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Abstract—Ubiquitous computing applications are frequently 
long-running and highly distributed, leading to bugs that 
only become apparent far from and long after their original 
points of origin.  Such bugs are difficult to find.  This paper 
describes the Interaction Analyzer, a debugging tool for 
ubiquitous computing applications that addresses this 
problem.  The Interaction Analyzer uses protocol definitions 
and histories of executions that displayed bad behavior to 
assist developers in quickly finding the original root cause of 
a bug. We discuss characteristics of ubiquitous computing 
applications that can complicate debugging.  We describe the 
architecture of the Interaction Analyzer and the methods it 
uses to rapidly narrow in on bugs. We also report overheads 
associated with the tool, simulation studies of its ability to 
find bugs rapidly, and case studies of its use in finding bugs 
in real ubiquitous computing applications.  

Keywords-ubiquitous computing; distributed debugging; 
ubiquitous applications 

I.  INTRODUCTION  
Ubiquitous and pervasive computing systems are often 

complex systems consisting of many different objects, 
components and agents, interacting in complicated and 
unpredictable ways.  The real world frequently intrudes 
into pervasive systems, adding to their unpredictability.  As 
a result, such systems can frequently display unexpected, 
and often erroneous, behaviors.  The size and complexity 
of the systems and their interactions make it difficult for 
developers to determine why these unexpected behaviors 
occurred, which in turn makes it difficult to fix the 
problems [1][2][3][4]. 

We built a system called the Interaction Analyzer to 
help developers of complex ubiquitous computing systems 
understand their systems’ behaviors and find and fix bugs 
[1].  The Interaction Analyzer gathers data from test runs of 
an application.  When unexpected behavior occurs, it uses 
the data from that run and information provided during 
system development to guide developers to the root cause 
of errors.  The Interaction Analyzer carefully selects events 
in the execution of an application and recommends that the 
human developers more carefully examine them.  In real 
cases, the Interaction Analyzer has guided ubiquitous 
application developers to the root cause of system bugs 
while only requiring them to investigate a handful of 
events.  In one case, the Interaction Analyzer helped 
developers find a race condition that they were previously 
unable to track down; the entire debugging process took 
less than five minutes, while previously developers had 

spent several days unsuccessfully tracking the bug using 
more traditional debugging techniques. 

In this paper, we describe how the Interaction Analyzer 
works and give both simulation results of its efficiency in 
tracking bugs and cases where it found real bugs in a real 
ubiquitous application.  Section II describes the Panoply 
system, for which the Interaction Analyzer was built, and 
introduces the example ubiquitous application.  Section III 
describes the Interaction Analyzer’s basic design and 
architecture.  Section IV provides simulation results and 
real case studies; this section also includes basic overhead 
costs for the Interaction Analyzer.  Section V discusses 
related work and Section VI presents our conclusions. 

II. PANOPLY AND THE SMART PARTY 
The Interaction Analyzer was designed to be a general-

purpose system usable in many ubiquitous computing 
contexts.  However, since we wished to demonstrate its use 
in a real environment, we needed to connect it to some 
particular system.  We chose to integrate the Interaction 
Analyzer with Panoply.  Panoply is a middleware 
framework to support ubiquitous computing applications. 
While the work described here treats the Interaction 
Analyzer in the Panoply context, we should emphasize 
that, with relatively little effort, the Analyzer could be 
integrated with other types of ubiquitous computing 
system.  The suitability and ease of the port will depend on 
the degree to which the target system relies on a message-
based paradigm for interactions, since that is what the 
Analyzer itself expects.  

While the key elements of the Interaction Analyzer do 
not depend on Panoply constructs, understanding how we 
used it in the Panoply context requires a little knowledge of 
how Panoply works.  The core representational unit of 
Panoply is the Sphere of Influence, which can represent an 
individual device or a group of devices united by a 
common interest or attribute such as physical location, 
application, or social relationship. Spheres unify disparate 
notions of “groups,” such as device clusters and social 
networks, by providing a common interface and a standard 
set of discovery and management primitives. 

