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Abstract 

Wormhole  routing i s  a s imple,  low-cost switching 
scheme o f ten  used f o r  supercomputer interconnect ions.  
Recently, at also has  been applied t o  high-speed local area 
ne tworks  t o  support  applications demanding  high-data- 
rate communicat ions ,  such  as  c luster  computing.  T h e  
drawback t o  wormhole  routing i s  i t s  low link e f i c i ency  
caused by w o r m  blocking. T o  overcome th is  blocking 
problem,  a t imeou t  scheme was  investigated in [3] by 
analytical modeling. In th is  paper, we  present  t imeout  
s imula t ion  results, showing t h e  effect of packet size, 
propagation delay, and ne twork  size. Furthermore,  a 
s imple  deflection scheme,  which  we  call host  deflection, 
i s  introduced and tested. This s imple  host  deflection 
scheme requires only  sma l l  modifications t o  t h e  proto- 
col and very  little processing power  f r o m  t h e  switches; 
i t  improves  the  ne twork  throughput significantly. 

1. Introduction 

Wormhole routing is a common switching scheme for 
supercomputer intercommunications. It has the merits 
of low latency, low cost, and easy implementation. In 
addition to the supercomputer interconnections, these 
merits also make wormhole routing attractive to  high- 
speed local area networks (LANs). One example is 
Myricom’s Myrinet [ll], which has been adopted as 
the LAN infrastructure for the Supercomputer Super- 
Net (SSN) project conducted by researchers at UCLA, 
JPL and Aerospace Corp [5, 6,  71. 

A local area network (LAN) using wormhole routing 
technology has several advantages over conventional 

t This work was supportedby the Advanced Research Projects 
Agency, ARPA/CSTO, under Contract DABT63-93-C-0055 
“The Distributed Supercomputer Supernet - A Multi Service 
Optical Intelligent Network”. 

LANs (such as FDDI, DQDB and Ethernet), or an 
Asynchronous  Trans fer  Mode (ATM) LAN. It can pro- 
vide higher data rate than those others, using a sim- 
ple switch structure. It also exhibits very low net- 
work latency, because wormhole routing employs cut- 
through [4], which minimizes the transmission delay 
(as shown in figure 1) without the necessity of packe- 
tization; the overhead of segmentatzon-and-reassembly 
(SAR) is saved as well. Wormhole routing works on 
an arbitrary network. The aggregate network band- 
width grows as more switches are added. In wormhole 
routing, circuit setup is not required; by using source 
routzng, switches are not required to handle routing 
or circuit setup; packets (which are also called w o r m s  
) are routed according to the specified routing path, 
which is determined by the source host and attached 
to the packet header. As a consequence, a wormhole 
routing switch is inexpensive, compared to an ATM 
switch, while still providing high bandwidth’. 

However, a high-speed LAN requires not only low 
latency but also very high throughput, which is not 
easy to  achieve with wormhole routing because of the 
blocking problem. Blocking occurs when there are 
two packets contending for the same link; one of them 
has to  be stalled, which consequently reduces the effi- 
ciency of links that have been occupied by the blocked 
packet. This degrades the achievable network through- 
put. To overcome this throughput limitation, several 
good ideas, such as adaptave routzng and vartual chan- 
nels  [l, 2, 8, 101 have been proposed and studied for 
the supercomputer interconnection environment. Un- 
fortunately, adaptive routing is not suitable for worm- 
hole routing LANs, because it is not easy to  imple- 
ment for irregular network topologies of LANs. Con- 
sequently, adaptive routing needs intelligent switches 
to reconstruct the routing path, a requirement that 

‘For example, an 8 x 8 Myrinet. switch that can support 
640Mbps on each port is estimated to cost only $2,400. 
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Figure 1. The delay comparison of store- 
and-forward packet switching and cut- 
through. 

will increase the cost of switches significantly. On the 
other hand, virtual channels improve network through- 
put modestly but increase network delay due to mul- 
tiplexing among virtual channels on the same physical 
link, 

