1991 International Conference on Parallel Processing

On the Performance of a Deadlock-free Routing Algorithm for
Boolean n-Cube Interconnection Networks with Finite Buffers:

Ming-yun Horng and Leonard Kleinrock
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90024-1596
(213) 825-3643

Abstract

This paper presents a mathematical model for eval-
uating the performance of a deadlock-free routing algo-
rithm for Boolean n-cube interconnection networks with
finite buffers. With this deadlock-free routing algorithm,
all messages entering the network will be delivered cor-
rectly to their destinations without discards or deadlocks.
We solve for the throughput of the network, the average
message delay and the probability of acceptance of an in-
put message. We determine the effect of the buffer size
on performance and show that only a few buffers in each
node are essential to yield good performance. We also
show that the throughput of the network does not de-
grade even when the network is saturated.

Keywords: Boolean n-Cube Networks, Hypercubes, In-
terconnection Networks, Multiprocessor systems, Rout-
ing Algorithm, Performance Analysis.

1 Introduction

A major problem in designing a multiprocessor system
is to construct a fast and efficient interconnection net-
work among the processors. Many interconnection net-
works have been proposed (7], [18]. There is no single net-
work that is considered the best for all applications. Re-
cently, the Boolean n-cube interconnection network (also
known by such names as binary n-cube, cosmic cube and
hypercube) has been drawing much attention due to its
powerful topological properties and its application to high
speed switching networks. Several research and commer-
cial systems have been built based on this type of network
(17], [10], [8].

One important requirement is that the interconnec-
tion network should be deadlock-free. Deadlocks may oc-
cur as node buffers become full. A node with full input
buffers also blocks its neighbors’ output channels and in-
creases the chance of the neighbors becoming blocked.
When the movement of messages comes to a halt, the
system crashes. Several deadlock prevention techniques
based on the concepts of removing or avoiding cycles of
channel dependency have been developed [6], [14].

This work was supported by the Defense Advanced Research
Projects Agency under Contract MDA 903-87-C0663, Parallel Systems
Laboratory.

However, with current VLSI technology, the channel
speed in an interconnection network is approaching one
gigabit per second [2]. At this high speed, the amount
of time that the routing algorithm can afford to spend
in making routing decisions is severely constrained. The
routing algorithm must be very simple.

In this paper, by exploiting the homogeneity of the
network and applying the concepts of timestamps [4] and
backtracking (8], we present a simple deadlock-free rout-
ing algorithm for finite-buffered Boolean n-cube networks.
With this algorithm, most messages are transmitted over
their shortest paths from source to destination nodes. In
a few situations, when a node does not have enough free
buffers to accept all the incoming transit messages, the
node sends some of its buffered messages on less direct
paths to avoid congestion. Moreover, every message car-
ries a globally unique timestamp. The oldest message will
make nonstop progress to its destination without being
backtracked. As soon as the oldest message has been de-
livered, another message becomes the oldest. Thus, every
message accepted into the network is guaranteed to arrive
at its destination without loss.

Boolean n-cube networks have been analyzed in the
literature [5), [16], (3], [1]. However, mathematical mod-
els that consider queueing effects are rare. Moreover, in
a large scale interconnection network, the storage capac-
ity of each node is limited. Thus, a model which assumes
there are an infinite number of buffers in each node can-
not reflect the actual behavior of the system. Abraham
and Padmanabhan [1] developed a model considering fi-
nite buffers, however, in which messages can be lost dur-
ing transmission if the buffers at an output channel are
full.

This paper presents a mathematical model for evalu-
ating the performance of an algorithm with backtracking
for lossless finite-buffered Boolean n-cube interconnection
networks. We solve for the throughput of the network, the
average message delay and the probability of acceptance
of an input message. We determine the effect of the buffer
size on the performance. We show that only a few buffers
in each node are essential to yield good performance. We
also show that the throughput of the network does not
degrade even when the network is saturated. The match
between the model and the simulation results is extremely
good.