Panoply provides group management primitives that 
allow the creation and maintenance of spheres of influence, 
including discovery, joining, and cluster management. A 
publish/subscribe event model is used for intra- and inter-
sphere communication. Events are propagated between 
devices and applications, subject to scoping constraints 
embedded in events of interest. Every sphere scopes policy 



and contains a policy manager [5] that monitors the 
environment, mediates interactions and negotiates 
agreements. 

Panoply supports the design of applications that express 
their needs and communicate through events. Panoply 
applications (e.g., the Smart Party) can create custom 
events, and designate the scope and destination of such 
events. More details on Panoply can be found in [6].   

For the purpose of understanding the Interaction 
Analyzer, one can regard Panoply as a support system for 
applications made up of discrete, but interacting, 
components at various physical locations.  These 
components communicate by message, and generally run 
code in response to the arrival of a message.  Code can also 
be running continuously or periodically, or can be triggered 
by other events, such as a sensor observing a real-world 
event.   

Several applications have been built for Panoply [5], 
[6], [7], and the Interaction Analyzer has been used to 
investigate many of them.  We will concentrate our 
discussion of the Interaction Analyzer’s use on one 
Panoply application, the Smart Party [7], touching more 
lightly on its use for other applications. 

In the Smart Party, a group of people attends a 
gathering hosted at someone’s home. Each person carries a 
small mobile device that stores its owner’s music 
preferences and song collection. The party environment 
consists of a series of rooms, each equipped with speakers. 
The home is covered by one or more wireless access 
points. Figure 1 shows the configured version of a Panoply 
Smart Party, in which three rooms in a house are capable of 
playing music and party attendees with various different 
musical preferences are located in each room. 

 
Figure 1.  A Panoply Smart Party 

 
As each guest arrives, his mobile device automatically 

associates with the correct network to connect it to the 
Smart Party infrastructure. As party attendees move within 
the party environment, each room programs an audio 
playlist based on the communal music preferences of the 
current room occupants and the content they have brought 
to the party. For example, for the party in Figure 1, rock 
music would play in the family room, since the guests there 
all have that preference, while folk or jazz would play in 
the living room.   

A Smart Party room determines which guests are 
present because they have enrolled automatically in a 
Panoply sphere belonging to that room, triggered by 
wireless network enrollment.  The Panoply sphere 
controlling the Smart Party in that room periodically 
queries the devices of the users in that room for their music 
preferences.  These preferences are currently expressed as 
particular songs the user would like to hear played.  The 
Panoply sphere then uses the combined responses and a 
voting procedure [8] to select a song from among those 
suggested by the users’ devices.  That song is downloaded 
to the room (from the user’s device or somewhere he 
specifies) and played, after which the process repeats. 

As guests move from room to room, the underlying 
Panoply framework notices their movements and removes 
them from their old room, adding them to the new one.  
Thus, each room’s playlist adjusts to the current occupants 
and their preferences. 

The Smart Party is a real, working application, 
extensively tested in our labs. 

The Smart Party application could fail in many ways.  
It could overlook users, or it could localize them into the 
wrong rooms.  It could fail to obtain preferences from some 
users.  Its algorithms for song selection could be flawed, 
resulting in endless repetitions of the same song.  It could 
unfairly disadvantage some users in the selection.  These 
are just a few of the many possible causes of failures.  
Because it must take into account user mobility, and even 
the possibility of users leaving the Smart Party in the 
middle of any operation, flawed code to handle dynamics 
can lead to multiple problems.  These characteristics, 
which caused a good deal of difficulty in getting the Smart 
Party to operate properly, are likely to be common to a 
wide range of ubiquitous computing applications.  
Therefore, the Smart Party is a good representative 
example of the complexities of debugging such 
applications. 

The problems we actually encountered during the 
development of the Smart Party application included music 
playing in rooms with no occupants, failure of some Smart 
Party components to join the application, and race 
conditions that sometimes caused no music to play when it 
should.  These and other bugs in the Smart Party were 
attacked with the Interaction Analyzer.  The results will be 
presented in Section IV. 

