
A Simple Host Deflection Scheme for High-speed LANs Using
Wormhole Rout ingf

Po-Chi Hu and Leonard Kleinrock
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095-1596

Abstract

Wormhole routing i s a s imple, low-cost switching
scheme o f ten used f o r supercomputer interconnect ions.
Recently, at also has been applied t o high-speed local area
ne tworks t o support applications demanding high-data-
rate communicat ions , such as c luster computing. T h e
drawback t o wormhole routing i s i t s low link e f i c i ency
caused by w o r m blocking. T o overcome th is blocking
problem, a t imeou t scheme was investigated in [3] by
analytical modeling. In th is paper, we present t imeout
s imula t ion results, showing t h e effect of packet size,
propagation delay, and ne twork size. Furthermore, a
s imple deflection scheme, which we call host deflection,
i s introduced and tested. This s imple host deflection
scheme requires only sma l l modifications t o t h e proto-
col and very little processing power f r o m t h e switches;
i t improves the ne twork throughput significantly.

1. Introduction

Wormhole routing is a common switching scheme for
supercomputer intercommunications. It has the merits
of low latency, low cost, and easy implementation. In
addition to the supercomputer interconnections, these
merits also make wormhole routing attractive to high-
speed local area networks (LANs). One example is
Myricom’s Myrinet [ll], which has been adopted as
the LAN infrastructure for the Supercomputer Super-
Net (SSN) project conducted by researchers at UCLA,
JPL and Aerospace Corp [5, 6, 71.

A local area network (LAN) using wormhole routing
technology has several advantages over conventional

t This work was supportedby the Advanced Research Projects
Agency, ARPA/CSTO, under Contract DABT63-93-C-0055
“The Distributed Supercomputer Supernet - A Multi Service
Optical Intelligent Network”.

LANs (such as FDDI, DQDB and Ethernet), or an
Asynchronous Trans fer Mode (ATM) LAN. It can pro-
vide higher data rate than those others, using a sim-
ple switch structure. It also exhibits very low net-
work latency, because wormhole routing employs cut-
through [4], which minimizes the transmission delay
(as shown in figure 1) without the necessity of packe-
tization; the overhead of segmentatzon-and-reassembly
(SAR) is saved as well. Wormhole routing works on
an arbitrary network. The aggregate network band-
width grows as more switches are added. In wormhole
routing, circuit setup is not required; by using source
routzng, switches are not required to handle routing
or circuit setup; packets (which are also called w o r m s
) are routed according to the specified routing path,
which is determined by the source host and attached
to the packet header. As a consequence, a wormhole
routing switch is inexpensive, compared to an ATM
switch, while still providing high bandwidth’.

However, a high-speed LAN requires not only low
latency but also very high throughput, which is not
easy to achieve with wormhole routing because of the
blocking problem. Blocking occurs when there are
two packets contending for the same link; one of them
has to be stalled, which consequently reduces the effi-
ciency of links that have been occupied by the blocked
packet. This degrades the achievable network through-
put. To overcome this throughput limitation, several
good ideas, such as adaptave routzng and vartual chan-
nels [l, 2, 8, 101 have been proposed and studied for
the supercomputer interconnection environment. Un-
fortunately, adaptive routing is not suitable for worm-
hole routing LANs, because it is not easy to imple-
ment for irregular network topologies of LANs. Con-
sequently, adaptive routing needs intelligent switches
to reconstruct the routing path, a requirement that

‘For example, an 8 x 8 Myrinet. switch that can support
640Mbps on each port is estimated to cost only $2,400.

124
0-8186-7453-9/96 $05.00 0 1996 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 01:00 from IEEE Xplore. Restrictions apply.