111-228

1991 international Conference on_ Parallel Processing

2 Preliminaries

2.1 Operation of the Network

Topological properties of the Boolean n-cube network
are discussed in [15], [17]. A Boolean n-cube network con-
sists of 2" nodes, each addressed by an n-bit binary num-
ber from 0 to 2" — 1. Nodes are interconnected in such
a way that there is a link between two nodes if and only
if their addresses differ in exactly one bit position. Every
node has exactly n neighbors. A Boolean 4-cube network
is shown in Figure 1.

Each node handles messages for several local proces-
sors. Communication among nodes is achieved by multi-
hop message passing. The header of a message can be
computed as the exclusive-OR of the message’s source
and destination addresses. This information indicates the
dimensions the message must traverse before reaching its
destination. A one-bit in the header corresponds to a
valid channel for transmission. Whenever a message is
sent along a valid channel, the corresponding one-bit is
changed to zero and the message is one hop closer to its
destination. When the header contains only zeroes, the
message has arrived at its destination.

Also, a message can be sent along a non-valid channel
while the corresponding bit is changed from zero to one.
As a result, the message is sent one hop farther away
from its destination. The message then needs an extra
hop to move itself back along this dimension later before
reaching the destination. We say a message is forwarded
if it is sent along a valid channel. A message is said to be
backtracked if it is sent along a non-valid channel.

Since the propagation delay between two neighboring
nodes is very small, it is possible to operate the system
synchronously. We assume time is divided into cycles with
a duration which corresponds to the transmission time of
a message to its neighbor. We assume that all messages
are of the same fixed size. We further assume that a node
is capable of sending messages along its n channels simul-
taneously. Thus, a node can receive up to n messages from
its neighbors in a cycle. The communication error rate in
a well protected interconnection network is assumed to
be extremely small and negligible.

2.2 Deadlock-free Routing Algorithm

At the beginning of a cycle, each node of the network
makes its two-phase routing decision as follows. In the
first phase, every node randomly selects one of the one-
bits from the header of every message the node currently
has. If more than one message is selected with the same
bit position, the one having the highest priority (to be
defined later) is successfully assigned to the channel. Ob-
viously, the random assignment of messages to channels
in the first phase is not an optimal approach in terms of
the number of messages transmitted in a cycle. However,
in [9] we have shown that the mean delay of the random
approach is fairly close to the lower bound. Moreover, the
routing decision of this random approach can be made
simultaneously for all messages in a node by a parallel

000 0001 1000 1001
0010 0011 1010 1011
0100 0101 1100 1ol

1 11
0110 [RRR}

Figure 1: A Boolean 4-cube network

circuit and is therefore a simple and rapid calculation.

Let M be the buffer size of each node, where M > n.
Suppose a node currently has i messages and j of them
are successfully assigned to channels in the first phase.
Then, M — ¢ + j buffers will be freed for any messages
coming in from neighbors if there is no second phase.
However, we wish to make available at least n buffers in
case each of the node’s n neighbors choose to send it a
message in the cycle. So, in order to provide n free buffers
when M — i +j < n, the node forcesout n — M +1i —j
messages with lower priority in the second phase. Since j
channels have been assigned in the first phase, messages
chosen in the second phase must be assigned only to the
other n — j channels. Note thatn =M +i—j3 <n-—j
in any case. If any message is assigned to a channel in
the second phase with the corresponding bit in its header
being one, then this message will be forwarded in the
direction toward the destination. Otherwise, the message
will be backtracked. A similar technique called "referral”
is used in the Connection Machine [8]. Messages which
fail in assignment in this cycle are kept in buffers for
assignment in the next cycle. After making this two-phase
routing decision, the node is ready to send messages to
its neighbors.

Whenever two neighboring nodes are ready, they be-
gin sending each other a message (if there is one) along
the channel they share. We assume the channel is bidi-
rectional. We further assume that, among these received
messages, the ones destined for the node are delivered to
local processors immediately. Other messages, known as
transit messages, are saved in buffers for further trans-
mission. After a node finishes exchanging messages with
all of its neighbors, the node admits some input messages
from its local processors and then continues to the next
cycle.