III. THE INTERACTION ANALYZER 

A. Basic Design Assumption 
The Interaction Analyzer was designed to help 

developers debug their applications.  Therefore, it was built 
with certain assumptions: 

• The source code for the application is available 
and can be altered to provide useful information 
that the Interaction Analyzer requires. 

• The system was intended for use during 
application development, not ordinary application 
use.  This assumption allowed us to rely on the 
presence of more capable devices (with greater 



storage capacity and processing power, for 
example) than might be available in real 
deployment. 

• Knowledgeable developers would be available to 
use the recommendations of the Interaction 
Analyzer to find bugs.  The Interaction Analyzer 
does not pinpoint the exact semantic cause of a 
bug, but guides developers in quickly finding the 
element of the system, hardware or software, that 
is the root cause of the observed problem.  Also, 
this assumption meant that we did not need to 
provide descriptions of problems that would be 
meaningful to naïve users unfamiliar with 
Panoply or the design of the application. 

The Interaction Analyzer works on applications that 
have been specially instrumented to gather information that 
will prove useful in the debugging process.  This 
instrumented application is run in a testing environment, 
gathering data as the application runs.  The data is stored 
and organized automatically for use during debugging, if 
necessary.  When developers observe a bug that they need 
to diagnose, they stop the application and invoke the 
Interaction Analyzer on the information that has been 
saved during the run.   

The Interaction Analyzer is not intended to find bugs on 
its own.  Rather, it assists developers in finding and 
understanding the causes of observable bad or unexpected 
application behaviors.  The Interaction Analyzer is not 
intended as a replacement for tools that perform automated 
analysis of source code, but as a tool for diagnosing 
problems with application behavior. 

The instrumented code is wrapped by a conditional 
statement that checks the value of a predefined boolean 
constant.  By altering this value, the instrumented code can 
be easily removed in the final release of the binary. 

The Interaction Analyzer was designed for use in a 
Linux environment, and is implemented in C.  It was 
designed for debugging programs written in C or C++.  It 
could be ported to other environments with reasonable 
ease. 

B. Protocol Definitions and Execution Histories 
The Interaction Analyzer uses a protocol definition 

(which specifies how the application is expected to work) 
and an execution history (which describes what actually 
happened in the run of the application) to debug 
applications.  Each of these is a directed graph of events, 
where an event corresponds to some interesting activity in 
the execution of the system.  Developers instrument their 
code to indicate when events occur and to store important 
information about those events. An event can be primitive 
or high-level.  High-level events are typically composed of 
one or more primitive events, as specified by the developer. 

The Interaction Analyzer uses both temporal order (one 
event occurring before another) and causal order (such as 
the event that sends a message must precede the event that 
receives the message) of events to build the execution 
history of an application’s run.  Some of these relationships 
are found automatically by the Interaction Analyzer’s 

examination of the source code, while others must be 
provided explicitly by the developers using instrumentation 
tools. By recording all events that occur during the 
execution of a system and their causal relationships, one 
can reconstruct the image and the detailed behavior of the 
running system at any time [9]. 

The protocol definition describes how the system 
should react and behave in different situations. We store 
the protocol definition in an event causality graph format. 
The protocol definition is produced at design time, and the 
execution history is produced at run time. 

C. Creating the Protocol Definition 
The protocol definition is a model of the application’s 

expected behavior.  Such modeling is always an essential 
part of a large software project, and is helpful in smaller 
projects, as well.  Models help software developers ensure 
that the program design supports many desirable 
characteristics, including scalability and robustness [10].  
The Interaction Analyzer requires developers to perform 
such modeling using UML, a popular language for 
program modeling.  We added some additional elements to 
the standard UML to support the Interaction Analyzer’s 
needs, such as definitions of protocol events and relation 
definitions.  We modified a popular graphical UML tool, 
ArgoUML [11], to create a tool called Argo-Analyzer that 
helps developers build their protocol definition. 

The Argo-Analyzer is itself a complex system.  Briefly, 
developers use this tool to specify an application’s objects, 
the relationships between them, the context, and the kinds 
of events that can occur in a run of the application.   