1- NetworkDelay ___(Time

Figure 1. The delay comparison of store-
and-forward packet switching and cut-
through.

will increase the cost of switches significantly. On the
other hand, virtual channels improve network through-
put modestly but increase network delay due to mul-
tiplexing among virtual channels on the same physical
link,

To search for a better approach to the throughput
problem of wormhole routing LANs, we studied a time-
out scheme through an analytical model in our preced-
ing paper [3], and showed that it is effective when the
network size is limited. In this paper, we first review
wormhole routing and the simulator we developed, in
section 2. Then, in section 3, we present simulation
results of the timeout study, which reveals the perfor-
mance characteristics of the timeout scheme with re-
spect to the packet size, propagation delay, and net-
work size (in terms of the number of switches and
hosts). These results indicate that the timeout scheme,
which performs well when the network size is small,
cannot gain much in network throughput as the net-
work size grows due to the exponentially decreasing
probability of successful transmissions. Therefore, in
section 4, a simple deflection scheme, which we call
host deflection, is proposed and investigated by sim-
ulation. This simple host deflection scheme requires
little protocol modification and processing power from
switches, but improves the network throughput sub-
stantially. Finally, section 5 contains the conclusion
and future work.

2. Wormhole routing

In general, we consider a network for which all com-
munication links are bi-directional with the same ca-
pacity. Packets are generated and absorbed at hosts

only. We measure packet length by flzts, which is the
amount of data that can be transmitted in one clock
cycle (defined to be the unit of time). For example, the
640Mbps Myrinet has one byte per flit lasting 12.5ns.

Wormhole routing was first introduced in [12].
It was developed from the earlier idea of cat-through
swztching [4]. In wormhole routing, switches have rel-
atiively small buffers. As opposed to store-and-forward
switching, as soon as a packet header (or its routing in-
formation) is received, this packet is forwarded to the
next switch before it is completely received (see figure
l) , if the outgoing link to the next switch is busy serv-
ing another packet, the packet gets blocked and resides
in the switch until the outgoing link is available. In
this case, called blocking, the switch must inform the
previous up-stream switch to stop transmission (i.e. , it
exercises back-pressure f low control) due to the limited
size of buffers, as shown in figure 2. A packet might be
buffered in several nodes along the chain while stuck in
the middle of the network due to blocking. With worm-
hole routing, deadlocks are possible unless a deadlock-
free routing strategy is employed. A survey of worm-
hole routing can be found in [9].

0: input buffer (empty) , : a flit of data
SW : Switch I: input buffer (full)

Figure 2. An illustration of wormhole rout-
ing.

Back-pressure flow control depends upon track-
ing; the space left in the input buffers, which is asso-
ciated with each input port of the switches (figure 2).
These buffers are primarily used to accommodate data
currently in transit, due to the non-zero propagation
delay in LANs. Buffers operate with two important
parameters: the low-threshold and the high-threshold.
Whenever the available buffer space is less than the
low-threshold, it sends a STOP signal to inform the
upstream node to stop transmitting. On the other
hand, whenever the available buffer space is higher
than the high-threshold, a GO signal will be sent up-
strleam to resume the transmission. The gap between
the low-threshold and the high-threshold reduces the

125

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 01:00 from IEEE Xplore. Restrictions apply.

number of flow control signals.
Source routing is employed since switches have

little processing power and cannot determine the rout-
ing path for worms. A routing path, which specifies
the links that a worm will traverse in order, is gener-
ated by the source host and attached to the head of
the packet. Since switches have no intelligence (for low
cost) and specifically can do no adaptive routing, rout-
ing paths do not change except at hosts when timeout
retransmissions occur’.

Backward timeout reset is the basic mechanism
we use to solve deadlock and throughput problems.
Whenever a worm head reaches a switch, a timer starts
counting how long this worm resides at this switch
while waiting for its outgoing link to become available
(thus advancing to the next switch or host node). If
this “residence time” exceeds a timeout threshold, then
a timeout event is triggered; a switch at which time-
out occurs will then clear all buffers occupied by this
worm and will issue a timeout reset signal backward
to the upstream node from which this worm came. A
switch which receives a timeout reset signal will pass
this signal further upstream and will also free the out-
going link and any buffer occupied by this timed-out
worm. This process continues until the timeout reset
signal reaches the source host where the worm was gen-
erated. (We assume that a switch can always send the
timeout reset signal upstream even if the tail of the
worm has already left this switch). The source host,
after receiving the timeout reset signal, will stop the
transmission of this worm if the transmission is still in
progress, and will insert the worm back into the tail of
this host’s packet queue so that it will be retransmitted
later. A timeout example is illustrated in figure 3.

The Simulator performs discrete-event simulations
at the flit level with the following assumptions:

e Worms are generated as a Poisson process, and
their size has an exponential distribution.