The message priority is defined as follows. Each mes-
sage is globally timestamped. The timestamp contains
the time when the message was created and the source
node address. Messages are queued and selected for rout-
ing in an order based on their timestamps, where older
messages have higher priority over younger ones. If two
messages are created at the same time, then the mes-
sage with lower source address has higher priority over
that with a higher source address. Since at least one of
the stored messages is successfully assigned in the first
phase, the message with highest priority always makes
progress in every cycle. Whenever the oldest message has
been delivered, another message becomes the oldest and
proceeds without blocking. The network is deadlock-free.

I11-229

1991 International Conference on Parallel Processing

3 Performance Analysis

In this section we develop an approximation to deter-
mine the throughput of the network, the average message
delay, and the probability of acceptance of an input mes-
sage.

3.1 Assumptions of the Model

We assume that a message’s destination is uniformly
distributed over the network, and that a local processor
does not input messages to the node if the messages are
for some other processors of the same node. Thus, we
have

d;

Il

" Prob[An input message has i 1-bits in its header]

()
2n —-1
The expected number of hops a message must travel in
the network is easily calculated as d = n2"!/(2" - 1),

which approaches n/2 when n is large. However, since
messages can be backtracked during transmission, the
number of hops actually traversed by a message can be
larger than what is needed.

The arrivals of input messages from local processors
to each node are assumed to be based on a geometric dis-
tribution with a generation rate of A messages per cycle.
We let g; be the probability that a node’s local processors
generate ¢ messages in a cycle. That is,

, fori=1,2,...,n

gi=(1—a)a', where 0< a = —1—-;_—,\<1.

We note that in the case of destination nodes being uni-
formly distributed over the network, the throughput of
a node must be less than 2 messages per cycle. How-
ever, some of these messages might be rejected by the
node if the node does not have enough buffers. We define
P, as the probability of acceptance of an input message.
Clearly, the communication load of the network is deter-
mined by) and the set of probabilities d;.

3.2 Imbedded Markov Chain Analysis

The Boolean n-cube network is assumed to be decom-
posed into a set of statistically identical nodes. (clearly,
one should not use this assumption in the case of unbal-
anced traffic.) Considering an arbitrary node separately,
we have a bulk-arrival and bulk-service system as shown
in Figure 2. Let M be the buffer size of the node. We
assume there exists an equilibrium state for the node.

Let the sequence of random variables X, X, Xo, ...
form an imbedded Markov chain, where X, is the number
of messages the node has at the beginning of cycle m. An
(M +1) x (M + 1) matrix P, which represents the one-
cycle transition probability matrix of the node, is defined

P = [piyi]a

where

Messages
From Neighbors

|
Transit
Messages
Mleeoeo|2/1}H—— S
3
Delivered .
Messages .
.
Messages From
Local Processors ®_>

Figure 2: Structure of a Node

Pij = n];l.gchrOb{X'" =j|X,,._1 = i]

We further define the steady state probability vector II
o .
= [Wo, Ty T2, -'--17"4\{]»

where
;= 'lﬂProb[Xm = ¢] fori=0,12,.,M

If the Markov chain is irreducible, aperiodic and recur-
rent nonnull, then II can be uniquely determined through
the following set of linear equations [11]:

I1 =1IIP,

M

Z‘R‘,’ =1 La (l)
i=0

3.2.1 Calculating the Matrix P

The key problem of this model is to calculate the tran-
sition probabilitics p;;. Based on the description of the
routing algorithm, it follows that the node repeatedly
makes a routing decision, exchanges messages with its
neighbors, and then admits some input messages from
its local processors. However, without loss of generality,
in the model we assume in each cycle all of the transit
message are received by the node after all of its selected
messages have been transmitted. See Figure 3.

We let Y,,Y;,Ys,... be a sequence of random vari-
ables, where Y}, is the number of messages the node has
in cycle m after the node has transmitted all of its cur-
rently selected messages, but before it has received any
transit messages. We also let Zy, Z}, Z,,... be a sequence
of random variables, where Z,, is the number of messages
the node has in cycle m after the node has received all of
its transit messages, but before it has accepted any input
messages.