The application is organized into objects.  Object types 
are defined using the Argo-Analyzer. For source code 
written in OOP languages (such as Java), the classes 
correspond to the object types.  These object definitions are 
used to organize the protocol definition and describe 
interactions between different application elements.   

Relationship definitions describe relationships between 
objects. The Argo-Analyzer supports commonly used 
relationships such as parent-child, as well as other user-
defined relationships. 

Event templates define the properties of an instance of 
an important event in the application.  There must be an 
event template for each type of event in the application.  
The Interaction Analyzer will use these templates to match 
an execution event with an event in the protocol definition. 
For an event to match a template, not only must their event 
type and parameter fields match, but their causality 
requirements must also match.  If the execution event does 
not have the same kinds of preceding events as the 
template, it will not match.  

The developer uses these and a few other UML-based 
elements to specify the protocol definition, which describes 
how he expects his application to work.  This definition is, 
in essence, a directed graph describing causal chains of 
events that are expected to occur in the application.   

Serious effort is required to create the protocol 
definition, but it is a part of the overall modeling effort that 
well-designed programs should go through.  As with any 



modeling effort, the model might not match the actual 
instantiation of the application.  In such cases, an execution 
history will not match the protocol definition, requiring the 
developer to correct one or the other.  In practice, we found 
that it was not difficult to build protocol definitions for 
applications like the Smart Party, and did not run into 
serious problems with incorrect protocol definitions.  
Mismatches between definitions and executions were 
generally signs of implementation bugs, which generally 
should be fixed even if they do not instantly cause incorrect 
behavior. 

D. Creating the Execution History 
There is one protocol definition for any application, but 

each execution of that application creates its own execution 
history.  The Interaction Analyzer helps direct users to 
bugs in particular runs of the application by comparing the 
execution history for that run to the expected execution 
described in the protocol definition.   

Each event in the application should generate a record 
in the execution history. There are three ways to collect the 
system information required to create such records that 
describe an execution history of a program: software, 
hardware and hybrid. For the Interaction Analyzer, 
software monitoring was used since it provides more 
flexibility and does not need extra hardware support.   

The monitoring could have been based on external 
observation of the application’s behavior, which would 
have had the advantage of not requiring any 
instrumentation of the application.  We would have needed 
some way to observe the scheduling of events, which 
would have involved observing messages being sent 
between objects in the system.  Inter-machine messages 
could have been sniffed off the wire (though use of 
cryptography would have complicated this approach).  
Messages that did not cross real network boundaries would 
have been more challenging to capture.  In either case, 
obtaining information about the state of the sending and 
receiving objects would have been difficult.  

We chose instead to gather information about the 
execution history by instrumenting the application.  This 
approach provides greater detail and produces more 
powerful execution traces than external monitoring could 
provide.  It does so at the cost of changing the application 
source code.  However, since the target use of the 
Interaction Analyzer is by application developers during 
their development and debugging process, the costs were of 
less concern, and the benefits more compelling. 

We provide a library to help with this instrumentation 
process. This general-purpose Java library provides an 
interface to generate different kinds of event records and 
their important attributes and parameters.  An application 
generates an entry in its execution history by calling a 
method in this library.  Doing so logs the entry into a trace 
file on the local machine.  Applications can also define 
their own kinds of events, which the library can also log.   
Panoply itself logs its own special kind of events, such as 
“sphere joins,” using this mechanism. 

A typical analyzer record contains several fields, 
including a unique ID for the event being recorded, a 
developer-defined ID, information on the producer and 
consumer of the event (such as the sender and receiver of a 
message for a message-send event), timestamps, pointers to 
all events that directly caused this record’s event, and 
various parameters specific to the particular kind of event 
being recorded.  Most of the parameters are defined by the 
application developers, who can also add more parameters 
if the standard set does not meet their needs. 

