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On the  Topological  Design of Distributed 
Computer  Networks 

Absrmcr-The  problem of data  transmission in a network  environ- 
ment  involves  the  design of a  communication  subnetwork.  Recently, 
significant progress has  been made in  this  technology, and  in this  article 
we survey the modeling,  analysis,  and  design of such  computer- 
communication  networks. Most of the design  methodology  presented 
has  been  developed  with the packet-switched  Advanced Research 
Projects  Agency  Network  (ARPANET) in mind,  although  the princi- 
ples  extend to more general networks. 

We state  the general design  problem,  decompose it into simpler 
subproblems,  discuss the  solutions  to these  subproblems, and then 
suggest a heuristic  topological  design  procedure as a  solution to the 
original  problem. 

I. INTRODUCTION 

M ANY stand-alone  computer systems  were  configured  and 
put  into  operation  long  before  anyone seriously analyzed 

their  performance (a procedure which sometimes led to  embar- 
rassing failures). In contrast,  the field of  computer-communi- 
cation  networks is at  once  both unusual  and fortunate in that 
great care has gone into analysis and design techniques prior to  
system  implementation.  In  this paper we wish to survey some 
of  the  recent  mathematical  techniques which have been  found 
useful  in the topological design and performance evaluation of 
computer-communications  networks. Most of  the  procedures 
we describe  below were first  developed  in the process of 
designing  the  Advanced  Research  Projects  Agency  Network 

[31’], 1321, [43],  [44],  [46],  [47],  but were later applied to 
the design of  a large variety  of Government and commercial 
distributed  data  networks. 

Many of the early computer  networks were constructed 
mainly  to provide access to  a centralized computer service 
from  a large number of remote users. Such centralized net- 
works have a  tree  structure,  with  the  computer  located  at  the 
root  of  the  tree and the  terminals  located  at  the  nodes.  The 
communication lines are shared  among several terminal users 
by means  of multidrop,  multiplexing, and concentration  tech- 
niques.  Considerable  research effort  has been spent on the 
minimum cost design of these  centralized computer  networks, 
and a vast literature is now available [2] , [4] , [ 121 . 

In  the  pursuit of more efficient computer  configurations,  it 
was recognized in the late 1960’s that  the  utilization of exist- 
ing computer systems  could be improved by  connecting  them 
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together as a resource-sharing network  [32]. Among the 
shared  resources we include: computer power (for  load 
sharing); specialized hardware; specialized software; and data 
files. This type of network differs from  the  former in that  the 
computer resources  are distributed among the  nodes,  rather 
than  accumulated in a  central  node;  this configuration is here 
referred to  as a distributed computer  network. One  of the first 
examples of  a  distributed  network is represented by  the 
ARPANET, a  recent  configuration of  which is shown in Fig. 1. 

In  distributed  networks  traffic  demands can arise between 
any  two  nodes of the  network, and not only between  ter- 
minals and  the  “central”  node.  Consequently,  better  cost- 
effectiveness  and performance are achieved with topological 
configurations which  present a higher degree of connectivity 
than  the centralized  tree structures 1201. 

Computer  network users share not  only processing facili- 
ties,  but also communication facilities [30] . The cost-effective 
configuration and use of  communication channels is the main 
concern  of  this paper. Conventional line-switching techniques, 
as used by  the  common carrier  switching network, in which  a 
dedicated  path is established for each  conversation, are ineffi- 
cient for  computer  communications in a bursty  mode (e.g., 
terminal-to-computer conversations). In  fact,  with  the present 
technology,  the  time required for establishing  and clearing 
(disconnecting) the  path is much longer  (on the  order  of 
seconds) than  the average intercomputer conversation. A  more 
efficient solution  for line sharing and speed conversion  in a 
bursty  data  communication  environment is provided by. the 
packet-switching (P/S) technique 1271. Each message is  seg- 
mented  into  packets  at  the  source; these packets, instead of 
traveling along paths reserved in  advance,  adaptively  find their 
way  through  the  network  independently,  in  a  store-and-forward 
fashion. More than  one  route  between source  and destination 
may be used; such  routes can be  thought  of as pipelines, along 
which several packets  may travel simultaneously, interleaved 
with  other packets  corresponding to  different  source-destin- 
ation pairs. It is through  this pipelining and interleaving that 
large improvements in network  thoughput and message delay 
are achieved. 

The design of distributed P/S networks is substantially 
different  and  more  complex  than  the design of  centralized 
networks. The  presence of more  than  one  route between  each 
origin and destination in the  distributed case requires the solu- 
tion of complex  routing  and  capacity allocation problems; 
furthermore,  the use of P/S techniques requires the analysis of 
the relationship between  packet delay  and  line  and buffer 
utilization. 

Several algorithms have been proposed for  the design of 
distributed  networks.  Some of the algorithms  are of a  heuristic 
nature; some others are based on more rigorous mathematical 
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Fig. 1. ARPA geographical  map, June 1976. 

programming,  queueing,  and network flow concepts. In this 
paper we present  a survey of the  mathematical programming 
and network flow  approaches that are available for  the design 
of packet  networks. We also describe the most common 
heuristics  and  compare them  to  the  mathematical program- 
ming approach based on the criteria of computation time  and 
solution accuracy. 

11. THE DESIGN PROBLEM 

sible average delay.  It is shown  in Gerla [20] that all these 
formulations are closely related  and that  the solution tech- 
niques that  apply  to  our general formulation also apply  to 
the  other problems. 

