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Abstract

We present some new models and their ex- -
act analysis for the problem of two pro-
cessors running a conservative distributed
simulation protocol. The models show that
lookahead is very useful in gaining perfor-
mance, but only if the processors are well
balanced in processing capacity. The mod-
els allow quantitative evaluation of the im-
provement in speedup attributed to null
messages, as well as the degradation due to
a cost for breaking deadlocks. Finally, a con-
servative system with “free” null messages
and a small amount of lookahead is shown
to outperform a Time Warp system with no
cost for state saving or rollback.

1 Introduction

Conservative methods of Discrete Event Simulation
are based on the work of Chandy, Misra, Bryant and
others [1,2,3], and and excellent overview of the tech-

niques involved may be found in [4]. Where TW pro- .

ceeds ahead as fast as it can, only rolling back when
a mistake is found, conservative methods allow an
LP to proceed forward only when it is sure that it is
performing correct computation. That is, conserva-
tive methods use blocking for synchronization, while
optimistic techniques use state saving and rollback.

Kleinrock [5] and Felderman [6] have examined the
performance of an optimistic method of distributed
simulation, Time Warp (TW), running on two proces-
sors. In this paper we create models for a two pro-
cessor system using a conservative synchronization
algorithm rather than Time Warp. The emphasis is
to create a model for a conservative algorithm that
we may directly compare to the previously published
models for Time Warp.
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2 Previous Analytical Work

There has been a great deal of work in the area of
conservative simulation. The bulk of it has been in
creating and empirically evaluating the performance
of a particular “flavor” of conservative synchroniza-
tion. Our interest is in analytical results. Wagner and
Lazowska [7,8] provide techniques for bounding the
speedup for simulation of queueing network mod-
els and discuss optimizations of conservative tech-
niques. Lin, Lazowska and Baer [9] examine conserva-
tive simulation of systems without lookahead. They
develop a new algorithm and provide an analytical
model to estimate performance. In [10] Lin and La-
zowska compare the performance of Time Warp and

Chandy-Misra (conservative) simulation and derive .

sufficient conditions for Time Warp to outperform
conservative simulation. Nicol [11,12] provides per-
formance bounds on a new conservative algorithm.
Lubachevsky [13] shows that the “bounded lag” al-
gorithm scales efficiently as the problem size grows.

Our effort in this paper is to provide a simple
model for a conservative algorithm running on two
processors so as to better understand the maximum
improvement that can be gained by using null mes-
sages and exploiting lookahead. We also address the
cost of deadlock detection and recovery to evaluate
its impact on the performance of the algorithm. Fi-
nally, we compare the conservative approach to a pre-
viously published model for Time Warp [5] and show
when the conservative approach outperforms Time
Warp and vice versa.

3 The Model

We now describe our model for the conservative
method of synchronization. Qur goal is to create a
model that can easily be compared to the previ-
ous models created for Time Warp [5]. Assume we
have two processes each executing on its own pro-
cessor (P, R;). We use a continuous time, discrete
state model, assuming that each process/processor
advances along its own virtual time (simulated time)
axis-visiting only the integers. Each process takes an
exponential amount of time to execute an event and



advances exactly one step forward in virtual time
(along its axis) after finishing the event. After ad-
vancing, each processor will send a synchronization
message to the other processor with a given probabil-
ity gi(z = 1,2). Since the synchronization is conser-
vative, no process can perform work at virtual time v
until it is sure that the other processor will not send
it a message time stamped with a virtual time less
than or equal to v.

As was done in [5] we exploit the Markov process
defined as the difference in virtual time (position on
the axes) of the two processes, and find the proba-
bility that one processor is ahead of the other by a
distance k. Note that | k£ |[< 1 for unimproved con-
servative systems.

Here are the parameters of the model, chosen to
correspond with those in [5].

Ai = rate at which processor i executes events
a = &

AL+ A2

A2

a = =1l-a

AL+ A2
¢ = P[i* proc. sends a msg. after advancing]
3G = l1-g

We now examine several models for two processor
conservative simulation.

4 A System Without Null
Messages

We first solve a model where the processors do not
send null messages. We assume that when a dead-
lock occurs it is detected and corrected after an ex-
ponential delay with mean d/(A; + A2). If d = 0 then
a deadlock is broken instantaneously, while d — oo
means that deadlock detection and correction takes
an infinite amount of time. This system can be de-
scribed by a Markov chain with the following state
description.