To search for a better approach to  the throughput 
problem of wormhole routing LANs, we studied a time- 
out scheme through an analytical model in our preced- 
ing paper [3], and showed that it is effective when the 
network size is limited. In this paper, we first review 
wormhole routing and the simulator we developed, in 
section 2. Then, in section 3,  we present simulation 
results of the timeout study, which reveals the perfor- 
mance characteristics of the timeout scheme with re- 
spect to the packet size, propagation delay, and net- 
work size (in terms of the number of switches and 
hosts). These results indicate that the timeout scheme, 
which performs well when the network size is small, 
cannot gain much in network throughput as the net- 
work size grows due to  the exponentially decreasing 
probability of successful transmissions. Therefore, in 
section 4, a simple deflection scheme, which we call 
host deflection, is proposed and investigated by sim- 
ulation. This simple host deflection scheme requires 
little protocol modification and processing power from 
switches, but improves the network throughput sub- 
stantially. Finally, section 5 contains the conclusion 
and future work. 

2. Wormhole routing 

In general, we consider a network for which all com- 
munication links are bi-directional with the same ca- 
pacity. Packets are generated and absorbed at hosts 

only. We measure packet length by flzts, which is the 
amount of data that can be transmitted in one clock 
cycle (defined to be the unit of time). For example, the 
640Mbps Myrinet has one byte per flit lasting 12.5ns. 

Wormhole routing was first introduced in [12]. 
It was developed from the earlier idea of cat-through 
swztching [4]. In wormhole routing, switches have rel- 
atiively small buffers. As opposed to store-and-forward 
switching, as soon as a packet header (or its routing in- 
formation) is received, this packet is forwarded to the 
next switch before it is completely received (see figure 
l ) ,  if the outgoing link to the next switch is busy serv- 
ing another packet, the packet gets blocked and resides 
in the switch until the outgoing link is available. In 
this case, called blocking, the switch must inform the 
previous up-stream switch to  stop transmission (i.e. , it 
exercises back-pressure f low control) due to  the limited 
size of buffers, as shown in figure 2. A packet might be 
buffered in several nodes along the chain while stuck in 
the middle of the network due to blocking. With worm- 
hole routing, deadlocks are possible unless a deadlock- 
free routing strategy is employed. A survey of worm- 
hole routing can be found in [9]. 

0: input buffer (empty) , : a flit of data 
SW : Switch I: input buffer (full) 

Figure 2. An illustration of wormhole rout- 
ing. 

Back-pressure flow control depends upon track- 
ing; the space left in the input buffers, which is asso- 
ciated with each input port of the switches (figure 2). 
These buffers are primarily used to  accommodate data 
currently in transit, due to the non-zero propagation 
delay in LANs. Buffers operate with two important 
parameters: the low-threshold and the high-threshold. 
Whenever the available buffer space is less than the 
low-threshold, it sends a STOP signal to  inform the 
upstream node to stop transmitting. On the other 
hand, whenever the available buffer space is higher 
than the high-threshold, a GO signal will be sent up- 
strleam to resume the transmission. The gap between 
the low-threshold and the high-threshold reduces the 
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number of flow control signals. 
Source routing is employed since switches have 

little processing power and cannot determine the rout- 
ing path for worms. A routing path, which specifies 
the links that a worm will traverse in order, is gener- 
ated by the source host and attached to the head of 
the packet. Since switches have no intelligence (for low 
cost) and specifically can do no adaptive routing, rout- 
ing paths do not change except at hosts when timeout 
retransmissions occur’. 

Backward timeout reset is the basic mechanism 
we use to solve deadlock and throughput problems. 
Whenever a worm head reaches a switch, a timer starts 
counting how long this worm resides at this switch 
while waiting for its outgoing link to  become available 
(thus advancing to  the next switch or host node). If 
this “residence time” exceeds a timeout threshold, then 
a timeout event is triggered; a switch at which time- 
out occurs will then clear all buffers occupied by this 
worm and will issue a timeout reset signal backward 
to the upstream node from which this worm came. A 
switch which receives a timeout reset signal will pass 
this signal further upstream and will also free the out- 
going link and any buffer occupied by this timed-out 
worm. This process continues until the timeout reset 
signal reaches the source host where the worm was gen- 
erated. (We assume that a switch can always send the 
timeout reset signal upstream even if the tail of the 
worm has already left this switch). The source host, 
after receiving the timeout reset signal, will stop the 
transmission of this worm if the transmission is still in 
progress, and will insert the worm back into the tail of 
this host’s packet queue so that it will be retransmitted 
later. A timeout example is illustrated in figure 3.  