0 Worm generation rates are identical at all hosts.
Moreover, the distance to a host is uniformly cho-
sen from among all feasible distances. Hosts at the
same distance from the source are selected as the
destination according to a uniform distribution.

e All possible shortest paths are equally chosen by
the routing procedure.

e Bandwidth consumed by flow control and timeout
signals is negligible.

2A retransmitted worm that is timed-out in previous try may
attempt a different path to prevent a repeated timeout at the
same place.

-d

Figure 3. An example of timeout. The up-
per figure shows a network snapshot before
the timed-out worm is rejected. The lower
one is after the rejection.

0 First-come-first-serve (FCFS) discipline for resolv-
ing link contentions.

0 To avoid implementation dependent details, we
assume that the size of a packet header is not
changed during transmission3.

Some of the simulation results were verified by the an-
alytical model in [3].

To make the study less complicated, we use a torus
as the network topology due to its nice symmetry prop-
erty. We assume that each switch has eight inlout
ports and four of them are connected to hosts. A
3 x 3 example is shown in figure 4, in which there are
9 switches and 36 hosts. In all simulations, the link
propagation delay is set to 10 units of time, which cor-
responds to a link length of 22.5 meters in Myrinet4.
Finally, the low-threshold and high-threshold of input
buffers are set as 27 and 43 respectively. The buffer

3With source routing, one piece of the routing information
will be stripped off at each hop. Consequently, the packet header
becomes shorter as it advances in the network.

126

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 01:00 from IEEE Xplore. Restrictions apply.

size is 80 flits.

Figure 4. An example network configura-
tion: 3 x 3 torus.

3. Results of timeout simulations

Timeout improves network performance by stopping
the ineffective waiting of a blocked worm. As illus-
trated in figure 3, rejecting those blocked worms makes
the occupied links available; these links may then serve
other worms that can possibly reache their destinations
without difficulty. Timeout also alleviates head-of-line
blocking at the host. Persistent waiting (blocking) of
the original wormhole routing procedure does not allow
this flexibility.

Using simulations with different timeout values, we
show the power of timeouts. Figure 5 indicates that
a short timeout value can increase the maximum net-
work throughput to a factor of two, compared to the
long timeout case. It also shows no increase in delay for
the use of timeouts. To find the optimal timeout value
with respect to different network parameters (such as,
worm size, propagation delay, and network size), simu-
lations were run with very high traffic loads for various
parameter sets. Figure 6 shows that the optimal time-
out value increases as the packet size decreases. Also,
a large worm size results in high throughput. In con-
trast, a short link propagation delay lessens the optimal
timeout value and increase the maximum throughput,
as shown in figure 7.

The above phenomena can be understood through
figure 8. As shown in this figure, when the packet size
is large, it is more likely that blocking will last long;
therefore, a smaller timeout is better. Similarly, a long

4The myrinet link bandwidth is 640Mbps. Each flit is one
byte of data, which gives us the time unit, 12.511s. However, the
propagation velocity in a Myrinet cable is about 0.6c, where c is
the speed of light. Hence, 0 . 6 ~ x 1 2 . 5 ~ = 22.5m.

2500

2000 - 2

% g 1000

1500

z
500

0

I I I l l

--*--I -
-+. . . .

-e.-- 500 -
-x- - - 2 0 0

-

- -

w

0 2 4 6 8 10 12 14 16 18

Throughput (flitshime unit)

Figure 5. Throughput vs. network delay
with different timeout values (3 x 3 torus,
propagation delay = 10 time units, average
worm size = 100 flits).

propagation delay causes the timeout to waste more
bandwidth; hence waiting longer is preferred. Figure
9 points out why a larger packet size results in higher
maximum network throughput; it is simply because a
loing worm has relatively less overhead in attempting
to reach its destination.

However, the simulation results show that the max-
imum throughput does not grow proportionally to net-
work size (figure 10). The aggregate network through-
put might even be worse in the large network case. This
can be explained by the probability of a worm success-
fully reaching its destination. Obviously, this probabil-
ity decreases exponentially as its path becomes longer.
That is,

where PS is the probability of a successful transmission,
PIP is the probability of timeout a t a switch node5, and
h is the path length, (measured in number of hops).