In the following sections, we first introduce a network 
model  and discuss the relations  between  performance meas- 
ures, input parameters,  design’ variables, and constraints  that 
appear  in the general design problem. Then we define  and 
solve (in various degrees of completeness]  three design sub- 
problems  (capacity  assignment, flow assignment, flow and 

Several different  formulations of the design problem can be capacity assignment) which are derived . from  the general 
found in the  literature [27] ; generally, they correspond to problem formulation  by fixing some of  the design variables. 
different choices of performance  measures, of design variable, Finally, we study  the solution of  the general problem (i.e., 
and of constraints [20], [29]. Here, we select the following including the topological design) in which the  three above- 
very general formulation: mentioned  problems appear as essential subproblems. 

Given Node locations 
Peak-hour  traffic  requirements 

between node pairs 

Minimize Total line cost 

Over the design variables Topology 
Channel  capacities 
Routing policy 

Subject to Link capacity constraints 
Average packet de1,ay constraints 
Reliability constraint 

Other  common  formulations of the design problem are the 
following: 1) minimize average packet delay given the  network 
cost; 2) maximize network  throughput given cost  and  admis- 

111. MODELING AND ANALYSIS 

A.  l;heModel 

In a PIS network, packets are transmitted  through  the  net- 
work using a  store-and-forward technique [26] , [27] . That  is, 
a packet traveling from source  node s to destination  node d is 
received and “stored” in queue at  any intermediate node k, 
while awaiting transmission,  and is sent “forward” to node p ,  
the  next  node on the  route  from s to d, when  channel (k ,p)  
permits. Even when  this  channel is free,  the packet must first 
be received fully  in node k before  transmission to  node p may 
be started. Given the  destination d and  the present node k, ‘the 
selection of the  next  node p is made by a well-defined decision 
rule referred to as the routing  policy. A routing  policy’is said 
to be  fixed (or static) if a  predetermined fraction of the 
packets arriving at k and directed to d is sent to each output 
queue; it .is said to be  adaptive if the selection of the  output 
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channel at each node  depends  on some estimate of current 
network  traffic  [27]. 

Traffic  requirements  between  nodes arise at  random times 
and  the size of the  requirement is also a random variable. Con- 
sequently,  queues  of  packets build up  at  the channels  and the 
system behaves as a stochastic  network of queues.  For  routing 
purposes,  packets are distinguished only  on  the basis of their 
destination E171 , [20] , [27] ; thus, messages having a common 
destination can be considered as forming  a “class of cus- 
tomers.” The P/S network,  therefore, can be modeled as a 
network  of  queues  with n classes of  customers  where n is the 
number  of  different  destinations  [29] . 

B. Delay Analysis 
A vital performance measure for a computer-communica- 

tion  network  is  the average source-to-destination  packet delay 
T, defined as follows 1271 : 

j S .  k 
.. 

where 

Y j k  average packet rate  flowing from source j to desti- 

z j k  average packet delay (queue and transmission) from 
nation k 

j to k 

A straightforward  application  of Little’s result [28],  [29] to 
the  network  of  queues  model leads to tbp  foilowing very 
useful  expression for T:  

(31 

where b is the  number  of links (arcs), X i  is the average traffic 
rate,  and Ti is the average queueing plus transmission  delay on 
link i. Thjs expression,  establided  by Kleinrgck  in 1964’[27], 
i s  very general (as general as Little’s  result!), and  extremely 
simple. Unfortunately, we are not able in general to  evaluate 
hi and Ti. However, if  we make the following  assumptions: 
1) external Poisson arrivals; 2)  exponential packe’t length dis- 
tribution; 3) infinite  nodal  storage; 4) fixed  routing; 5) error- 
free  channels; 6)  no  nodal  delay; and 7) independence bytween 
interarrival times  and transmission  times on each channel,  then 
the evaluation of (3) can be carried out analytically [26],  
[27].  In  fact,  the  network  of  queues reduces to  the  model first 
studied  by  Jackson [23],  in  which each  queue behaves as an 
independent M/M/1 queue  [28].  Thus,  the average delay Ti 
on  channel i is given by 

(4) 

l/p average packet length (bits/packet) 
Ci capacity  of channel i (bitsls) 
hi average packet  rate on channel i (packetsls). 

The average rates hi are easily computed  from  the  routing 
tables and the  traffic  requirement  matrix [20], [27] . 

By substituting (4) into (3 )  and  lettingfi  be  the average bit 
rate on channel i (bits/s), we obtain the  following  expression 
for T:  

Although  the delay  expression (5) is sufficiently  .accurate 
for  most design purposes, it is possible to  obtain expressions 
which  correspond  more accurately to measured  results.  Klein- 
rock  proposed  in [25]  the following very general formula, 
which includes propagation and nodal processing delay: 

1 b  

Y i = l  
T =  - x hi[Ti + P i  + Ki] 

where 

Pi propagation delay  in channel i (seconds) 
Ki nodal processing time  in the  node  at  which  channel i 

terminates (s/packet). 

The  term Ti depends  on  the  nature  of  the  traffic and on  the 
packet  length  distribution. 

Finally, assuming a general packet  length  distribution,  with 
mean 1/p  and variance u2, we obtain  [26] : 

where 0 = (1 + p2u2)/2. An even more detailed model has 
been  recently  proposed and is discussed in [31]. 

