. Proc. SCS Multiconf. Distributed
Simulation, Jan. 1990. Society for Computer Simulation,
35-48.

[11] Nicol, D. M.: Parallel self-initiating discrete-event simu-
lations. ACM Trans. Modelling and Computer Simulation
1(1991), 24-50.

[12] Nicol, D. M.: The cost of conservative synchronization
in parallel discrete event simulations. Tech. Rept. 90-20.
Inst. Computer Appl. in Science and Engg.(ICASE), May
1990.

[13] Felderman, R. E.; Kleinrock, L.: Bounds and approxi-
mations for self-initiating distributed simulation without
lookahead. ACM Trans. Modelling and Computer Simu-
lation 1 (1991), 386—406.

[14] Wagner, D. B.: Conservative parallel discrete-event simu-
lation: Principles and practice. Tech. Rept. 89-09-03. Dept.
Computer Science and Engg., University of Washington,
Sep. 1989.

[15] Misra, J.: Distributed discrete-event simulation. Comput-
ing Surveys 18 (1986), 39-65.

[16] Peacock, J. K.; Wong, J. W.; Manning, E. G.: Distributed
simulation using a network of processors. Computer Net-
works 3 (1979), 44-56.

[17] Lamport, L.: Time, clocks, and the ordering of events in
a distributed system. Commun. of the ACM 21 (1978),
558-564.

[18] Bellenot, S.: Global virtual time algorithms. Proc. SCS
Multiconf. Distributed Simulation, Jan. 1990. Society for
Computer Simulation, 122-127.

[19] Fujimoto, R. M.: Time warp on a shared memory mul-
tiprocessor. Tech. Rept. UUCS-88-021a, Salt Lake City:
Computer Science Dept., University of Utah, Jan. 1989.

[20] Felderman, R. E.: Performance analysis of distributed pro-
cessing synchronization algorithms. Tech. Rept. 910019.
Computer Science Dept., University of California, Los An-
geles, June 1991. Ph.D. Dissertation.

[21] Beyer, W. H. (ed.): CRC handbook of mathematical sci-
ences. 6th ed. CRC Press, 1987.

Robert E. Felderman is a Computer
Scientist at USC Information Sciences
Institute and a Research Assistant Pro-
fessor in the Computer Science De-
partment at USC. He graduated Magna
Cum Laude from Princeton University
in 1984 with a double major in Electri-
cal Engineering & Computer Science
and Systems Engineering. After spend-
ing a year with Hughes Aircraft Com-
pany working on guidance systems for
torpedos, he returned to the good life of academia, completed
his Master’s and Ph.D. degree in Computer Science at UCLA in
1986 and 1991 respectively. In 1991 he was named one of three
Outstanding Ph.D. Students by the UCLA School of Engineering
and Applied Science. His Ph.D. research focused on performance
analysis of distributed systems. His current research interests in-
clude high-speed local area networking, distributed and parallel
systems, distributed simulation and performance analysis.

Dr. Felderman is a member of ACM, IEEE, SCS, Tau Beta Pi
and Sigma Xi. He serves as a program committee member for
the Workshop on Parallel and Distributed Simulation and as a
reviewer for various conferences and journals.

Leonard Kleinrock is Chair and Pro-
fessor of Computer Science at the
University of California, Los Angeles,
since 1963. He received his B.S. degree
in Electrical Engineering from the City
College of New York in 1957 and his
M.S.E.E. and Ph.D.E.E. degrees from
the Massachusetts Institute of Technol-
ogy in 1959 and 1963, respectively.
His research interests focus on perfor-
mance evaluation of high speed net-
works and parallel and distributed systems. He has had over 180
papers published and is the author of five books. He is the princi-
pal investigator for the DARPA Advanced Networking and Dis-
tributed Systems grant at U.C.L.A. He is also founder and CEO
of Technology Transfer Institute, a computer-communications
seminar and consulting organization located in Santa Monica.

Dr. Kleinrock is a member of the National Academy of Engi-
neering, is a Guggenheim Fellow, an IEEE Fellow, and a found-
ing member of the Computer Science and Telecommunications
Board of the National Research Council. He has received numer-
ous best paper and teaching awards, including the ICC 1978 Prize
Winning Paper Award, the 1976 Lanchester Prize for outstanding
work in Operations Research, and the Communications Society
1975 Leonard G. Abraham Prize Paper Award. In 1982, as well
as having been selected to receive the C.C.N.Y. Townsend Harris
Medal, he was co-winner of the L. M. Ericsson Prize, presented
by His Majesty King Carl Gustaf of Sweden, for his outstanding
contribution in packet switching technology. In July of 1986, Dr.
Kleinrock received the 12th Marconi International Fellowship
Award, presented by His Royal Highness Prince Albert, brother
of King Baudoin of Belgium, for his pioneering work in the field
of computer networks. In the same year, he received the UCLA
Outstanding Teacher Award. In 1990, he received the ACM
SIGCOMM award recognizing his seminal role in developing
methods for analyzing packet network technology.



E20298F
ISSN 0001-1096

Q0

September/November 1293

]

Il

AR

U]

NNMRRRR

nternational Journal of Electronics and Communications

Archiv fir
Elektronik und
Ubertragungstec

MMARRRRRRRREATA

ni

|{l“ I'Hl,ﬁ!'ii

Special Issue on Teletraffic Theory and
Engineering in Memory of Félix Pollaczek

.....
R. Syski

Editorial

Syski

CCCCC
Complex Functions in Queueing Theory 300

Abate, Choudhury, Whitt

Distribution and its Cumulants from

IIIIII

eeeeeeeeeeeeeeeeeeeeeeee

ooooooooooooo

aaaaaaaaaaaaaaaaaaa

DDDDDDDD
Waiting-Line Distribution in M®}/D/1
Queues with Geometric Batch Input 349

Felderman, Kleinrock

Queueing and Rollback/State Saving

AR

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

]

I