From the probability of a successful transmission, we
can easily find N , the average number of transmissions
relquired for a worm to reach its destination, as:

Ps = (1 - PT)h

1
PS

03

N = EiPs(1- Ps)~-' = - = (1 -
i = l

We find that N increases exponentially with the path
length, h. As a result, this enormous number of re-
transmissions eliminates any gain due to timeouts, and
makes it ineffective for large networks. To overcome
this effect in large networks, we propose a simple host
deflection scheme in the next section.

5For simplicity, we here assume that the timeout probability
is identical at all switches.

127

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 01:00 from IEEE Xplore. Restrictions apply.

24

22
1

3 r" 20-
m
3

20 40 60 80 100 14 0

Timeout (time units)

I

-- -- - 1- - * - - - - - - - -- I-

-

=--U - -e - -~
worm size = 50 +

Figure 6. Throughput vs. timeout with dif-
ferent average worm sizes (3 x 3 torus, prop-
agation delay = 10 time units).

worm size = I00 - + - -
worm size = 5w -U-

= - - _ . *.._ ~ -

23 I 1 1 1 1 1 1 1 1

22 A *
21 - 'li 3 -5- -

-
Propagation I -+ -

0 5 10 15 20 25 30 35 40 45 50

Timeout

Figure 7. Throughput vs. Timeout with
different link propagation delays (3 x 3
torus, average worm size = 50 flits).

4. The host deflection scheme

The basic idea of the host deflection scheme is to use
connected hosts as temporary buffers to perform store-
and-forward as illustrated in figure 11. We assume that
the amount of memory in a host (i.e., a workstation, or
a server ...) is large and will rarely be filled by deflected
worms. The host deflection scheme works as follows:

1. When a worm arrives at a switch, the switch starts
a counter which measures the amount of time that
this worm sojourns at this switch.

2. The worm keeps probing its outgoing link until the
link is free or until the counter exceeds the timeout
value.

128

so"rcehosr
localion of

(shoriprop.) -
- . - - - -.y ?. . . . Y

loeation of
source host >

Time

Figure 8. The worm size and propagation
delay change the performance of timeout.
The arrows show the dynamics of a blocked
worm.

If the worm finds its outgoing link free, it imme-
diately seizes the link and advances to the next
node. Also, the switch disables the counter so that
timeout will not occur.

When the counter exceeds the timeout value, in
which case timeout occurs, the worm probes all
links connected to a local host, and chooses one
of them that is not currently being used as the
deflection path. If there is no available path, the
switch discards this worm and sends a timeout sig-
nal backward to the up-stream node.

Therefore, instead of discarding a blocked worm, the
switch may simply deflect it to a connected host which
will temporary buffer the worm in its local memory
and retransmit it later along the same link back to
the switch. By using deflection, two goals are accom-
plished. First, we save the retransmissions caused by
timeout at the worm's source host (which could be a
long distance from the timeout node). Second, using a
host its a store-and-forward buffer, we release links that
would have been frozen by the blocked worm and make
them available for others; hence we avoid the waste of
bandwidth due to the transmission break of blocked
worms.

However, it should be noted that the deflection
scheme increases the traffic load on the switch-to-host
links (the cost of deflection). If the packet size is large,
this deflection cost may be more than the timeout cost,
which is caused by the retransmissions. If we use CT
to denote the cost of a retransmission, we have,

CT = a x I x h

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 01:00 from IEEE Xplore. Restrictions apply.

18 I I I Long worm case:
position

Short worm case:

position

0: Unsuccessful try (wasted) m: doto transmission

Figure 9. The process of transmissions. In
both the long and short worm cases, the
expected time for a worm head to reach the
destination is similar. Since the payload is
larger for longer worms, the efficiency is
higher.

where 7 is the amount of time spent on each hop
(which is proportional to the timeout value), and h
is the distance between the switch and the source host,
in terms of numbers of hops. Q is simply a multiplica-
tive factor. Because the cost for a retransmission is
proportional to the distance between the switch and
the source (not to the worm size, unless the whole
worm is on the path), no deflection is preferred when
the timed-out worm is close to its source host, or is
quite large. One simple example of this case is when
a worm is timed-out at the first hop. In this case,
the cost of “timeout-then-discard” is the retransmis-
sion from one hop away (from the source host), while
the cost of “timeout-then-deflect” is the retransmission
from one hop away (from the buffering host) plus the
extra load on the switch-to-host link. Clearly, the lat-
ter cannot beat the former, unless hosts are unequally
loaded. When hosts are unequally loaded, the deflec-
tion scheme may possibly balance the load distribution
and consequently improve the network performance.

