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Abstract

In this paper, we develop a queueing model for wormhole routing with finite size buffers.
This model assumes the use of a deadlock-free routing scheme that guarantees no cycle
of link dependency (defined in section 3). Several approximation methods for estimating
the output link contention delay and buffer queueing delay are proposed. Comparing
the analytical results to simulation, we show that the model is pessimistic with regard
to network performance and that the difference in network throughput is less than 10
percent.

1 Introduction

Wormhole routing is a simple, low-cost switching scheme often used for supercomputer
interconnections. It has the merits of low latency, low cost, and simple implementation.
In addition to its use for supercomputer interconnection, wormhole routing also has been
applied to high-speed local area networks (LANs) [1, 2, 3] to support applications such
as cluster computing that demand a very fast, high-data-rate communication media.

1.1 Wormbhole Routing

Wormbhole routing was developed from the earlier idea of cut-through switching [4],
and was first introduced in [5]. A wormhole routing network is composed of several
switches which have relatively small input buffers (see figure 1-a). As opposed to store-
and-forward switching, a packet is forwarded to the next switch as soon as its header (or
its routing information) is received (cut-through). If the outgoing link to the next switch
is busy serving another packet, then the packet is blocked and resides in the network (see
figure 1-b) until the outgoing link is available. In this case, called blocking, the switch
must inform up-stream switches to stop transmission (i.e., it exercises back-pressure flow
control) due to the limited size of buffers at each switch. A packet (which is also called
a worm) may be buffered along a chain of switching nodes when blocked. Consequently,
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deadlocks are possible unless a deadlock-free routing strategy is employed. A survey of
wormhole routing can be found in [6].
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Figure 1: An illustration of wormhole routing.

1.2 Wormbhole Routing Analysis

Many performance models for wormhole routing in a multi-processor environment have
been proposed and presented in the literature [7, 8,9, 10, 11]. However, they all assumed
a negligible size of input buffers. This buffer size must increase in a LAN environment
to accommodate transit data that cannot be stopped immediately due to the longer link
propagation delay than in a multiprocessor interconnection application. As an example,
a 640 Mbps Myrinet with a link length of 25 meters needs a buffer size of at least 54 bytes
[2] per port to prevent data loss due to a buffer overflow or a transmission break due to
the possibility of the buffer being empty before transmission is resumed. A LAN spanning
hundreds of meters requires a buffer size larger than hundreds of bytes (a buffer size that
could hold more than one packet). These buffers alleviate blocking problem. Thus, their
effects must be captured in the model.

A finite size buffer complicates the analytical model in two ways. Firstly, the com-
monly used assumption that a worm reaches its destination before its tail leaves its source
host, is no longer valid. It is now the case that a blocked worm may occupy only a frac-
tion of the links along its path (not all of them). Secondly, a buffer may hold more than
one, but not an infinite number, of worms. Buffering delay becomes difficult to estimate
because the buffer size is finite (in terms of the amount of data).

To deal with the delay caused by blocking in the succeeding hops, knowledge of the
dependency among all links is needed. To estimate the link blocking delay, the length
of the link dependency chain must be resolved according to the worm size distribution.
Approximations for determining the blocking chain length and the link blocking delay
are presented in section 4. The finite size buffer is approximated through equivalent
M/G/1/K queues with finite capacity. The structure of the equivalent queue and its
solution is described in section 5. The entire modeling procedure is summarized in section
6. Section 7 shows comparison results with simulations. Section 8 concludes this paper.

2 Model Assumptions and Notation
The analysis work presented in this paper assumes the followings:
e a wormhole routing network using a deadlock-free routing that guarantees no cycle

of link dependency. No cycle of link dependency is a sufficient, but not necessary,
condition for deadlock free routing, as discussed in [12, 13].



e source routing. Routing is made by the source host and cannot be changed by
switches (i.e., no deflection or adaptive routing).

e only one finite size buffer at each input port of a switch. Also, worms cannot share
a link through interleaving (i.e., multiple virtual channels are not allowed).

e infinite size buffers at hosts.

e a Poisson worm arrival process and an arbitrary worm size distribution.

To facilitate this paper presentation, we measure packet length by flits, which is the
amount of data that can be transmitted in one time unit. For example, the 640Mbps
Myrinet [2] has one byte per flit lasting 12.5ns.

The followings define some notation used through this paper. The notation is also
illustrated in figure 1-b.
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The length (number of hops) of path p.
The link that originates at node (a host or a switch) a and ends at node b.