(D, ty,t2)
D = Actual virtual time diff. between P, and P,
t1 = P;’s belief about the virtual time difference
ts = P’s belief about the virtual time difference

Discrepancies arise between D, t; and t; when
the processors don’t inform each other about state
changes. This happens often when the processors are
unlikely to send messages (small ¢;). When a proces-
sor thinks it is ahead, it does not try to advance fur-
ther. When both processors believe they are leading,

=

we have a deadlock. The state diagram for this sys-
tem is shown in Figure 1. Each state is labeled with
its state description (D, t;,t;) and an alphanumeric
label for calculation of the steady-state probabilities.

If the processors start out at the same virtual time
v (state 0), eventually, one (say P,) advances to v+ 1
and may send a message to P (state D). Since a
conservative synchronization mechanism is being em-
ployed, P must wait to see if P, will send it a message
with virtual time v+ 1. Its only choice is to wait until
the lagging processor (P;) advances, at which point
that processor will “flip a coin” to decide whether
to send a message. If a message is sent, P, receives
it and is able to continue processing again (state 0).
If a message isn’t sent, P; thinks it is still ahead of
the other processor and will not continue processing
(state F). If P, were to advance again and not send a
message, it would think (correctly) it was now ahead
of P, and stop processing (state G). At this point we
have a deadlock that must be broken. Deadlock de-
tection and recovery algorithms have been discussed
in [4]. Essentially, we break the deadlock by letting
each processor know where it is relative to the other
processor. In this example, P, would learn it was be-
hind and begin processing, thus breaking the dead-
lock. If, on the other hand, each processor is able to
notify the other that it has advanced its local clock,
then the lagging processor is able to advance whether
or not a “data” message is sent. This latter type of
notification is referred to as the “null message” tech-
nique that is used to speed up conservative models.
When used, we assume that this information (null
messages) is propagated without cost.

The balance equations for this system can be de-
rived from Figure 1.

AMpa = Alpo
App = MG1Po
AL+ A
AP = Aogopo + Nagopr + = 7P
AL+ A
MPD = Maipo+ MaipE + — ] 2 pu
Mpe = X@pB + MGipPc
Apr = Aqipa + A2Qapp
AL+ A L
: a3 2p¢ = MGoprF
AL+ A B
l—d‘lpﬂ' = AMQ\PE
AL+ A _ b=
szm = M71p4 + A2G2PB
1 = po+pat+pp+pc+pp+
PE + PF + PG + PH + PI

We first solve explicitly for {po, pa, P8, Pc, PD, PE,



Figure 1: State diagram for conservative synchronization with no null messages and a cost for breaking

deadlocks.
PF, PG, PH, PI}.
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We then find the rate at which the two processors
move forward in virtual time as
Rz = (M +X2)po+ M (pa+pc+pe)+r2(pa+pD+DF)

We compare this rate to the equivalent single proces-
sor rate

m:

_ AL+ A2
e
which is the average rate of virtual time progress if
both processes are run on a single processor where
additional synchronization is not necessary. Speedup

R

is defined as the ratio of the two rates.
Ry

$=r
2(po + a(pa + pc + pe) +d(pB + Pp + PF))
iwB-q - @)
For the simple case where ¢y = ¢ = ¢ the formula
for speedup reduces to

4aa (3 - 2q) )
3-2¢-aa (1 - 3dg°)
and if the cost of breaking a deadlock is zero (d = 0)
then the formula reduces to

_ 4a8(3—2q)
I S @)

and if @ = 1/2, then
S= _3_iq_ (3)

u_
4

S=

We show Equation 1 plotted versus a and g for var-
ious values of d in Figure 2. We note here that the
conservative system with no cost for sending mes-
sages performs better as g, the interaction parame- .
ter, increases. This is in contrast to the Time Warp
system [5] where speedup decreased as ¢ increased.
In the conservative system we are better off sending a
large number of messages because the messages keep
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Figure 2: Speedup versus a and q for various values
of d.

Figure 3: Derivative of speedup with respect to d
(the cost of breaking a deadlock) versus g and d for
a=1/2

each process informed as to the virtual time progress
of the other thus allowing potential parallelism to be
exploited. When more messages are sent, the pro-
cessors are less likely to be waiting due to lack of
information and less likely to become deadlocked.