Let us first determine the number of messages trans-
mitted by the node in a cycle. Since one-bits in the header
are assumed to be uniformly distributed and channel se-
lection is made randomly, it follows that every channel of
the node has an equal probability of being assigned in the
first phase. We let f;; be the probability that j messages
are successfully assigned to channels in the first phase,

111-230

1991 International Conference on Parallel Processing

Assign Msgs Transmit & Recelve Input
to Channels % Messages g Msgs 1 =
t Lo
L‘— Cyclem —»IQ—CVCIQ me|
'

1
1
. |
|
: 1
1 !

(a) Snapshot of queue fluctuations (real system)

Xm

I
!
|
I
|
|
|
1

(b) Snapshot of queue fluctuations (model)

Figure 3: Snapshot of queue fluctuations in cycle m

given that the node currently has i messages. It can be
shown [9] that

R = o iyt T it d
(i)kgo(_l)k (i) (175) ’{{ ll ;% lSamnin(i,n)
1 ifi=37=0
0 otherwise.

fig =

(2)

Given that j messages are successfully assigned in the

first phase, the second phase must choose n — M +1i — j

messages if ¢ — 5 > M — n. If we further let f,»'J- be the

probability that j messages are successfully assigned to

channels at the end of both phases, given that the node
currently has ¢ messages, we have

fij ifi—j<M-—n
. n—M+i e)
fij = Y fu ifi-j=M-n (3)
k=1
0 otherwise.

We now proceed to determine the number of transit
messages received in a cycle. Recall that a transit mes-
sage is a message received from a neighbor which needs
further transmission. Assuming that the traffic load is
evenly distributed and that any incoming channel is in-
dependent of any other incoming channel, and letting P,
be the probability of receiving a transit message from a
channel and t; be the probability of receiving i transit
messages in a cycle, we have

ti = (TZ)P.‘(I—P,)"-‘, fori =0,12,..n. (4)

We solve for P, later. We further define the following three
(M +1) x (M + 1) matrices:

D = [diJ]s
where
dij = lim Prob(Yp =j| X =i].
R = ["j,k],
where
rik = lim Prob[Z, = k|Y, =j].
A = [aw],
where

ap) = %i_rchrob[Xm“ =1|Z,=k)].

We find the following equations:

o fi’,i—j if0<j<i<M
figy { 0 otherwise (5)
and
_J iy f0<j<k<Mandk-j<n
Lk { 0 otherwise (6)
and
(1-a)o!* if0<k<I<M-1
ag = q oMt f0<k<Mandl=M (7)
0 otherwise.

Finally, we have the one-cycle transition probability ma-
trix: Ps

P =DRA. (8)
Since p;; # 0 for 1 = 0,1,2,..., M, the Markov chain is
irreducible. It is not difficult to show that the Markov
chain is also aperiodic and recurrent nonnull. Thus, the
probability distribution m; for ¢ = 0,1,2,..., M can be
determined from the set of linear equations described in
Eq.1. However, the remaining problem is to determine
the value for P,.

3.2.2 Determining the Value for P,

The value for P, must satisfy the condition that in
equilibrium the network message input flow equals the
message output flow. We let u be the channel utilization,
which is equal to the probability that a channel transmits
a message in a cycle. Since a message can be assigned to
a channel either in the first phase or in the second phase,
we let u; be the probability that a channel transmits a
message which is assigned in the first phase, and u, be
the probability that a channel transmits a message which
is assigned in the second phase. Clearly, u = u;+uy. It is
also clear that, given the probability distribution of =}s,

we have
M min(i,n)

u=z:1r.- Z f,,JJ_y (9)
i=1 J=1
and

I11-231

1991 International Conference on Parallel Processing

min(i,n)

U = E"' Z f'J (10)

We further assume that every transmitted message
has the same probability p of being assigned in the first
phase and has the same probability ¢ of being assigned
in the second phase. That is,

- A message is assigned in the 1st phase,]
P = TYOP| given that it is transmitted in the cycle.]

= ufu
and

. Bk A message is assigned in the 2nd phase, |
g = given that it is transmitted in the cycle.