The oth link of path p; 1 <¢ < d,. If the 2th link of path p originates at node
a and ends at node b, then I¥ = [,.

The propagation delay of link /7.

The set of links which are traversed along path p.

The set of paths which originates at host «.

The buffer size, in terms of number of flits.

The arrival rate of worms that traverse along path p.

The total worm arrival rate at ;.

The total worm arrival rate of worms at host a. v, = 3°, en, Ap-

A random variable that denotes a worm size.

The Laplace-Stieltjes transform of the probability density function of £.

A random variable that denotes the delay of a worm head to reach the head
of the input buffer for link /, after the worm has entered the buffer.

The Laplace-Stieltjes transform of the probability density function of gp.

A random variable that denotes the delay of a worm head to reach the point
where the accumulated buffer space is large enough to store the entire worm,
after the worm head has entered the buffer for link /¥ (see figure 1).

The Laplace-Stieltjes transform of the probability density function of zp.

A random variable that denotes the contention delay for link /¥.

The Laplace-Stieltjes transform of the probability density function of Ap.

A random variable that denotes the one-hop forwarding delay, excluding the
link propagation delay, for the worm head to advance to the next hop (buffer
head to buffer head) via link I£.

The Laplace-Stieltjes transform of the probability density function of wpr.



b = A random variable that denotes the link occupancy time of link /¥.

»(s) = The Laplace-Stieltjes transform of the probability density function of by.

By (s) = The Laplace-Stieltjes transform of the probability density function of the link
occupancy time at link /.

sp = A random variable that denotes the service time of a worm via path p at the
buffer for the ith link of path p.

»(s) = The Laplace-Stieltjes transform of the probability density function of sp.

7

s1, = A random variable that denotes the service time of a worm at the buffer for
link 4.
s1,,(7) = The probability density function of s;,,.
St (s) = The Laplace-Stieltjes transform of s, (7).
T, = The average network delay for worms via path p.

3 Ordering Links

A wormbhole routing network differs from a virtual cut-through network because of its
link blocking feature. Blocking occurs due to the small size of the input buffers and results
in increased link occupancy time. This occupancy time (defined as the time interval that
a served worm holds this link) is not only a function of the worm size, but also a function
of the blocking delay in the succeeding hops. As a consequence, it is important to find
the dependency among links. The link dependency and the cycle of link dependency are
defined as follows:

Definition 1 We say that 1y, depends on l.q, if Ip, such that l.4 is a subsequent link of
lop in path p. This dependency is represented as ly, < l.q. Moreover, if I, < l.q, and
leg < lep, then we say ly < ey, too (i.e., it is transitive).

Note that it is possible that /,; < I,y but [, is not a subsequent link of /.; in any path,
according to the transitive property.

Definition 2 We say that there is a cycle of link dependency if Ay, [og such that [, < [y
and l.g < ..

Link dependency provides the relationship between link occupancy time and blocking
time. In our earlier paper [11], we developed the relations between their distributions
but relied on iterative methods to find the solution. Actually, a computation order, which
indicates the sequence of links for blocking delay analysis can be derived if there is no cycle
of link dependency, as illustrated in [14]. The method is simply the topological sorting [15].
For examples, if [,;, < l.4 < [y, we have a computation order, l.; — [.4 — [,;. Following
the computation order, link occupancy time and blocking time can be evaluated link by
link without iterations.



4 Link Occupancy Time

To estimate the blocking delay at each switch, it is important to first analyze how
the finite size buffer affects link status and worm transmission. When there is no buffer
available at switches, the relation between the link occupancy time (b)) and waiting time
(wir) has been well established in [11]. The Laplace-Stieltjes transform equation is:

(s H Wi(s (1)
J=i+1
Introducing a finite size buffer on each input port reduces the number of links that
a worm can spread over. In other words, the link occupancy time is only affected by a
limited number of subsequent links, not all of them. Given a worm size {, the number of
effective subsequent links for a worm at the ith link of path p (I7), AY({), is derived by:

‘ et .
wo={ ls] it <d = )
d, —1 otherwise

As shown in figures 1-b, blocking that occurs after the next A?({¢) links does not affect
the link occupancy time since the accumulated buffer space is large enough to hold the
entire worm.

Now, we define random variables T and Y as:
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The random variable x;» represents the forwarding delay for the worm head to reach the
position where a large ehough buffer space has been accumulated to hold the entire worm
(see figure 1-b).