The validity  of the above assumptions  and  approximations 
has  been  tested  and verified through .simulation and measure- 
ments  by  many  authors in  a  variety  of  applicatipns [17], 
[25],  [27] 1311. The results indicate  that  the  model is 
robust. 
” In  this  paper,  without loss of generality, we limit our  con- 
siderations to  the delay  expression in (5). Most of  the  tech- 
niques described  in the sequel  can be easily extended  to  more 
elaborate delay  expressions. Furthermore,  the  solution  of 
some of the design problems seems to  be  rather insensitive to 
the  introduction of additional  detailsin  the delay formula  [20] . 

C. The Communications Cost 
With Ci the  capacity of  link i, we let di(Ci) be the cost of 

leasing capacity  value.Ci for link i. The  communication cost D 
is defined as 

b 

D = di(Ci). 
i = l  

where 
The availability and  effectiveness  of the design algorithms 
depends  rather critically upon  the  form  for di(Ci).  In most 
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applications di(Ci) is a discrete variable; however, for  com- 
putational efficiency it is often convenient to  approximate  the 
discrete costs  with  continuous costs  during the initial opti- 
mization  phase, and to discretize the  continuous values during 
a refinement phase [25]. 

D, Traffic Requirements 
Average (busy-hour)  traffic  requirements  between  nodes 

can be  represented by  a  requirement  matrix R = { r j k } ,  where 
rjk is the average transmission  rate from  sourcej  to  destination 
k. In some cases, we define the requirement matrix as R = 
pR, where R is a  known basic traffic  pattern and p is a variable 
scaling factor usually referred to as the  traffic level. 

In general, R (or E )  cannot be  estimated  accurately a priori, 
because of its dependence upon  network parameters (e.g., 
allocation of resources to  computers, demand for resources, 
etc.)  which are difficult to forecast  and are subject to changes 
with time  and with  network  growth.  Fortunately,  the analysis 
of several different  traffic  situations has  shown that  the 
optimal design is rather insensitive to  traffic  pattern variations 
[ l ]  , [20] . This  insensitivity property, which seems to be 
typical of distributed  networks, justifies the use of traffic 
averages for  network design. 

E. Routing Policy 
In designing network topologies, one generally assumes 

fixed routing, since fixed routing is easy to describe  (by  means 
of routing  tables,  for example) and allows the direct  evaluation 
of channel  flows  and average delay as a  function of routing 
tables  and  traffic requirements.  Adaptive routing, on the  other 
hand, is complex to describe,  and  requires  simulation to 
evaluate  channel flows and delay.  Furthermore,  it was shown 
that at steady state, flow patterns and  delays  induced by good 
adaptive routing policies are very close to those obtained  with 
optimal fixed policies [18] . This  fact suggests that  network 
configurations  optimized with fixed routing, are also (near) 
optimal  for adpative routing  operations  [27] . 

I;: Link Flows 
The  routing policy and the  traffic  requirements uniquely 

determine  the vector f (fi,fi, .-, f b )  where f i  is the average 
data flow on link i. The evaluation o f f  is straightforward in 
the case of fixed routing; it can,  at this  point,  only be obtained 
by simulation if the  routing is adaptive. 

Conversely, not  any generic vector f corresponds to  a 
realizable routing policy and requirement  matrix. If it  does, 
then f is a  multicommodity (MC) flow for that particular 
requirement  matrix. An MC flow  results from  the sum of 
single commodity flows f j k  (j,k = 1,2, -., n )  where f j k  is the 
average flow  vector  generated by  packets  with source node j 
and destination  node k, and n is the  number of nodes. Clearly, 
each single commodity flow of  the MC flow must separately 
satisfy  nonnegativity  and  flow  conservation constraints. 

G. The Capacity  Constraint 

The presence of  capacity  constraints f < C (where C = 
(c1,C2, .-, cb)) makes the design problem in Section 11 a 
constrained MC flow problem.  From  the delay  expressions (4) 

and  (7), we notice  that if the link flow approaches the link 
capacity,  then  the delay  approaches infinity,  thus violating the 
delay constraint [ 161 . Therefore, if both capacity  and  delay 
constraint  must  be satisfied the capacity constraint is implied 
by the delay constraint and  can be disregarded. 

H Reliability 
Links  and nodes in a real network can fail with  nonzero 

probability,  thus  interrupting some communication  paths.  It is 
important  to evaluate the overall network reliability in the 
presence of such  failure  probabilities. 

Several reliability  measures have been  proposed  for com- 
puter-communication  networks. Among them we mention:  the 
probability of the  network being connected (PC); and  the frac- 
tion of communicating  node pairs (FR).  Such measures must 
be verified during the design phase. 

Van Slyke  and Frank developed very efficient techniques 
for  the evaluation of PC and FR  [36] . The  techniques,  how- 
ever, are based on simulation  and are too time-consuming to 
be included  in a global design algorithm. 

Roberts  and Wessler [32] proposed as a reliability measure, 
the  two-connectivity of the  network (i.e., two node-disjoint 
paths available between each  node pair). This measure is easy 
to include as a  constraint in the topological design. Further- 
more,  it is adequate  for  networks  with  a relatively small 
number  of  nodes (on the  order of 20-40) and relatively small 
component failure  probability (on  the  order of 0.01). 

For larger networks (or higher failure rates), stronger con- 
straints must be applied to  the  network  topology (e.g., three- 
connectivity, no long  chains, etc.) in order to obtain  adequate 
reliability. 