= uy/u,

where p+ ¢ = 1. We note that if a message is assigned in
the second phase, it must be assigned to a free channel
which was not assigned in the first phase. Thus, if a mes-
sage with ¢ one-bits in its header is assigned to a channel
in the second phase, it will be forwarded with probabil-
ity ({ = 1)/(n — 1) and be backtracked with probability
(n—1)/(n—1). The state transition diagram for this case
is given in Figure 4. The system is in state 7 if, at the
beginning of a cycle, the message currently has i one-bits
in its header. Let h; be the expected number of steps
to move from state i to state 0. We have the following
recursive relations:

0 ife=0
h;={ (p+ :';_llq) h.,'_1+ (:—:'lq) h.‘+1+1 if 7 =2,..

,Tl - l
M 0 Hiem
It can be shown that
'Y, By forim L2 an (11)
j=ntl-i
where
: ifi=1
§i=14 7 fe o no18= 1T s .
i + Tm=l'ﬁj=m,—$__r‘; fori=2,..,n.

Let & be the expected number of hops actually traversed

by a message. That is,
= Y dih; (12)
i=1

We further let P, be the probability that a message
from a neighbor is delivered to a local processor in the
node. On average a message is expected to exit from the
network after moving h hops. Thus, we have

P, =1/h (13)
The message output rate of the network is given by
NnuP, = Nnu/h, (14)

where N = 2" is the number of nodes in the network.

Moreover, given the arrival process is geometric, it can
be shown (9] that

Py=1—7y. (15)
Thus, the message input rate to the network is given by
NAP4y = NA1 — my). (16)

In equilibrium, the input rate equals the output rate.
From Eqs. 16 and 14, we have that

/\(l—'ﬂ’M) = nu/ﬁ. (17)
This equation must be satisfied by the given P, and the
calculated probability distribution ;. In all the examples
we have studied, we have found that the input rate is a
decreasing function of P, while the output rate is an in-
creasing function; moreover, the input rate is larger than
the output rate when P, approaches 0 and that the input
rate is smaller than the output rate when P, approaches
1. Thus, in these examples, P, exists and is unique. See
Figure 5 and [9)].

p °‘—r° pz,—?-q Do-—rq p*—rq p.__q

CNORMNCHoN s RENG

n-i+1 o=l
o AfZa fopa {5 Lita iy

Figure 4: Transition diagram of finding ¢ one-bits in the
header

= Output Rate (nh=6)

=== = |nput Rate

Rates

Figure 5: Input rate and output rate vs a given P,

3.3 Delay and Throughput

The throughput of the network, v, is defined as the
total number of new messages the network accepts in a

cycle. Thus,
= NA(I—WM) (18)

The mean queue length in each node is given by

M
= Z iﬂ’.’. (19)

I11-232

1991

International Conference on Parallel Processing

Applying Little’s result [13], the average message delay
is given by

AL
Y

T = (20)

3.4 Effects of Backtracking

We now calculate the effects of backtracking. Let us
define

Py
P,

Prob [a channel forwards a message in a cycle|

Prob [a channel backtracks a message in a cycle],

where P; + P, = u. The net progress made by a channel
in a cycle is equal to Py — P,. We realize that whenever a
message is backtracked, it is one hop farther away from its
destination node. The message then needs an extra step
of forwarding to compensate for this loss. We further let

C = Number of channels in the network,
K = Number of cycles in a long time period, and
S = Throughput of the network in this period.

For the whole network, the expected number of one-bits
(in headers) which are changed to zeroes in K cycles is
easily calculated as CK P;. The expected number of zero-
bits which are changed to ones is CKP,. As a result,
the expected number of one-bits “decreased” due to the
network’s transmission is CK(P; — P,), which must be
equal to the number of one-bits in the headers of input
messages from local processors in this period when the
network is in a steady state. Thus,

CK(P;—P,) = Sd (21)

Moreover, the expected total number of hops made by all
messages (forward or backward) in K cycles is

CK(P;+ P,) = Sh (22)
Thus, we immediately have the following equation:

h s P,+P,-
5= B E (23)

Solving for P, and P,, we have

u d
P =501-5) (24)
u d
;= 51+ 7) (25)
The net progress of a channel in a cycle is then given by
P —P, = %. (26)

4 Model Verification and Discus-
sion

The accuracy of the mathematical model is verified by
comparing it with simulations. In this section, we present
several results of these simulations for a Boolean 6-cube
network with various numbers of buffers in each node.
Other results are reported in [9]. We note that the match
between the simulated results and the model is extremely
good.