It is also clear from the figures that the cost of
deadlock has a large impact on the performance if
the probability of interaction is small. This is to
be expected, since the probability of deadlock is
higher when the processes exchange information in-
frequently. We can take the derivative of speedup
with respect to d (the cost of breaking deadlock) to
quantify the effect of d on performance.

48 _  -124%a*(3-29)7

0d  (3-29-aa(l-3dg?))’
We plot this function versus d and ¢ for a = 1/2 in
Figure 3 and see that changes in d have a large effect
on S when q is small.

Returning again to speedup, we note that Equa-
tion 1 is only valid if ¢¢ > 0 and ¢o > 0. If both
of these values are equal to zero (i.e., we never send
messages), then speedup reduces to

S = 4aa
~ a(l +ad) + a?
and if d = 0 in this case we get
- i sk
a+a

(4)

(5)



Figure 4: Speedup versus a and d for ¢; = ¢ = 0.

Coincidentally, this is also the formula we get if '

@ =@ = 1lorif ¢, < 1 and we always send
null messages. For the ¢ = ¢ = d = 0 case, the
system travels between states (A,0,B). In the null
message case, the system travels between the states
(C,0,D). Both systems produce the same probabili-
ties and speedup. These systems produce the opti-
mum speedup that can be gained from the conserva-
tive model. Equation 4 is plotted in Figure 4.

5 Lookahead

It has been noted by several researchers that ex-
ploiting lookahead is necessary to make conservative
simulation a viable alternative to the optimistic ap-
proach [14,15]. Lookahead is the ability of a logical
process to predict its future behavior and especially
its future output. In conservative simulation, when
a process gives any downstream neighbor processes
information about the arrival (or lack thereof) of fu-
ture messages, the downstream processes are able to
continue processing, thus enabling more parallelism
in the system. The typical example of lookahead oc-
curs in a FIFO queueing process. If jobs have a de-
terministic service time of S seconds (of simulated
time), then if a server is empty at real time ¢ and
virtual time v, it can notify any downstream neigh-
bor that no customer will arrive to this downstream
queue with a virtual time stamp less than v + S.
Therefore, recipient processes are able to execute any
events they may have scheduled for virtual time less
than v + S (assuming no other input links).

5.1 Types of Lookahead

In order to formulate a model for a system using
lookahead, we need to be very precise about what
sort of future prediction is available. One example
of this future prediction is that a process might al-
ways be able to inform the other processes of the
virtual time of the next message it is going to send,
but not the contents. With this sort of information,
the receivers in a conservative system would be able
to process all messages that had virtual times less
than the time of the “scheduled” virtual time of the
next message. In a two processor system each pro-
cessor would execute messages with timestamps less
than the virtual time of the “future” message, then
wait for the arrival of that message. This system has
the same performance as a TW system with no cost
for state saving and rollback. TW is really forced to
“wait” for the arrival of the message, but it is actu-
ally just performing useless work instead of waiting.
Both systems return to processing useful work at the
instant that the “straggler” message arrives.

Another type of lookahead is information that
bounds the virtual time of future messages. The typ-
ical example (a FIFO queue) was given in the previ-
ous section. If we know something about the process
that is being simulated, we may be able to provide
information to downstream processes.

The type of lookahead that we use in our model
was introduced by Nicol [11]. We can think of looka-
head as the ability to transmit messages in our fu-
ture to other processors. The farther into the future
we are allowed to “precompute”, the more lookahead
we have. Nicol points out that there are two pieces of
information contained in a lookahead message. The
first is the virtual time of the pending message, the
other is the actual contents of the message. Our pre-
vious example conveys only virtual time information
while, in general, we could transmit both virtual time
and data information. Nicol calls the lookahead with
time and data information “full lookahead” while the
time only message is “time lookahead”. We use the
idea of full lookahead in the next model due to its
analytical tractability.