This  concludes our  model description. In the  next  four 
sections, we discuss some of  the  important design problems 
and  their  solutions. 

IV. THE LINK CAPACITY ASSIGNMENT (CA)  PROBLEM 

A. Problem Formulation 

The CA problem can be formulated as follows: 

Given 

Minimize 

Topology 
Requirement  matrix R 
Routing policy (and therefore 

link flow  vector f = ( f l ,  f i ,  
' ' ' 2  f b  1) 

b 

D = x di(Ci) 
i= 1 

Over the design variables c = (cl, c2, ..., cb) 

Subject to f < C  
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The  optimal assignment of capacities to  a  distributed  net- 
work  with  arbitrarily fixed routes is not very interesting as a 
stand-alone  problem, since routing plays a  determinant role in 
the  optimization  of  network  performance.  Rather,  the CA is 
of  practical interest as subproblem  of  more general optimiza- 
tion problems. 

The  technique used for  the  solution of the CA problem 
depends on the  nature  of  the cost-capacity functions di(Ci). 
In  the following,  we  present optimal and suboptimal algo- 
rithms  for  linear, concave,  and  discrete  costs. 

B. Linear Costs 
Assuming that di(Ci) = diCi + dio where dio is a positive 

start-up  cost,  the  optimal  solution is obtained using the 
method  of Lagrange multipliers [27].  In  particular,  the 
optimal  capacity  for  channel i is  given by 

and the  minimum  cost D is  given by 

D = b [ difi + dio + (g-y]  
i = l  YTm a x  

C. Concave Costs 
The concave case can  be solved iteratively by linearizing the 

costs  and solving a linearized  problem at  each  iteration  [20]. 
The  method leads,  in  general, to  local minima. However, for 
the very important case of  a  power law cost function (i.e., 
di(Ci) = diCia + dio where 0 < QI < l),  Kleinrock  showed that 
there exists a  unique local minimum  [25].  The iterative 
procedure  therefore yields the  optimal  solution in the power 
law case. 

D. Discrete Costs 

The  optimal  solution  to  the discrete CA problem can be 
obtained  with  a  dynamic programming (DP) technique.  The 
DP algorithm, described by Gerla  in [20] , requires  an amount 
of  computation  which, in most applications, is close to (b )2 .  
Another  suboptimal  technique  for  the  solution of the discrete 
CA problem is the Lagrangian decomposition (LD). The ‘LD 
method, first  developed by  Everett [ 9 ] ,  and subsequently 
improved by  Fox [ 101 and  Whitney [37] , is suboptimal in the 
sense that  it  determines  only  a subset of the set  of optimal 
solutions corresponding to  various values of  the  parameter 
T,,,. The  amount of computation required by LD is slightly 
more  than linear with respect to  the  number  of arcs b. 

The delay versus cost  plot in Fig. 2 shows DP and  LD  solu- 
tions  for  a large range of values of Tmax for  a discrete CA 
application relative to  a 26-node ARPANET topology  [20]. 
The circles correspond to  LD solutions, whereas the  union of 
circles and dots corresponds to  DP solutions. As a  property  of 
the LD method,  the LD solutions  belong to  the convex enve- 
lope of the global set of optimal DP solutions. 

V. THE  ROUTING PROBLEM 

A. Problem Definition 

The  routing problem is here  defined as the problem  of 
finding the fixed routing  policy  which minimizes  the aver- 
age delay T. A possible formulation of the problem is the 
following: 
- 

Given Topology 
Channel  capacities {Ci} 
Requirement  matrix R 

Minimize 

Over the design variable f =  (fi, fi, fb) 

Subject to  a) f is a  multicommodity flow 
satisfying the  requirement 
matrix R 

b ) f <  C 

From  formulation (12), we notice  that  the  routing  problem is 
a  convex MC flow problem on a convex constraint  set;  there- 
fore,  there is a  unique local minimum,  which is also the global 
minimum  and can be  found using any downhill  search tech- 
nique  [5] . 

Several optimal  techniques  for  the  solution  of MC flow 
problems are found in the  literature [ 8 ] ,  [ 3 5 ]  ;however,  their 
direct  application to  the  routing  problem proves, in general, to  
be  cumbersome  and  computationally  not  efficient. Conse- 
quently, considerable effort was spent in  developing heuristic 
suboptimal  routing  techniques  [5] , [17] , [33] . Satisfactory 
results  were obtained  and  computational efficiency  was  greatly 
improved. However, all of  these techniques are affected  by 
various limitations and  may fail in some pathological situations. 

A new downhill search algorithm, called flow  deviation 
(FD), was recently developed by  Fratta,  Gerla, and  Kleinrock 
[16] . The  FD algorithm finds  the  optimal  solution  and is com- 
putationally as efficient as the heuristics. To place the  FD 
algorithms  in the  proper perspective  we  first introduce  the 
most  popular  among  the  heuristic  algorithm-the  “minimum 
link” algorithm-and compare  it to  the  FD algorithm. 

B. The  Minimum Link Algorithm 
We begin by giving an  outline of the  heuristic algorithm 

reported in [5] .  
Algorithm: 

Step I: For  a given sourcej  and  destination k, determine 
all paths I I j h  with  the  minimum  number  of  intermediate 
nodes.  Such  paths are called “feasible” paths. 