Let \Illzia(k) denote the probability that A”(¢) = k. From equation (2), we have,

Up(k) = Prob {{ < (k+1)A} —Prob{{ < kA} if £ <d, —i )
d N 1 — Prob {{ < EA} otherwise

Then, the Laplace-Stieltjes transforms of the probability density functions of z; and yp»
are:

dp—1 Z-I-] 1

p(s) = Wp(0 ‘|'Z W (1)@ () H, s) I1 Wik (s (4)
k=1+1

Vils) = L*(s))@;(s) (5)

Observing figures 1-b and 2, the link occupancy time clearly has the range:

max [gvxlf] < blf < Y (6)
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Figure 2: An illustration of the link occupancy time.

Since buffers tend to be fully utilized under severely blocking conditions, the left hand
side of inequality (6) should be adopted to approximate by when the forwarding delay, x»,
dominates. Also, the average link occupancy time should be monotonically increasing as
the forwarding delay increases, and must be at least as large as the worm size. To satisty
all of the above, the following approximation is proposed for the link occupancy time
distribution:

1*1?(8) = (y_lf—l' X—lf) [( = X[P% l*f s) + Q_X—Ilp[,*(s)] if L > X—lf (7)

| (O + )™ (0 = %) V(o) + 28 Xp0)] HT <%

where Xpr is the first moment of X (s), and similarly for y_lp and L.
It can be shown that equation (7) has the limit values, limy_g ( ) = ylp( s) and

th_lp—M)o l*;;(s) = Xl?(s), since y_lf = le + L. Moreover, Blf derlved by equation (7) is

monotonically increasing with Xp», as proven in [14].
The remaining VV;;(S), Zﬁg(s) Hlp( s), and le( $) quantities are discussed in section 5.
J J

5 Modeling the Finite Size Buffer

Since buffer capacity is fixed in terms of the number of flits, the nature of the input
buffer resembles a finite dam system. A worm flows in the buffer constantly when it is not
full. However, the outgoing flow of the buffer may be interrupted due to worm blocking.
The queueing model for a finite dam system developed in [16] cannot be applied directly
in this case. Furthermore, the status of the buffer is tightly related to its upstream node,
and vice versa. To analyze both independently could result in a poor model. For the
sake of accuracy and simplicity, we use an alternative approach which treats both link
contention and the input buffer as one single queue.

5.1 M/G/1/K Approximation

As shown in figure 3, the delay for a worm to seize its output link and reach the
buffer head in the next hop (i.e., the one-hop forwarding delay, wyr) is exactly the waiting
time of an M/G/1 queue with finite capacity (denoted as M/G/1/K, for the case that
capacity is K'). With « input ports, the M/G/1/K queue (see figure 3) has the capacity
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Figure 3: The forwarding delay is considered as a single queue with finite capacity. The
queue includes the input buffer at the end of the link and contention for this link.

approximately « + ¢, where ¥ is the number of worms that can be completely held in the
portion of the finite size buffer. Unfortunately, the buffer size is determined as the number
of flits, not the number of worms. For variable worm size cases, ¥ is not deterministic.
To simplify the analysis of this finite size buffer, equivalent queues are used here instead.
In general, an equivalent queue size specifies how many worms can be held in the buffer
and is associated with a probability. Specifically, the buffer is approximated as a queue
of capacity & + k with the probability J(k) that,

J(k) = Prob{li+ -+ <A<l + -+ {41}
= Prob{(,+---+ 0, <A} —Prob{{; + -+ {141 <A} (8)

Then, the one-hop forwarding delay is estimated as
p(s) =2 V()T +r.s) (9)
7=0

where Tl*;; (j + K, s) is the Laplace-Stieltjes transform of the probability density function

of the waiting time for the equivalent queue that has capacity j + & (j is from the finite
size buffer and & is from the link contention). The range of the capacity is actually finite,
since the worm size must be larger than a flit.