6 The Lookahead Model

Our definition of lookahead is based on our previous
model that only allows processors to advance a single
step in virtual time when advancing. By assuming
that the processes have K-step full lookahead, each of
the two processes is able to be at most K + 1 units of
virtual time (events) ahead of the other (as opposed
to K messages ahead). Essentially we believe that a
process is able to give the other process the content
of any messages up to K virtual time units in the
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Figure 5: State diagram for a system with K-step lookahead.

future. By assuming that null messages are used, each
processor always knows its position relative to the
other. Note that if K = 0, this model reverts to the
simple no-lookahead model where a processor must
wait when it gets ahead at all. The state diagram for
this system is very simple and is shown in Figure 5.
The balance equations for this system are:

APk A2Dk+1 k=-K-1,..,0,... K

K+1

1= (pi+p-s)
i=1

The solution is
a\k

(3) m
a

aX+1 (a et E) -a-K+1

a3+2K _ g3+2K

Speedup relative to the equivalent single processor
implementation is

403G (a2+2K i 32+2K) 1

po

R i s 0 B

Pk

Po

S = a3+2K _ 53+2K a# 2 (6)
41+ K) s
S R ¥

Equation 6 is plotted versus a and K in Figure 6. We
can see from this figure that lookahead is extremely
useful when the processors are nearly balanced in
processing speed (a = 1/2). In the imbalanced sit-
uation, the faster processor quickly runs out to its
limit of K steps, then waits for the other processor to
move forward before it can continue again. By taking
the derivative of speedup with respect to K, we see
this result more clearly. In Figure 7 we show 8S/0K.
When K is small and a is near 1/2, any change in K
has a major effect on speedup, though once we move
away from a = 1/2 or K > 5, the impact is signif-
icantly reduced. The moral of this story is to make
sure the processes progress at nearly the same rate
in virtual time or lookahead will be useless.

7 Comparison to Time Warp

We now make a direct comparison between the
speedup results obtained from the previously pub-
lished Time Warp models and conservative models

Figure 6: Speedup for a K-step lookahead conserva-
tive system.

Figure 7: Derivative of speedup with respect to K.



Figure 8: Ratio of conservative speedup (no looka-
head) to “free” Time Warp speedup.

derived in the previous sections. To clearly display
the tradeoffs, we compare simplified versions of each.
Figure 8 shows the ratio of speedup for the conser-
vative model using null messages but no lookahead
to Time Warp with no cost for state saving and roll-
back [5]. It is clear that “free” Time Warp is always
a winner since the ratio never exceeds one. The opti-
mistic approach with no cost for its aggressive com-
putation is always better.

Let us now compare free TW to the conservative
model with lookahead when both systems are oper-
ating at @ = 1/2 and when the conservative system
has K-step lookahead. Proponents of the optimistic
approach point out that their systems work well re-
gardless of whether lookahead is exploited. Our com-
parison is an attempt to see how well the conservative
approach exploiting lookahead fares with respect to
a Time Warp system that uses no lookahead. This
ratio is plotted in Figure 9 and suggests that a little
lookahead combined with null messages goes a long
way. For almost any value of K greater than one, we
see that the conservative model outperforms “free”
Time Warp (ratio > 1). We find the threshold where
the conservative approach beats TW by solving the
following inequality for K.

S _(1+K)(2+ﬁ)
;::s_ 3+2K 21 &)

The conaition for the conservative approach to beat

Figure 9: Ratio of conservative speedup with K-step
lookahead to “free” Time Warp with no lookahead.

Time Warp is

k2= V ©

7

For g (the interaction parameter) very small we need
a large lookahead, but for ¢ > 0.1, K only needs to
be 1 or 2. Figure 10 shows the areas of the ¢ — K
plane where the conservative approach beats “free”
Time Warp. Note that if an optimistic system with
no rollback and state saving costs is afforded the
same lookahead as a conservative system with no
cost for null message transmissions, the optimistic
approach will always perform better since it is able
to aggressively compute along the critical path for
free.

8 Conclusions

This paper examined some simple two processor
models for the conservative synchronization method.
It showed that lookahead is very useful in gain-
ing performance, but only if the processors are well
balanced in processing capacity. The models al-
lowed quantitative evaluation of the improvement at-
tributed to null messages, as well as the degrada-
tion due to a cost for breaking deadlocks. Finally, a
conservative system with “free” null messages and a
small amount of lookahead was shown to outperform
a Time Warp system with no cost for state saving
or rollback. However, if they both incorporate looka-
head, then TW is the winner. Unfortunately for the
conservative approach, lookahead is not often easy to
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Figure 10: Area of the ¢ — K plane where the conser-
vative approach with lookahead wins out.

come by [15,14]. A simple FIFO queueing system pro-
vides great lookahead, but add in preemptive-priority
queueing and all the lookahead disappears. It may be
unwise to utilize a synchronization mechanism that
needs lookahead to perform well.
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