Step 2: Choose,  among  the feasible paths,  the least 
utilized path  (or  the  path  with  maximum residual  capacity). 
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Fig. 2. Delay versus cost for discrete capacity assignments on 26-node 30-link topology. 

Step 3: Route  the  requirement Y j k  along such a path. 
Step 4: If all source destination pairs have been pro- 

cessed, stop; otherwise select a new pair and go to  1. 
Step  1, repeated for all node pairs,  corresponds to  the 

evaluation of all shortest  paths  between all pairs of nodes, 
assuming unitary link length.  Such a computation requires 
from (n)2 to (n)2 log (n)  operations, depending on  network 
connectivity. I t  can be  shown that  the  total  amount of com- 
putation required by  the algorithm has  proportion  between 
(n)2 and (n)2 log (n). 

The minimum  link  algorithm is conceptually simple and 
computationally very efficient. Its major  drawback is that of 
being rather insensitive to queueing  delays and therefore 
possibly far from  optimum in heavy traffic situations. 

Step 2: Let xp be the minimizer of T[(1 - h)4(p)  4- 
X f ( p ) ] , O ~ X ~ 1 . L e t f ( ~ + 1 ) = ( 1 - ~ ~ ) ~ ( ~ ) + x ~ ; p f ( P ) .  

Step 3: If I T(f(~+1)) - T(f(p)) I < e, stop: f(p) is 
optimized  to  within  the given tolerance. Otherwise  let p = p + 
1  and go to  Step  1. A geometric representation of the  FD 
algorithm is given in Fig. 3. 

Step 1 is the  most time-consuming operation  of  the 
algorithm,  and  requires an amount of computation  between 
(n)2 and (n)2 log (n). Therefore,  the  amount of computation 
required by  the  minimum link  algorithm and the  FD algorithm 
are  comparable. A typical  central processing unit (CPU) 
requirement is from 2 to 4 seconds for a 30-node application 
on a large computer. 

C. The Flow Deviation Algorithm VI. THE CAPACITY AND FLOW ASSIGNMENT (CFA) 

Before introducing  the  FD algorithm, we mention  the 
following properties  of  the  optimal  routing  solution. 

Property 1: The set of MC flows f satisfying the require- 
ment  matrix R is a  convex polyhedron.  The  extreme  points of 
such  a polyhedron are called “extremal flows” and correspond 
to  shortest  route policies. A shortest  route policy is a  policy 
that  routes  each (j,!) commodity along the  shortest ( j k )  path, 
evaluated under an arbitrary assignment of lengths to  the links. 
To each  such assignment there corresponds an extremal flow 
and conversely. Any MC flow can be  expressed as a  convex 
combination  of  extremal flows [ 161 . 

Property 2: For a given MC flow f,  let us define  link length 
as a function of link  flow of the  form li 4 aT/afi. Let 4 be the 
shortest  route flow  associated with such  link  lengths  and  let 

A. Problem Formulation 

The  CFA  problem can be  formulated as follows: 

Given Topology 
Requirement  matrix R 
Cost-capacity functions di(ci) 

Minimize 

Over the design variables f, C 

f’ = (1 - A)@ + Xf be the convex combinations of 4 and f 
minimizing the delay T. If T ( f )  = T ( f ) ,  then f is optimal. 

Property 2 provides  a way of finding  a  downhill direction, 
‘if  it exists. Based on  such  property, we may  now state  the FD 
algorithm,  as  follows. 

Such that a) f is an MC flow  satisfying 
the  requirement  matrix R 

b ) f < C  
1 f i  C)TV,O=-x-  

Algorithm: Y i = l  ci -fi 
Step 0: Let f (0)  be a starting feasible flow. (A starting 

feasible flow can be obtained using a  modified version of the 
FD algorithm [ 161 .) Let p = 0. 

Step 1: Compute q5(p), the  shortest  route flow corre- The  CFA  problem requires the simultaneous optimization 
sponding to lib) = [aT/afi],=,(,), Vi = 1, .-, b. of  routes and line capacities. The existence of a huge number 

Tmax 
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Fig. 3.  Geometrical  representation  of  the  FD  algorithm.  Characters 
with  tildes  beneath  are  boldface  in  text. 

of local minima  makes  the  exact  solution  difficult to  obtain. 
Therefore, we discuss here  only  suboptimal  techniques. 

B. Linear Costs. 
In the linear cost case we can obtain,  for a givenf, a closed 

form expression of the  optimal C in terms o f f  [see (9)] . In 
particular,  the  total cost D can be expressed  in terms o f f  
only, and  problem (1 3) can be  reformulated as follows: 

Given Topology 
Requirement  matrix R 

r 
Minimize 

Fig. 4. Cvncave  objective  functionDCf).  Characters  with  tildes 
beneath  are  boldface  in  text. 

The convergence follows from  the  fact  that  there are only a 
finite (albeit large) number of extremal flows and  repetitions 
are not allowed because of the  stopping rule 2. 

From (14) the equivalent length li  defined in  Step 1 has  the 
following expression: 

L 

Over the design variable f 

Such  that f i s  an MC flow  satisfying R 

It can be shown that D ( f )  is concave over the convex poly- 
hedron of feasible multicommodity flows [20] . This  implies 
that  there are  in  general several (in fact,  enormous  numbers 
of) local  minima corresponding to  some corners of the  poly- 
hedron, i.e., corresponding  to some extremal flows (see 
Fig. 4). The FD  method described  in the previous section can 
still be  applied, in a properly modified form;  however,  it leads 
to  local minima. More precisely, the  FD algorithm performs a 
local  search on extremal flows, until  it finds  a  local minimum. 
The  modified  FD algorithm is next  introduced. 