Adding the code required to record an analyzer event 
costs about the same amount of effort as adding a printf 
statement to a C program. For example, the command to 
generate an event in the Smart Party application under 
Panoply looks similar to this: 

PanoplyLogger.logPanoplyObjectCreated(codeID
,panoply-specificEvent,creator,createdObject, 
directCauses,additionalParameters); 

Compare this to an actual print statement that the Smart 
Party developers used before the Interaction Analyzer was 
available: 

Debug.println(ModuleName,Debug.DETAIL, 
panoply-specificEvent.EventType +“ “+panoply-
specificEvent.EventSubType+“ “ 
+additionalMessage); 

The two statements are of similar length and 
complexity, and require that the developers provide 
roughly the same information.  However, the old version 
merely allowed a message to be printed, while the 
Interaction Analyzer version allowed much more, as will 
be discussed later. 

Typically, all statements that record information on the 
execution history for the Interaction Analyzer are bracketed 
by compiler commands to include or exclude them, 
depending on a compile-time option.  Thus, a final 
recompilation when debugging is finished produces a 
version of the code without any overheads related to the 
recording of event history. 

Panoply applications run on virtual machines, one or 
more on each participating physical machine.  Each virtual 
machine can run multiple threads, and each thread can 
generate and log execution events to a local repository 
using the Event Analyzer’s Execution History Generator 
component.  When a run is halted, the Log Provider 
component on each participating physical machine gathers 
its portion of the execution history from its local virtual 
machines and sends this history to a single Log Collector 
process running on a centralized machine.  When all logs 
from all machines have been collected, the Log Collector 
collates them into a single merged execution history. 

E. Using the Interaction Analyzer 
After developers have created the protocol definition, 

instrumented their code to build the execution history, and 
run the instrumented application, they are likely to observe 
bugs or unexpected behaviors during testing.  This is when 
the Interaction Analyzer becomes useful.  Upon observing 
behavior of this kind, the developer can halt the 



application, gather the execution logs (with the help of the 
Log Collector), and feed them into the Interaction 
Analyzer.  The Interaction Analyzer makes use of both the 
protocol definition and the execution history. 

The Interaction Analyzer is a graphical tool that was 
built using an internal frame model where the main 
window contains multiple sub-frame-like windows of two 
types: 

1. System-type windows: These windows are 
created by default and support the major 
functions of the Interaction Analyzer. 

2. User-type windows:  These windows are 
created (and destroyed) by the developer who 
is using the Interaction Analyzer for 
debugging.  Typically, each user-type window 
contains information about particular events or 
objects in the protocol definition or the 
execution history.  

 
Figure 2.  Screenshot of the Interaction Analyzer 

Figure 2 is a snapshot of what use of the Interaction 
Analyzer looks like when the developer starts it.  At this 
point, no execution history has yet been loaded, so all the 
windows are generic to the application in the abstract, 
rather than being specific to the erroneous run being 
debugged.  Using a menu option, the user would choose the 
execution history describing the buggy run he wishes to 
analyze, at which point the windows would become 
populated with information specific to that run, and the 
developer could start to work. 

 

Figure 3.  A Sample User-Type Window for an Event 

As debugging proceeds, the developer opens and 
closes windows and navigates between them to assist in 
tracking down the problem he has observed.  Figure 3 is an 
example of one user-type window that describes an event 
from the execution history.  In this case, it is a Panoply 
event that has created a sphere.  The window shows various 
event parameter values, such as when the event occurred 
and what type it was.  The Interaction Analyzer will 
suggest events that are particularly likely to be helpful in 
debugging various problems, and the user performing the 
debugging might open this window to help him determine 
whether there was an obvious error in this particular event. 

When a developer opens such an event window, he can 
take various actions.  For example, if the Interaction 
Analyzer has suggested that this event might be the cause 
of the error, the developer can investigate the event and, if 
he determines it is correct, he can validate the event.  That 
action tells the Interaction Analyzer that it should offer a 
different event as the possible cause.  Alternately, the user 
can ask to see upstream events, perhaps because he 
suspects that the error that was observed here originated 
further back in the execution trace, or because he needs 
more context to understand what should be going on in this 
event.  He can view events at different hierarchical levels, 
diving down for more detail or popping up to see a higher-
level picture of the sequence of events.  Similarly, he can 
ask for downstream events to see what this event led to. 