The Simulator performs discrete-event simulations 
at the flit level with the following assumptions: 

e Worms are generated as a Poisson process, and 
their size has an exponential distribution. 

0 Worm generation rates are identical at all hosts. 
Moreover, the distance to  a host is uniformly cho- 
sen from among all feasible distances. Hosts at the 
same distance from the source are selected as the 
destination according to a uniform distribution. 

e All possible shortest paths are equally chosen by 
the routing procedure. 

e Bandwidth consumed by flow control and timeout 
signals is negligible. 

2A retransmitted worm that is timed-out in previous try may 
attempt a different path to prevent a repeated timeout at the 
same place. 

-d 

Figure 3. An example of timeout. The up- 
per figure shows a network snapshot before 
the timed-out worm is rejected. The lower 
one is after the rejection. 

0 First-come-first-serve (FCFS) discipline for resolv- 
ing link contentions. 

0 To avoid implementation dependent details, we 
assume that the size of a packet header is not 
changed during transmission3. 

Some of the simulation results were verified by the an- 
alytical model in [3]. 

To make the study less complicated, we use a torus 
as the network topology due to  its nice symmetry prop- 
erty. We assume that each switch has eight inlout 
ports and four of them are connected to  hosts. A 
3 x 3 example is shown in figure 4, in which there are 
9 switches and 36 hosts. In all simulations, the link 
propagation delay is set to  10 units of time, which cor- 
responds to a link length of 22.5 meters in Myrinet4. 
Finally, the low-threshold and high-threshold of input 
buffers are set as 27 and 43 respectively. The buffer 

3With source routing, one piece of the routing information 
will be stripped off at each hop. Consequently, the packet header 
becomes shorter as it advances in the network. 
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size is 80 flits. 

Figure 4. An example network configura- 
tion: 3 x 3 torus. 

3. Results of timeout simulations 

Timeout improves network performance by stopping 
the ineffective waiting of a blocked worm. As illus- 
trated in figure 3, rejecting those blocked worms makes 
the occupied links available; these links may then serve 
other worms that can possibly reache their destinations 
without difficulty. Timeout also alleviates head-of-line 
blocking at  the host. Persistent waiting (blocking) of 
the original wormhole routing procedure does not allow 
this flexibility. 

Using simulations with different timeout values, we 
show the power of timeouts. Figure 5 indicates that 
a short timeout value can increase the maximum net- 
work throughput to  a factor of two, compared to the 
long timeout case. It also shows no increase in delay for 
the use of timeouts. To find the optimal timeout value 
with respect to  different network parameters (such as, 
worm size, propagation delay, and network size), simu- 
lations were run with very high traffic loads for various 
parameter sets. Figure 6 shows that the optimal time- 
out value increases as the packet size decreases. Also, 
a large worm size results in high throughput. In con- 
trast, a short link propagation delay lessens the optimal 
timeout value and increase the maximum throughput, 
as shown in figure 7. 

The above phenomena can be understood through 
figure 8. As shown in this figure, when the packet size 
is large, it is more likely that blocking will last long; 
therefore, a smaller timeout is better. Similarly, a long 

4The myrinet link bandwidth is 640Mbps. Each flit is one 
byte of data, which gives us the time unit, 12.511s. However, the 
propagation velocity in a Myrinet cable is about 0.6c, where c is 
the speed of light. Hence, 0 . 6 ~  x 1 2 . 5 ~  = 22.5m. 
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Figure 5. Throughput vs. network delay 
with different timeout values (3  x 3 torus, 
propagation delay = 10 time units, average 
worm size = 100 flits). 

propagation delay causes the timeout to  waste more 
bandwidth; hence waiting longer is preferred. Figure 
9 points out why a larger packet size results in higher 
maximum network throughput; it is simply because a 
loing worm has relatively less overhead in attempting 
to reach its destination. 