The finite capacity queue of figure 3 is modeled with the Poisson arrival assumption.
This assumption is justified by the multiplexing of various inputs and demultiplexing
of outputs [17]. The details of the procedure to solve the steady-state probability and
waiting time distribution, Y} (j + &, s), of an M/G/1/K queue is available in [18]. The
solution is lengthy and hence not reproduced in this paper. Nevertheless, a few changes
about the procedure should be noted here. First, the total worm arrival rate on link [, is
derived as: A, = 3, ez, Ap- However, to apply the solutions for the M/G/1/K queue,

A1, needs to be normalized with the probability of encountering a full queue. That is,
Al
A= 10
= (10)

where Pg is the probability of no waiting room left (blocking) in the M/G/1/K queueing
system [18, Chapter 5, page 202], and it, as well as the steady-state probabilities, can
be derived if the normalized traffic arrival rate, A} , is known. Therefore, an iterative
method (e.g., bi-section [19]) needs to be applied to solve Pp and A} first (see [14] for

details).



Another change is about the integration [18, Chapter 5, equation (1.7)],

()’
oo T
lab ) —A/ T
/0 X e v g (T)dT

Though s,,,(7) can be recovered by inverting its Laplace-Stieltjes transform, S (s), the
inversion is not completely systematic. To ease this difficulty, a two-moment approxima-
tion can be exploited.

Cs>1 Cs<1
0 1/(6+1) %

5/(5+1)

o/(d+1)
(deterministic)

Figure 4: The two-stage approximation for a distribution function.

Moments of s, are obtainable from 57 (s) by differentiation and setting s = 0. With

the first two moments of s;,, S, , and Slzabv the probability density function of s;,, can be

ab?

approximated as (figure 4):

stalr) = { ke e i, 2 ()
e+ s (7= 8,) 02 <1

St . . . .

where Csl = % is the coefficient of variation for s;,, and ug(7) is the unit

impulse function [20, Appendlx L[.3].
To match the first two moments, we have,

o 1 ) 2
= e — e —5 —onr d — 12
Sl /0 T(5+1”6 T ) T (12)
— o 1 ) 2
2 = 2 THT 4 pue M | dr = — 1
Slab /0 T (5_|_1 + 5_|_1 pe ) T 5,“2 ( 3)

for the case, C7 , > 1.
After some manipulation of the above equations, we find: 6 = 02 :I: \ /04 — 1 and
. With I

= (5+1) . Similarly for the case 02 < 1, we find: 6 = 2——1 and pw=
Sl

ab
and ¢, Slab( ) and its moments can be apprommated. This two moment approximation is
also applied for other distributions that need the probability density function explicitly.
Finally, Y7, (K, s) is evaluated through [18, Chapter 5, equation (1.75)]:

NoS* (s) K
2 ab
mos | 1 — [’/\/7_5] K1 / K—j
o P . K-1'Z Ii4
l};([X,S) = + [Slab(s)] > (75) (14)

s — ;1; + )\;fSl*ab(s) !

a

=0 T

where 7; is the steady-state probability of 7 worms in the queue.



5.2 Buffering Delay and More
Wi (s)
The buffering delay, Q5 (s) is derived simply as Q7(s) = HZ,JP;(S) because wp = qp +
J ? P ? 2

hp, as shown in figure 3. The contention blocking, H}:(s), can also be approximated
as an M/G/1/K queue with K = £, and the queue service time is exactly the link
occupancy time, B} (s), if I = l,;. However, By (s) is not available until Qp(s) is
known, which requires knowledge of H};(s) as shown in the above. Consequently, B (s)
must be properly approximated first in order to derive Hy(s) and Q(s). A simple

approximation is proposed as the following:
By (s) = Prob{buffer full} 57 (s) 4+ (1 — Prob{buffer full}) L"(s) (15)
This approximation is based on the following observations:

1. When the buffer is full, it simply resembles a data pipe — one flit of data out of the
buffer corresponds to one flit of data entering the buffer. Thus, B} (s) = 57 (s), in
this case.

2. When there is space left in the buffer, a worm flows in the buffer without interrup-

tion. Thus, B} (s) = L*(s).

The buffer full probability can be closely estimated from the steady-state probability
that is derived when we analyze W (s), namely, the probability that more than ¥ worms
are in the M/G/1/K queue used to approximate Wi (s). ¥ is an equivalent queue size of
the finite size buffer. Therefore, we have, l

oo A )
Prob{buffer full} = > J(j) ((1 —PL) > T+ Pfg) (16)
i=0 k=)

where . P}, denote the 7y, Pg of the M/G/1/K queue with K = j + x.

Finally, Z};(s) is ignored, since it is small and implicitly included in H};(s) due to the
fact that the equivalent queue used to approximate the finite size buffer does not count
the buffer space that can only hold part of a worm. This delay is not recounted here.
After gy(s), l*;;(s) and Ql*f(s) are derived, Bl*;;(s) is given by equation (7).