To show the effect of the switch-to-source distance,
a parameter which is called %hop prohibzted” is intro-
duced. We say the deflection is “i-hop prohibited” if
host deflection only occurs when a worm has advanced
more than i hops from its source host. This parameter

16

14

12

10

8

6

4

7x7 *
3x3

0 50 100 150 200

Timeout

Figure 10. Throughput vs. timeout with
different network sizes. (average worm size
= 50 flits, propagation delay

defected to the nearest host I

An arriving worm

= 10)

I Anotherworm

Figure 11. An illustration of the host de-
flection scheme.

is used to prevent excess host deflection when a worm
is too close to its source or its size is too large.

In figures 12 and 13, the maximumnetwork through-
put is plotted versus the timeout values. This leads to
the following conclusions:

o The host deflection scheme improves the network
throughput significantly. It is about four times
better in throughput (43:10, for the case, of an
average worm size = 50 flits). Considering the
efficiency of a switch-to-switch link (which is the
bottleneck for the network throughput), it is clear
that the degradation of network performance due
to the increase of network size is completely re-
solved by the host deflection scheme, as shown in
table 1.

o As we expected, the longer the worm, the higher
the hop-prohibited for the best network perfor-

129

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 01:00 from IEEE Xplore. Restrictions apply.

3x3 3x3 7x7
no deflection with deflection no deflection

16.7 16.57 12

0.463 0.46 0.18

aggregate
throughput

link
efficiency

Table 1. A comparison of the aggregate throughput and link efficiency (average worm size =
50 flits).

7x7 7x7 with
with deflection input buffering6

44 32.6

0.67 0.5

mance.

0 The higher the timeout value, the lower the hop-
prohibited for the best network performance. This
is because longer timeouts increase the cost of a
retransmission.

0 Almost all the best performance occurs with a very
short timeout value.

"0 20 40 60 80 100 120 140 160 180
Timeout

Figure 12. Throughput vs. timeout. (7 x 7
torus, average worm size = 50 flits)

Actually, with host deflection, the whole routing
path is broken into several segments interleaved with
store-and-forward nodes (the buffering hosts). I t re-
sembles crossing several small wormhole routing net-
works where the timeout scheme works best. The com-
parisons in table 1 also indicate that networks with host
deflection outperform cut-through network with infi-
nite size input buffers a t the switches, which is quite
impressive.

The last conclusion suggests a new idea on how to
modify the deflection scheme. Because the best perfor-
mance usually appears when the timeout value is very

5 4 5 1 a
0-hop prohibited +

E +-L * I-hopprohibited - 4 - -

I- 35 - % 2-hopprohibited -
&hop prohibited -x-

I
0 20 40 60 80 100 120 140 160 180

Timeout

Figure 13. Throughput V.S. timeout. (7 x 7
torus, average worm size = 1000 flits)

short, it may be better to deflect a blocked worm as
soon as there is a deflection path available. Hence, we
let a blocked worm keep trying to find a deflection path
until it is timed-out. The simulation results shown in
figure 14 indicate a moderate throughput improvement
with this modification.

The complexity for doing host deflection is low.
First, switches need only know which links are con-
necting to a host; this could be done either manually,
or by sending a control signal to the switch from hosts
at the link hook up time or periodically. Second, source
routing is preserved without any increased complexity.
The deflection host simply retransmits the deflected
worm back into the network, and the rest of its route
need not change at all. N o computation for re-routing
is required, but the improvement of the network per-
formance is dramatic as shown in figures 12 and 13.

5 . Conclusion and future work

In this paper, we discussed the use of wormhole rout-
ing for high-speed LANs and investigated the use of 6With infinite size of input buffers, no timeout, no deflection.

130

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 01:00 from IEEE Xplore. Restrictions apply.