Figure 6 shows the utilization, the probability of for-
warding, and the net progress of a channel when M = 10.
The net progress is also compared with that in the infinite
buffered network where the net progress equals the chan-
nel utilization. We note that the effect of backtracking is
not serious even if the buffer size is relatively small. Fig-
ure 7 presents the probability of acceptance of an input
message for various buffer sizes. Again, we see that small
buffers are enough to accept most of the input messages.
Figure 8 shows the average message delay. We realize
that when the generation rate is low, a node with a large
buffer simply behaves as a node with an infinite buffer
space. Thus, an increase in buffer size does not affect the
delay. However, when the generation rate is high, more
buffers admit more input messages. The queue grows as
the buffer size increases. Thus, the average message delay
also increases. When the buffer size in each node is very
small (eg. 6 in this case), the average message delay is also
larger because messages are likely to be backtracked. It
is important to note in Figure 9 that even if the new
message generation rate is much larger than that can be
accepted by the network, the throughput of the network
does not degrade.

5 Optimization Issues

In most queueing systems, two performance measures,
response time and throughput, compete with each other.
Typically, by raising the throughput of the system, which
is desirable, the mean response time is also raised, which
is not desirable. Moreover, we wish to consider the block-
ing of newly generated messages from local processors.
We combine these three performance measures into a sin-
gle measure, power, which is given as follows [12].

Throughput
Mean Response Time

(I—B),

Power =

where B is the blocking probability. For our system we
have

Power = %PA,

A system is said to be operating at an optimal point
if the power is maximized. In Figure 10, we show the
power as a function of A for various buffer sizes; the peak
of each curve identifies the optimal generation rate for
each buffer size. This result is able to serve as a guide
to network flow control. In Figure 11, we observe that
an increase in buffer size increases the power. However,
we note that assigning a large number of buffers to a
node cannot significantly improve the performance. If we

I11-233

1991

International Conference on Parallel Processing

wish to consider the cost of the buffer, we can further
divide the power by the buffer size; using this modified
measure, we show in Figure 12 that small buffers yield
good performance.

6 Conclusion

We have presented a mathematical model for evaluat-
ing the performance of a deadlock-free routing algorithm
for Boolean n-cube networks with finite buffers. This al-
gorithm is simple enough to be implemented in hardware.
We have shown that only a few buffers in each node are
essential to yield good performance. We have also shown

that the throughput of the network does not degrade even
when the network is saturated.

« 4= hel Progress (Infinile buffers) &
e (Mode1) ’/
08 ™ Problforward] (mode!) a
e | === Nel Progress (mode!) Pl g
g u (simulation) o b
',: ° Problforward] (simulation) =
= 0.6 a Ael Progress (simulation)
by
=)
© 04
c
T
o
r=4
o
0.2
(n=6; M=10)
0.0 g Y v - v
0.0 0.2 0.4 0.6 0.8 1.0 V2 1.4 1.6 1.8

e
o Model 3
M=16
o Simulation
o CO
%]
s
S >
S cs
8 c6d
o 4
~
-
© ced
o
o
-
o
c.29
(N=6)
c.c T T T T T T T T
c.c c.2 ¢« ¢6 c.o e 1.2 e 1.6)

Figure 7: Prob. of acceptance of an input message

Message Delay

= Model (n=6)
© Simulation
>
A=15
Sec o oosa s o o o o
A=10
N
oo o o o NPT
) H ie 12 1< Ve 18 2¢ 22 2¢