Now, the service time distribution for a worm through path p at the head of its :th
hop input buffer is derived as s;p = hlf+1 + blf+1’ which gives us:

p(s) = Hp (s)Bp (s) (17)

P
li+1

Considering worms from different paths, the service time distribution for a finite size
input buffer is:

Sils)=" 2

p:lap€ELY

Yo () (18)

lP
)\lab ‘fp(lab)

where ,(1,) is a function which returns ¢ if link /.5 is the ith link of path p.



Once the service time and mean forwarding delay at each hop is derived, the network
delay is obtained as (see figures 1-b and 2):

dP dP
Ty=m+ Wp+ L+ me (19)
=2 =1

if path p originates at host a. 7, is the mean of the queueing delay at host a. Note that
the buffering delay at the first link is not counted, since it is part of the host queueing

delay, which is directly derived from the M/G/1 queue solution [20], 7, =

%Sfab
2(1—waSlab) .

6 Model Summary

Here, we summarize the full modeling process.

Read in the network topology.

Read in all paths and their worm arrival rates, A,.

Compute the worm arrival rate at each single link (e.g., A, ).

With the given worm size distribution, compute W (7) and ¥(y), ¥j and 2.
Use topological sorting (see [14]) to construct the link computation order.

For k& = 1 to the highest order, compute (in the following order) S*(s), W*(s),
H*(s), Q*(s), and B*(s) for all links belonging to order k. The distribution of all

of the above may actually be characterized by their first two moments.

AR o

7. Compute T}, for all paths p.

The entire procedure can be computerized except for step 4. Step 4 involves integration
and other operations that require manual effort. However, once they are completed for a
given worm size distribution, the rest can be done automatically for any network config-
uration. Note that the Laplace-Stieltjes transform for each probability density function
does not need to be solved explicitly. They are only used for the convenience of presen-
tation. Only the first two moments of each distribution are required.

7 Comparison of Results

Using a 3 x 3 torus (totally, 9 switches and 36 hosts) with up/down deadlock-free rout-
ing [1] and symmetric traffic load (see [14] for details), the performance results estimated
by both the model and simulation are shown in figure 5-a. The results are derived with
the assumptions of exponential worm size distribution and Poisson worm arrivals. Figure
5-a indicates a ten percent difference between the network throughput estimated by the
model and the simulation, in both small buffer size and large buffer size cases. Also, the
analytical results are always pessimistic, compared to the simulation.

Some of the approximations could be modified or improved to compensate for the
pessimism of the model. First, the finite size buffer may be better approximated by an
equivalent queue with higher capacity. The current approximation:

d(j) =Prob {1 + -+l <A<l 4+ +lpy}

ignores the buffer space that can not hold a full worm. The buffer size is underestimated
and consequently the analysis overestimates the network delay. Furthermore, the service
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Figure 5: Results of the finite size buffer models (worm size = 200 flits, propagation
delay = 10 time units).

time of the equivalent queue depends on the queue capacity (in terms of number of worms).
A larger capacity clearly implies a smaller average size of worms in the queue, due to the
fact that the buffer size is fixed in terms of number of flits. As a result, the service rate
must be higher in a high capacity case than in a low capacity one. Without consideration
of the above dependency, the worm forwarding delay is overestimated.

In figure 5-b, we show the analytical results of a modified model (see below) with
regard to the above discussion. The probability of the number of worms that can be
held in the finite size buffer, ¥(j), is reformalized by enlarging the buffer size to A + %
The % portion counts the buffer space that cannot hold a full worm. Also, the moments
of the buffer service time distribution are adjusted with the queue capacity, which gives
a new average worm size. Namely, an equivalent queue with capacity j + & (j from
the finite size buffer, and s from the link contention) has a new mean buffer service

— . —\2___
Sobiil [new Sfab] = (A""‘L) St.. The predicted

time: [new Slab:| = (m-;)LSlab and similarly, (et
network performance in figure 5-b is closer to the simulation. However, the model is still

pessimistic.
8 Summary

In this paper, a finite size buffer model for wormhole routing is developed. It is shown
that this analysis is not trivial and needs many approximations. To further improve
these approximations require intensive study of several sophisticated queueing models.
However, the full modeling procedure presented in this paper is systematic and could be

implemented as a useful tool.
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