Another option is to find the matching event description 
in the protocol definition.  This option would allow the 
developer to compare what the protocol said should happen 
to what actually occurred for this event.  Protocol events 
are described by a similar window, and allow similar kinds 
of actions: navigation forward and backward, changing of 
hierarchical levels, obtaining more detail, and so on. 

The Interaction Analyzer allows the developers to 
obtain answers to a number of useful debugging questions, 
including: 

1. Why did an event E not occur? 
2. Why did an incorrect event E occur? 
3. What are the differences in behavior between 

objects of the same type? 
4. Why did an interaction take a long time? 

The developer asks these questions from one of the 
system-type windows created when the Interaction 
Analyzer starts execution.  For example, to ask a question 
of Type 1, the developer would specify the event ID of the 
protocol event he expected to see, but did not, in a field in 
the Tools system-type window, which is the window in the 
upper right of Figure 2. 

Each of the types of questions that a developer can ask 
requires somewhat different support from the Interaction 
Analyzer.  We will concentrate on how it addresses 
questions of Type 1 and 2.  The Interaction Analyzer also 
supports searching for particular execution events and 
protocol events. 

1) Type 1 Questions  
Type 1 questions are about why something did not 

happen when it should have.  For example, in the Smart 
Party, if a user is standing in one of the rooms of the party 



and no music is playing there at all, developers want to 
know “why is no music playing in that room?”  There are 
several possible reasons for this bug.  Perhaps the user is 
not recognized as being in that room.  Perhaps the user’s 
device failed to receive a request to provide his music 
preferences.  Perhaps the room was unable to download a 
copy of the chosen song from wherever it was stored.   

The Interaction Analyzer handles Type 1 questions by 
comparing the protocol definition and the execution history 
to generate possible explanations for the missing event.  
The protocol definition describes event sequences that 
could cause an instance of that event.  The execution 
history shows the set of events that actually happened, and 
usually contains partial sequences of events matching the 
sequences derived from the protocol history.  The 
Interaction Analyzer determines which missing event or 
events could have led to the execution of the event that 
should have happened.  These sequences are presented to 
the developer, ordered by a heuristic.  The heuristic 
currently used for presenting possible descriptions of 
missing events is, following Occam’s Razor, to suggest the 
shortest sequence of missing events first.  The developer 
examines the proposed sequence to determine if it explains 
the missing event.  If not, the Interaction Analyzer suggests 
the next shortest sequence. 

As a simplified example, say that music is not playing 
in a room in the Smart Party when guests are present there.  
The missing event is thus “play music in this room.”  The 
developer performing the debugging will ask a Type 1 
question focused on why the “play music” event did not 
occur in this instance.  Complicating factors include the 
fact that, in the same run, music might have been properly 
played in other rooms, or even previously or subsequently 
in the room in question.  Thus, the Interaction Analyzer 
offers methods of specifying the particular context in 
which debugging should proceed.  In this case, the context 
is the room where the music didn’t play, at the moment 
when silence was noticed. 

The Interaction Analyzer will compare the sequence of 
events in the actual execution where music did not play to 
the protocol definition.  It might come up with several 
hypotheses for why music did not play.  For example, 
perhaps the guest who selected a song failed to send it to 
the player.  Or the module that gathers suggestions might 
have failed to ask any present guests for recommendations.  
Or the guests might not have been properly recognized as 
being in that room at all.   

There are many possible approaches to determining the 
relevance of different possible explanations, which then 
guides where the Interaction Analyzer directs the 
developer. As mentioned, the Interaction Analyzer 
currently chooses the explanation with the shortest path, 
where the path length is defined as the number of events to 
be added or removed to resolve the problem.  In this 
example, the first of these three explanations (that the guest 
failed to send the song to the player) requires the fewest 
“missing events” to serve as an explanation, so it would be 
investigated first. 