However, the simulation results show that the max- 
imum throughput does not grow proportionally to net- 
work size (figure 10). The aggregate network through- 
put might even be worse in the large network case. This 
can be explained by the probability of a worm success- 
fully reaching its destination. Obviously, this probabil- 
ity decreases exponentially as its path becomes longer. 
That is, 

where PS is the probability of a successful transmission, 
PIP is the probability of timeout a t  a switch node5, and 
h is the path length, (measured in number of hops). 

From the probability of a successful transmission, we 
can easily find N ,  the average number of transmissions 
relquired for a worm to reach its destination, as: 

Ps = (1 - PT)h 

1 
PS 

03 

N = EiPs(1- Ps)~-' = - = (1 - 
i = l  

We find that N increases exponentially with the path 
length, h. As a result, this enormous number of re- 
transmissions eliminates any gain due to timeouts, and 
makes it ineffective for large networks. To overcome 
this effect in large networks, we propose a simple host 
deflection scheme in the next section. 

5For simplicity, we here assume that the timeout probability 
is identical at all switches. 
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Figure 6. Throughput vs. timeout with dif- 
ferent average worm sizes (3  x 3 torus, prop- 
agation delay = 10 time units). 
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Figure 7. Throughput vs. Timeout with 
different link propagation delays (3 x 3 
torus, average worm size = 50 flits). 

4. The host deflection scheme 

The basic idea of the host deflection scheme is to use 
connected hosts as temporary buffers to perform store- 
and-forward as illustrated in figure 11. We assume that 
the amount of memory in a host (i.e., a workstation, or 
a server ...) is large and will rarely be filled by deflected 
worms. The host deflection scheme works as follows: 

1. When a worm arrives at a switch, the switch starts 
a counter which measures the amount of time that 
this worm sojourns at  this switch. 

2. The worm keeps probing its outgoing link until the 
link is free or until the counter exceeds the timeout 
value. 

128 

so"rcehosr 
localion of 

(shoriprop.) - 
- . - - - -. . . . . . . . . . . . .y ?. . . . Y 

loeation of 
source host > 

Time 

Figure 8. The worm size and propagation 
delay change the performance of timeout. 
The arrows show the dynamics of a blocked 
worm. 

If the worm finds its outgoing link free, it imme- 
diately seizes the link and advances to  the next 
node. Also, the switch disables the counter so that 
timeout will not occur. 

When the counter exceeds the timeout value, in 
which case timeout occurs, the worm probes all 
links connected to  a local host, and chooses one 
of them that is not currently being used as the 
deflection path. If there is no available path,  the 
switch discards this worm and sends a timeout sig- 
nal backward to  the up-stream node. 

Therefore, instead of discarding a blocked worm, the 
switch may simply deflect it to  a connected host which 
will temporary buffer the worm in its local memory 
and retransmit it later along the same link back to 
the switch. By using deflection, two goals are accom- 
plished. First, we save the retransmissions caused by 
timeout at the worm's source host (which could be a 
long distance from the timeout node). Second, using a 
host its a store-and-forward buffer, we release links that 
would have been frozen by the blocked worm and make 
them available for others; hence we avoid the waste of 
bandwidth due to the transmission break of blocked 
worms. 

However, it should be noted that the deflection 
scheme increases the traffic load on the switch-to-host 
links (the cost of deflection). If the packet size is large, 
this deflection cost may be more than the timeout cost, 
which is caused by the retransmissions. If we use CT 
to denote the cost of a retransmission, we have, 

CT = a  x I x h 
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18 I I I Long worm case: 
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Short worm case: 

position 

0: Unsuccessful try (wasted) m: doto transmission 

Figure 9. The process of transmissions. In 
both the long and short worm cases, the 
expected time for a worm head to reach the 
destination is similar. Since the payload is 
larger for longer worms, the efficiency is 
higher. 

where 7 is the amount of time spent on each hop 
(which is proportional to the timeout value), and h 
is the distance between the switch and the source host, 
in terms of numbers of hops. Q is simply a multiplica- 
tive factor. Because the cost for a retransmission is 
proportional to  the distance between the switch and 
the source (not to  the worm size, unless the whole 
worm is on the path), no deflection is preferred when 
the timed-out worm is close to  its source host, or is 
quite large. One simple example of this case is when 
a worm is timed-out at the first hop. In this case, 
the cost of “timeout-then-discard” is the retransmis- 
sion from one hop away (from the source host), while 
the cost of “timeout-then-deflect” is the retransmission 
from one hop away (from the buffering host) plus the 
extra load on the switch-to-host link. Clearly, the lat- 
ter cannot beat the former, unless hosts are unequally 
loaded. When hosts are unequally loaded, the deflec- 
tion scheme may possibly balance the load distribution 
and consequently improve the network performance. 