Buffer Size

Figure 8: Average message delay vs buffer size

20 7
(n=6) i e 52 0)
/,
o 1.549 7 o d
2 (M=10)
3
S
5
2 1.0 o 0. o o2 = 2
S (M=6)
4
o
[
=
(=
054
= = = Infinite Buffers (ideal)
Model
O Simulation
0.0 v v v v
o 1 2 3 4 S
A
Figure 9: Throughput vs new message generation rate
20
—0— M=20
—& M-10
—— Me8
159 —— M=6
?
—
3 104
H)
a
S+ 4
0 T —— T —
0.0 0.2 0.4 0.6 0.8 1.0 1:2 1.4 1.6 1.8 2.0
A

Figure 10: Power vs new message generation rate

111-234

1991 International Conference on Parallel Processing

20

—0— A=15$
—— L=10
—0— 1.0$

,
- A/o_’:.——:——-O—"
°
x
o
a
10 9
L o o o o o o
'7.
q
S v T v T v T v T v
6 L] 10 12 14 16
Buffer Size
Figure 11: Power vs buffer size
20

Power/M

0.0

6 8 |’°7 l'2 |'4 16
Buffer Size
Figure 12: Power/M vs buffer size
References

(1]

2]

(3]

(4]

S. Abraham and K. Padmanabham, ”Performance
of Direct Binary n-Cube Networks for Multiproces-
sors,” IEEE Trans. Comput., vol. C-38, pp. 1000-
1011, July 1989.

W. C. Athas and C. L. Seitz, ”Multicomput-
ers: Message-Passing Concurrent Computers,” IEEE
Comput., pp. 9-24, Aug. 1988.

L. N. Bhuyan and D. P. Agrawal, ”Generalized Hy-
percube and Hyperbus Structures for a Computer
Network,” IEEE Trans. Comput., vol. C-33, pp. 323-
333, Apr. 1984.

J. Balzewicz, J. Brzezinski and G. Gambosi, " Time-
Stamp Approach to Store-and-Forward Deadlock
Prevention,” IEEE Trans. Commun., vol. COM-35,
pp. 490-495, May 1987.

(5]

(6]

7]

(8]

(9]

(10]
(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

I11-235

W. J. Dally, "Performance Analysis of k-ary n-cube
Interconnection Networks,” IEEE Trans. Comput.,
vol.C-39, pp. 775-785, June 1990.

W. J. Dally and C. L. Seitz, "Deadlock-Free Mes-
sage Routing in Multiprocessor Interconnection Net-
works,” IEEE Trans. Comput., vol. C-36, pp. 547-
553, May 1987.

T. Feng, ”A Survey of Interconnection Networks,”
IEEE Trans. Comput., vol. C-30, pp. 12-27, Dec.
1981.

W. D. Hillis, The Connection Machine, MIT Press,
1985.

M.-Y. Horng, Performance Analysis of the Boolean
n-Cube Interconnection Network for Multiproces-
sors, Ph.D. Dissertation, Comput. Sci. Dep., Univ.
California, Los Angeles, 1991.

Intel Scientific Computers, 1PSC User’s Guide, No.
175455-001, Santa Clara, Aug. 1985.

L. Kleinrock, Queueing Systems, Vol. I:. Theory,
John Wiley and Sons, New York, 1975.

L. Kleinrock, "Power and Deterministic Rules of
Thumb for Probabilistic Problems in Computer
Communications,” Int. Conf. on Commun., pp.
43.1.1-43.1.10, June 1979.

J. D .C. Little, "A Proof of the Queueing Formula
L = A\W?”, Oper. Res., vol. 9, pp. 383-387, May 1961.

P. M. Merlin and P. J. Schweitzer, ”Deadlock Avoid-
ance : Store-and-Forward Deadlock,” IEEE Trans.
Commaun., vol. COM-28, pp. 345-354, Mar. 1980.

Y. Saad and M. H. Schultz, "Topological Properties
of Hypercubes,” IEEE Trans. Comput., vol. C-37,
pp. 867-872, July 1988.

Y. Saad and M. H. Schultz, "Data Communication
in Hypercubes,” J. Parallel Distrib. Comput., vol. 6,
pp. 115-135, 1989.

C. L. Seitz, "The Cosmic Cube,”, Commun. ACM,
vol. 28, pp. 22-33, Jan.1985.

H. J. Siegel, Interconnection Networks for Large-
Scale Parallel Processing, Lexington Books, 1985.