FD algorithm (for concave objective function): 
Step 0: Let f(O) be a feasible starting flow. Let p = 0.  
Step I :  Let f@+l) be  the  extremal flow corresponding 

to  the following definition  of equivalent  lengths: 

Step 2: I f  D(f@+l)) .> D ( f ( p ) ) ,  stop: f (p)  is a  local 
minimum.  Otherwise, let p = p + 1 and go to  1 .  

Notice  that  limfi-o li = 00. This  implies that whenever the 
flow (and therefore  the capacity) of  link i is reduced to zero 
at  the  end of an iteration, flow  and capacity will remain  zero 
f o r  all subsequent   i terat ions,   s ince the incrementa l  cost of 
restoring the flow on a  link is proportional to  Zi which  in this 
case is infinity. In ‘other words, uneconomical links  tend  to  be 
eliminated by  the  algorithm. This  link elimination  property, 
first  observed by Yaged [38],  can be utilized  in the  topolog- 
ical design, as shown in the following section. 

The  solution  obtained  with  the  FD  algorithm is a  local 
minimum  which  depends on the selection of  the  starting flow 
f ( O ) .  In  order to  obtain a more  accurate  estimate of the global 
minimum, several locals  are  usually explored,  starting  from 
randomly chosen  flows. 

C. Concave  Costs 
For concave channel costs there is no closed-form expres- 

sion  of D in terms of f .  However, it  has  been shown by Gerla 
that D ( f )  is concave over f, and that  the  FD algorithm  can be 
still  applied to  obtain local  minima 1201 . 

An application of the  FD  method  to  the  topology shown  in 
Fig. 5 is next  introduced. Channel  capacities are available only 
in discrete sizes (see Table I); therefore, discrete channel costs 
are approximated  with  continuous power law costs,  to  apply 
the concave cost version of the  FD  algorithm. 

A uniform  traffic  requirement of 1 kbit/s was assumed 
between all node pairs. Fifty  different local  minima  were 
obtained  with  the  FD  method using randomly generated 
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f?+ Fig. 5 .  ARPA-like topology with 26-nodes and 32 links. 

TABLE I 
LINE COST (TELEPAK RATES) 

CAPACITY I TERJIINATION  COST 
[K RITS/S] [$/MONTH1 

9.6 

1,300 19.2 (2 x 9.6)’ 

650 

850 19.2 

100.0 (2 x SO)* 1,700 

230.4 1,350 

MILEAGE COST 
[$/MONTH/MILE] 

.40 

.80 

2.50 

5.00 

10.00 

30.00 

TABLE I1 
DISTRIBUTION OF LOCAL  SOLUTIONS 

1 

D[$/MONTH] NO. OF SOLUTIONS 

88,400 - 88,500 8 

88,500 - 88,600 

88,600 - 88,700 

11 

11 

starting  flows.  The distribution  of  the local solutions in 
Table I1 shows that all the  solutions fall in a very narrow 
range. Due to  the  random procedure used to select starting 
flows, we may conjecture  that  the  optimal solution is also 
close to this  cost range [ 2 0 ] .  

The  execution time  required to generate the 50 local min- 
ima was about 50 seconds on an IBM 360/91  (about 1 second 
per local solution). 

D. Discrete  Costs 
For  the discrete cost problem  one of the following heuristic 

approaches  may  be  used. 
Approach 1: Solve,  iteratively, a  routing problem with 

fixed  capacities,  followed by  a discrete CA problem with fixed 
flows, until  a local  minimum is obtained. 

Approach 2 :  Interpolate discrete  costs with  continuous, 
concave costs. Solve the corresponding concave CFA problem. 

5 5  

Adjust the  continuous capacities to  the smallest feasible dis- 
crete values. Reoptimize  the flow assignments by solving a 
routing  problem. 

Four algorithms are next  introduced,  the first  three  follow- 
ing Approach 1 ?pd the last following Approach 2.  

1)Minimum  LinkAssignment [13]: 
Step I: Apply the minimum  link  routing  algorithm, as 

Step 2: Allocate to link i the smallest feasible capacity 
described in Section V-B; to assign link  flows. 

Ci , such that 

Ci > fi, V i  = 1, -., b .  

Step 3: Reoptimize the  routing, so as to maximize 
throughput. 

2) Bottom Up Algorithm [20]: 
Step 1: Assign minimum available capacities to  the links. 
Step 2: Maximize the  throughput p at T < Tmax, using 

the  FD algorithm. 
Step 3: If p 2 5 (where 5 is the required  traffic level) 

stop; we have a feasible suboptimal solution. Otherwise, 
increase the capacit; on  the “most  utilized”  link and go to 
Step 2. 

3) Top  Down  Algorithm /20] : 
Step I: Assign maximum available capacities. 
Step 2: Maximize p at T < TmaX, using the  FD algorithm. 
Step 3: If p < 5 (where 6 is the required  traffic level) 

stop;  routing and  capacities of the previous iteration represent 
the feasible suboptimal  solution. Otherwise, decrease the 
capacity on the .“least utilized”  channel and go to  Step 2.  