To show the effect of the switch-to-source distance, 
a parameter which is called %hop prohibzted” is intro- 
duced. We say the deflection is “i-hop prohibited” if 
host deflection only occurs when a worm has advanced 
more than i hops from its source host. This parameter 
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Figure 10. Throughput vs. timeout with 
different network sizes. (average worm size 
= 50 flits, propagation delay 

defected to the nearest host I 

An arriving worm 
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I Anotherworm 

Figure 11. An illustration of the host de- 
flection scheme. 

is used to prevent excess host deflection when a worm 
is too close to its source or its size is too large. 

In figures 12 and 13, the maximumnetwork through- 
put is plotted versus the timeout values. This leads to  
the following conclusions: 

o The host deflection scheme improves the network 
throughput significantly. It is about four times 
better in throughput (43:10, for the case, of an 
average worm size = 50 flits). Considering the 
efficiency of a switch-to-switch link (which is the 
bottleneck for the network throughput), it is clear 
that the degradation of network performance due 
to the increase of network size is completely re- 
solved by the host deflection scheme, as shown in 
table 1. 

o As we expected, the longer the worm, the higher 
the hop-prohibited for the best network perfor- 
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3x3 3x3 7x7 
no deflection with deflection no deflection 

16.7 16.57 12 

0.463 0.46 0.18 

aggregate 
throughput 

link 
efficiency 

Table 1. A comparison of the aggregate throughput and link efficiency (average worm size = 
50 flits). 

7x7 7x7 with 
with deflection input buffering6 

44 32.6 

0.67 0.5 

mance. 

0 The higher the timeout value, the lower the hop- 
prohibited for the best network performance. This 
is because longer timeouts increase the cost of a 
retransmission. 

0 Almost all the best performance occurs with a very 
short timeout value. 

"0 20 40 60 80 100 120 140 160 180 
Timeout 

Figure 12. Throughput vs. timeout. (7 x 7 
torus, average worm size = 50 flits) 

Actually, with host deflection, the whole routing 
path is broken into several segments interleaved with 
store-and-forward nodes (the buffering hosts). I t  re- 
sembles crossing several small wormhole routing net- 
works where the timeout scheme works best. The com- 
parisons in table 1 also indicate that networks with host 
deflection outperform cut-through network with infi- 
nite size input buffers a t  the switches, which is quite 
impressive. 

The last conclusion suggests a new idea on how to 
modify the deflection scheme. Because the best perfor- 
mance usually appears when the timeout value is very 

5 4 5 1  a 
0-hop prohibited + 

E +-L * I-hopprohibited - 4 - -  

I- 35 - % 2-hopprohibited - 
&hop prohibited -x- 

I 
0 20 40 60 80 100 120 140 160 180 

Timeout 

Figure 13. Throughput V.S. timeout. (7 x 7 
torus, average worm size = 1000 flits) 

short, it may be better to deflect a blocked worm as 
soon as there is a deflection path available. Hence, we 
let a blocked worm keep trying to  find a deflection path 
until it is timed-out. The simulation results shown in 
figure 14 indicate a moderate throughput improvement 
with this modification. 

The complexity for doing host deflection is low. 
First, switches need only know which links are con- 
necting to a host; this could be done either manually, 
or by sending a control signal to  the switch from hosts 
at the link hook up time or periodically. Second, source 
routing is preserved without any increased complexity. 
The deflection host simply retransmits the deflected 
worm back into the network, and the rest of its route 
need not change at all. N o  computation for re-routing 
is required, but the improvement of the network per- 
formance is dramatic as shown in figures 12 and 13. 