- +- - - 2-hopprohibited, old

20 - -Q- I I-hopprohibikd, new
-%-- Zhopprohibited, new

0 20 40 60 80 100 120 140 160 180

Timeout

Figure 14. Throughput vs. timeout. “new”
indicates the scheme in which worms de-
flect as soon as possible. (7 x 7 torus, aver-
age worm size = 50 flits.)

timeout reset. Simulations show that timeout allevi-
ates blocking in both switches and hosts to achieve high
throughput, when the network size is limited. To fur-
ther improve the network performance for large scale
networks, a host deflection scheme was proposed and
demonstrated to be very effective. Simulation exhibits
a four fold improvement in throughput, compared to
that with timeout only. The host deflection scheme is
easy to implement on low cost switches, which makes
it quite attractive for high-speed, low-cost LANs.

Several extensions to host deflection are currently
undergoing. First, we are trying to set the hop-
prohibited values dynamically according to the worm
size. Second, a queueing model based on the one devel-
oped in [3] is under development. The model may well
give us a means to optimize the hop-prohibited param-
eter for any worm size. Finally, how the host buffer size
affects the performance of the host deflection scheme
needs to be investigated.

References

J. Duato. “Improving the Efficiency of Virtual Chan-
nels with Time-Dependent Selection Functions”. Com-
puters and Artificial Intelligence, 13:632-650, 1994.
C. J. Glass and L. M. Ni. “The Turn Model for Adap-
tive Routing”. Computer Architecture News, 20:278-
287, May 1992.
P.-C. Hu and L. Kleinrock. “A Queueing Model for
Wormhole Routing with Timeout”. In Proceedings of
the 4th International Conference on Computer Com-
munications and Networks, pages 584-593, Las Vegas,
NV, U.S., Sept. 1995.

[4] P. Kermani and L. Kleinrock. “Virtual cut-through:
A New Computer Communication Switching Tech-
nique”. Computer Networks, 3:267-289, 1979.

[5] L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni,
L. Bergman, J. Bannister, S. M. T. Bujewski, P.-
C. Hu, B. Kannan, B. Kwan, E. Leonardi, J. Peck,
P. Palnati, and S. Walton. “The Supercomputer Su-
pernet Testbed: A WDM Based Supercomputer In-
terconnect”. to appear in I E E E J S A C/JLWT joint
specid issue on Multiple Wavelength Optical Tech-
nologies and Networks, 1995.

[6] L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni,
L. Bergman, J. Bannister, S. Monacos, P.-C. Hu,
B. Kannan, B. Kwan, J. Peck, P. Palnati, and S. Wal-
ton. “The Supercomputer Supernet (SSN): A High-
speed Electro-optic Campus and Metropolitan Net-
work’’. In SPIE Optical Interconnects in Broadband
Switching Architectures conference, 1996.

[7] e. a. L. Kleinrock. “The Supercomputer Supernet: A
Scalable Distributed Terabit Network”. Journal of
High Speed Networks: special issue on Optical Net-

[8] J. Y. Ngai and C. L. Seitz. “A Framework of Adaptive
Routing in Multicomputer Networks”. In Proceedings
of the 1989 A C M Symposium on Parallel Algorithms
and Architectures (SPAA ’89), pages 1-9, June 1989.

[9] L. M. Ni and P. K. McKinley. “A Survey of Wormhole
Routing Techniques in Direct Networks”. Computer,
pages 62-76, Feb. 1993.

“Adaptive Rout-
ing for Hypercube Multiprocessors: A Performance
Study”. International Journal of High Speed Com-
puting, pages 1-29, Mar. 1994.

[ll] C. Seitz, D. Cohen, and R. Felderman. “Myrinet-A
Gigabit-per-second Local-Area Network”. I E E E Mi-
cro, 15(1):29-36, Feb. 1995.

“The Hypercube Communications
Chip”. Technical report, Dep. Computer Science, Cal-
ifornia Inst., Mar. 1985. Display File 5128:DF:85.

works, 4(4):407-24, 1995.

[lo] D. S. Reeves and E. F. Gehringer.

[la] C. Seitz et al.

13 1

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 01:00 from IEEE Xplore. Restrictions apply.