4 )  Discrete  Capacity (Dis Cap) Algorithm [20] : 
Step 1: Interpolate discrete  costs with  continuous, 

Step 2: Solve the  continuous CFA problem and find a 

Step 3: Keepingf fixed, solve a discrete CA problem. 
Step 4: Keeping C fixed, solve a  routing problem. 
Step 5: If cost D did not decrease between two succes- 

sive iterations,  stop. Otherwise, go to  Step  3. 
In  order to evaluate the effectiveness of the above heuris- 

tics, the  three  latter algorithms were applied to  the  network 
shown in Fig. 5 ,  and the results compared. The  difference  in 
cost between  the best and  the worst solution was  less than 3 
percent;  furthermore,  two of the  three  sqlutions  (Top Down 
and Dis Cap) were identical!  Consideriqf: the fact that  the 
methods are  conceptually very different,  the narrow  cost range 
of  the  solutions implies that  they are close to  optimum. 

Execution  time  for each of the three  algorithms (Top  Down, 
Bottom  Up, and Dis Cap) was about  90 seconds on an IBM 
36019 1. 

power law costs. 

local minimum (LC). 

VII. TOPOLOGICAL DESIGN 

A. Problem Formulation 

The topological problem can be generally designed as 
follows: 
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Given 

Minimize 

Such that 

Requirement  matrix R 

where the  set of arcs A specifies 
the  topology 

a) f is  an MC flow  satisfying the 

b ) f <  C 
requirement  matrix R 

d) The set A must  correspond to 
a 2-connected topology 

There exists no efficient technique  for  the  exact  solution of 
this topological problem. Several heuristics,  however, have 
been  proposed  and implemented and are discussed below. 

B. The Branch  X-Change (BXC) Method [ 131, [34J 

This method  starts  from an arbitrary topological  configura- 
tion  and reaches  local  minima by  means of local transforma- 
tions (a  local transformation,  often called branch X-change, 
consists of  the elimination of one  or  more old  links and  the 
insertion  of  one  or  more ne'w links). 

The BXC method  has  found applications  in  a  variety of 
topological problems  (natural gas pipelines [ 111 , minimum 
cost survivable networks [34], centralized computer  networks 
[12] , etc.). In  particular, BXC has  been  applied to  the  topo- 
logical design of distributed  computer  networks  [13] . The 
algorithm  described in [ 131 is iterative'and  each  iteration  con- 
sists of three main steps, as follows. 

Step I: Local transformation. A new link is added and 
an old link is deleted in such a  way that  two-connectivity is 
maintained. 

Step 2: Capacities  and  flows are assigned to  the new 
topological  configuration using the minimum  link assignment 
described  in Section VI, and cost  and throughput are evalu- 
ated. If there is a cost-throughput  improvement,  then  the 
topological transformation  from  Step 1 is accepted. Otherwise, 
it is rejected. 

Step 3: If all local transformations have been explored, 
stop.  Otherwise, go to  Step 1. 

C. Concave  Branch  Elimination (CBE) Method (201, (38J 
The CBE method can be  applied whenever the discrete 

costs can be  reasonably approximated  by concave curves [20] . 
The  method consists of  starting  from a  fully connected 
topology, using concave costs  and  applying the  FD algorithm 
described  in Section VI until a  local minimum is reached. 
Typically,  the  FD algorithm  eliminates  uneconomical links, 
and  strongly  reduces the  topology. Once  a locally minimal 
topology is reached,  the discrete  capacity solution can be 
obtained  from  the  continuous  solution  with  the  techniques 
discussed in Section VI. Since two-connectivity is required,  the 
FD algorithm is terminated whenever the  next link removal 

violates this constraint;  the last two-connected  solution is then 
assumed to be the local  minimum. In order  to  obtain several 
local minima,  and  therefore several different topological  solu- 
tions,  the FD algorithm is applied to several randomly  chosen 
initial flows. 

D. Other Methods 

Both  the BXC and CBE methods have some shortcomings. 
For example,  the BXC method requires an exhaustive explora- 
tion of all local  topological  exchanges  and tends  to be very 
time consuming when applied to  networks  with  more  than  20 
or 30 nodes.  The CBE method,  on  the  other  hand, can very 
efficiently eliminate.uneconomica1 links, but does not provide 
for insertion of new links. In order to overcome such  limita- 
tions, new methods derived from BXC or CBE have been 
recently proposed  and are now being investigated. 

The  cut-saturation  method, discussed in [22],  can be  con- 
sidered as an extension of the BXC method, in the sense that, 
rather  than exhaustively  performing all possible branch 
exchanges, it selects only  those exchanges that are  likely to 
improve throughput  and cost. In  particular,  at each iteration: a 
routing  problem is solved; the  saturated  cut (i.e., the minimal 
set of most utilized links  that, if removed, leaves the  network 
disconnected) is found and  a new link is added across the  cut; 
then  the least  utilized  link is removed. The selection of  the 
links to be  inserted or removed depends also on link cost. 

The concave branch  insertion  method, discussed in [20], 
identifies  and  introduces links  which  provide  cost savings 
under a concave cost structure.  The  method can be efficiently 
combined  with  the CBE method,  to  compensate  for  the 
inability of  the  latter  to  introduce new links. 

In some  applications with very irregular distributions of 
node  locations,  or  with  constraints which are difficult to 
formulate analytically (e.g., no chains longer than m hops; 
connectivity  higher than  2, etc.), network design can be 
greatly enhanced using man-computer  interaction.  To  this 
end, interactive design programs have been  developed  in  which 
the  network designer can observe (and  eventually correct)  the 
topological transformations  performed by the  computer and 
displayed iteration  after  iteration  on a  graphic terminal. 