5 .  Conclusion and future work 

In this paper, we discussed the use of wormhole rout- 
ing for high-speed LANs and investigated the use of 6With infinite size of input buffers, no timeout, no deflection. 
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Timeout 

Figure 14. Throughput vs. timeout. “new” 
indicates the scheme in which worms de- 
flect as soon as possible. (7 x 7 torus, aver- 
age worm size = 50 flits.) 

timeout reset. Simulations show that timeout allevi- 
ates blocking in both switches and hosts to  achieve high 
throughput, when the network size is limited. To fur- 
ther improve the network performance for large scale 
networks, a host deflection scheme was proposed and 
demonstrated to be very effective. Simulation exhibits 
a four fold improvement in throughput, compared to 
that with timeout only. The host deflection scheme is 
easy to implement on low cost switches, which makes 
it quite attractive for high-speed, low-cost LANs. 

Several extensions to  host deflection are currently 
undergoing. First, we are trying to set the hop- 
prohibited values dynamically according to the worm 
size. Second, a queueing model based on the one devel- 
oped in [3] is under development. The model may well 
give us a means to optimize the hop-prohibited param- 
eter for any worm size. Finally, how the host buffer size 
affects the performance of the host deflection scheme 
needs to  be investigated. 

References 

J. Duato. “Improving the Efficiency of Virtual Chan- 
nels with Time-Dependent Selection Functions”. Com- 
puters and Artificial Intelligence, 13:632-650, 1994. 
C. J. Glass and L. M. Ni. “The Turn Model for Adap- 
tive Routing”. Computer Architecture News, 20:278- 
287, May 1992. 
P.-C. Hu and L. Kleinrock. “A Queueing Model for 
Wormhole Routing with Timeout”. In Proceedings of 
the 4th International Conference on  Computer Com- 
munications and Networks, pages 584-593, Las Vegas, 
NV, U.S., Sept. 1995. 

[4] P. Kermani and L. Kleinrock. “Virtual cut-through: 
A New Computer Communication Switching Tech- 
nique”. Computer Networks, 3:267-289, 1979. 

[5] L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, 
L. Bergman, J. Bannister, S. M. T. Bujewski, P.- 
C. Hu, B. Kannan, B. Kwan, E. Leonardi, J. Peck, 
P. Palnati, and S. Walton. “The Supercomputer Su- 
pernet Testbed: A WDM Based Supercomputer In- 
terconnect”. to appear in I E E E  J S A  C/JLWT joint 
specid issue on Multiple Wavelength Optical Tech- 
nologies and Networks, 1995. 

[6] L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, 
L. Bergman, J. Bannister, S. Monacos, P.-C. Hu, 
B. Kannan, B. Kwan, J. Peck, P. Palnati, and S. Wal- 
ton. “The Supercomputer Supernet (SSN): A High- 
speed Electro-optic Campus and Metropolitan Net- 
work’’. In SPIE Optical Interconnects in Broadband 
Switching Architectures conference, 1996. 

[7] e. a. L. Kleinrock. “The Supercomputer Supernet: A 
Scalable Distributed Terabit Network”. Journal of 
High Speed Networks: special issue on  Optical Net- 

[8] J. Y. Ngai and C. L. Seitz. “A Framework of Adaptive 
Routing in Multicomputer Networks”. In Proceedings 
of the 1989 A C M  Symposium on  Parallel Algorithms 
and Architectures (SPAA ’89), pages 1-9, June 1989. 

[9] L. M. Ni and P. K. McKinley. “A Survey of Wormhole 
Routing Techniques in Direct Networks”. Computer, 
pages 62-76, Feb. 1993. 

“Adaptive Rout- 
ing for Hypercube Multiprocessors: A Performance 
Study”. International Journal of High Speed Com- 
puting, pages 1-29, Mar. 1994. 

[ll] C. Seitz, D. Cohen, and R. Felderman. “Myrinet-A 
Gigabit-per-second Local-Area Network”. I E E E  Mi- 
cro, 15(1):29-36, Feb. 1995. 

“The Hypercube Communications 
Chip”. Technical report, Dep. Computer Science, Cal- 
ifornia Inst., Mar. 1985. Display File 5128:DF:85. 

works, 4(4):407-24, 1995. 

[lo] D. S. Reeves and E. F. Gehringer. 

[la] C. Seitz et al. 

13 1 

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 01:00 from IEEE Xplore.  Restrictions apply. 