In general, the selection of the  appropriate algorithm will 
depend  on  the cost-capacity structure,  on  the presence of 
additional topological constraints,  on  the degree of  human 
interaction allowed and,  finally,  on  the  tradeoff  between cost 
and precision required by  the  particular  application. 

E. Bounds 

In  the development  and  evaluation of topological design 
algorithms,  lower bounds are investigated for  the following 
purposes: 1)  appraisal of the accuracy of heuristic algorithms; 
and 2 )  development of optimal algorithms based on  branch- 
and-bound  type  approaches. Lower bounds are obtained by 
relaxing the topological connectivity  constraint  and  by 
approximating  the discrete  cost-capacity curves with lower 
envelopes (see Fig. 6). Linear lower  envelopes lead to linearized 
bounds, while concave envelopes lead to concave bounds. 

1) Linearized bounds: The linearized bounding  problem is 
generally formulated as  a  CFA problem (see Section VI) with 
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Fig. 6 .  Linear  and  concave lower envelope. 

linear line costs and fully connected  topology. The  direct 
solution of the  bounding  problem is difficult because of the 
concavity of  the objective function D(f) [see (14)].  Rather, 
the objective D ( f )  is further  bounded as follows: 

where Cmax = max admissible link  capacity option. 
The lower bound DLB(f)  in (16) is convex. Thus,  a lower 

bound  to  the topological problem is obtained  by minimizing 
the convex  objective DLB(f)  using the  FD  method. 

The procedure as defined above applies to  the case in  which 
no link  (and  link  capacity) is preassigned; but can be extended 
to applications  in  which a set of links is assigned a priori, and 
new links must be added in order  to  meet  the  requirements 
(e.g., network expansion problem)  [39] . 

The linearized bound can also be applied in branch-and- 
bound (B-B) algorithms [39].  To this end, recall that at  each 
step  of  a B-B algorithm a  bound is required on  the cost of  a 
partially specified topology  with  a set n, of assigned links,  a 
set np of potential links, and  a set ne of excluded  links.  This 
bounding problem is similar to  the topological design with 
some preassigned links,  and can be approached  with  the  lin- 
earized bounding  procedure previously mentioned. 

2 )  Concave 'bounds: Linearized bounds are simple and 
exact. However, they are often  too  loose, especially if line cost 
versus capacity shows strong  economy of scale, or  more gen- 
erally,  the cost-capacity structure  cannot be accurately 
bounded  with  a linear  envelope. In such cases, concave bounds 
lead to  better results. 

Unfortunately,  the presence of concave link  costs  makes 
the  solution  of  the  bounding  problem  difficult, since the 
objective D ( f )  cannot be expressed in closed form (see Section 
VI-C). One possible (but  complex)  approach consists 9f  formu- 
lating  linear or convex bounds  for D ( f ) ,  and  then solving the 
problem exactly  with  the  FD  method. A simpler approach, 
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Fig. 7. Concave  approximations  to  link costs, for various  link  lengths 
(Telpak  tariff  assumed). 

which .we follow, consists of finding an approximate solution 
to the  bounding problem with  the  technique indicated in Sec- 
tion VI-C. The lower bound is then derived from  the  approxi- 
mate  solution taking into  account  the accuracy of the  solution 
method.  For  example, if D is the cost of the  approximate solu- 
tion and E is the relative accuracy, the lower bound is DL, = 
D(1 - E ) .  

VIII. APPLICATIONS 

We now evaluate the efficiency of some of the heuristic 
techniques as applied to  the topological design of a proposed 
26-node ARPANET  configuration (see Fig. 5 ) .  Capacity 
options vary from  9.6  to 230.4 kbit/s; discrete  cost-capacity 
functions as well as concave approximations are shown in 
Fig. 7. Delay requirement is Tmax = 200 ms. Traffic demands 
are uniformly distributed between node pairs. Several levels 
of  throughput  requirement in the range from  400  to 700 kbit/s 
are  considered. 

The  suboptimal  solutions  obtained  with  different  tech- 
niques are displayed in a  throughput versus cost diagram in 
Fig. 8. For each technique several solutions were generated  at 
different  throughput levels. Since each technique typically 
generates several locally optimal  solutions, only the non- 
dominated  solutions were shown  in Fig. 8. (Note:  SolutionA 
is defined to be dominated  by  Solution B if B has  lower  cost 
and better  performance  than A . )  Figs. 9 ,   10,  and 11 display 
some typical topologies obtained  with BXC, cut-saturation, 
and CBE, respectively. 

From Fig. 8, it is noticed  that different  techniques lead to 
solutions which fall in a narrow cost-throughput range. The 
resulting  topological structures, on the  other  hand, may vary 
considerably from  technique  to  technique, as can be seen by 
comparing cut-saturation and CBE solutions  in Figs. 10 and 
11, respectively.  Cost  and throughput of the  two  solutions are 
approximately  the same, but  cut-saturation yields about  30 
links while CBE yields about  60 links. We note  that  the 
marginal cost [dollars/(bit/s)/month] varies over a  moderate 
range for these three  procedures. 

These facts lead us to  conjecture  that  there are a large 
number of low-cost solutions which may correspond to very 
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