The actual methods used by the Interaction Analyzer 
are more complex [12], since links in the protocol 
definition and execution history can have AND and OR 
relationships.  Further, real protocols tend to be 
multilayered and complex.  In the case under discussion, 
for example, sub-protocols are used for user localization, 
voting, and file transfer.  The error could have arisen in any 
one of these lower-level protocols, in which case 
eventually the developer would need to move down from 
the high-level protocol that deals with Smart Party 
concepts, like asking users for music preferences, to the 
low-level protocol that might control the transfer of a large 
file from one or several places to a destination.  The 
Interaction Analyzer understands the concept of multi-layer 
protocols and offers tools for navigating up and down 
through these layers. 

 Further, the Interaction Analyzer makes use of 
contextual information defined in the protocol definition 
and recorded in the execution history. For example, if a 
Smart Party supports music played in several different 
rooms, a question about why music did not play in the 
living room will not be matched by events that occurred in 
the kitchen.  The developer performing the debugging will 
need to specify the context he cares about, since the 
Interaction Analyzer itself does not know that an event that 
should have occurred in the living room did not, and thus 
cannot specify that the location context is the living room.  
As the developer navigates through the execution graph 
using the Interaction Analyzer’s advice, he is able to refine 
his search with further contextual information. 

2) Type 2 Questions  
Type 2 questions are about why an incorrect event 

occurred.  In the Smart Party context, such questions might 
be “why was Bill localized in the dining room instead of 
the family room?” or “why did music play in the entry hall 
when no one was there?”  Type 2 questions are thus about 
events that appear in the execution history, but that the 
developer feels do not belong in the history, or have some 
incorrect elements about their execution. 

The Interaction Analyzer works on the assumption that 
errors do not arise from nowhere.  At some point, an event 
in the application went awry, due to hardware or software 
failures.  The Interaction Analyzer further assumes that 
incorrectness spreads along causal chains, so the events 
caused by an incorrect event are likely to be incorrect 
themselves.  If a developer determines that some event is 
incorrect, either that event itself created the error or one of 
the events causing it was also erroneous.  Working back, a 
primal incorrect event caused a chain of incorrect events 
that ultimately caused the observed incorrect event.  The 
developer must find that primal cause and fix the bug there. 

Given these assumptions, the job of the Interaction 
Analyzer in assisting with Type 2 questions is to guide the 
developer to the primal source of error as quickly as 
possible.  A standard way in which people debug problems 
in code is to work backwards from the place where the 
error is observed, event by event, routine by routine, 
eventually line by line, until the primal error is found.  
However, this approach often requires the developer to 



check the correctness of many events.  In situations where 
the execution of the program is distributed and complex (as 
it frequently is for ubiquitous applications), this technique 
may require the developer to analyze a very large number 
of events before he finds the actual cause of the error. 

Is there a better alternative?  If one has the resources 
that the Interaction Analyzer has, there is.  The Interaction 
Analyzer has a complete trace of all events that occurred in 
the application, augmented by various parameter and 
contextual information.  Thus, the Interaction Analyzer can 
quickly prune the execution history graph of all events that 
did not cause the observed erroneous event, directly or 
indirectly, leaving it with a graph of every event in the 
execution history that could possibly have contained the 
primal error.  The question for the Interaction Analyzer is 
now: in what order should these events be analyzed so that 
the developer can most efficiently find that primal error? 
Eventually, the developer will need to perform some 
amount of detailed analysis of code and execution data, but 
can the Interaction Analyzer help to minimize how much of 
that analysis is required? 

In the absence of information about which events are 
more likely than others to have run erroneously (which is 
generally the case), any event in this pruned graph is 
equally likely to be the source of the error.  Assume this 
graph contains N events.  The final event where the error 
was observed is not necessarily any more likely to be the 
true source of the error than any other.  After all, one of its 
predecessor events could easily have run erroneously, with 
the error propagating and only being discovered at this 
point.  If the developer examines the observed incorrect 
event first, and it was not the source of the error, only one 
of N possibly erroneous events has been eliminated from 
the graph.  

What if, instead, the Interaction Analyzer directs the 
developer to analyze some other event E chosen from the 
middle of the graph?  If that event proves correct, then all 
events that caused it can be eliminated as the source of the 
primal error.  Event E was correct, so the observed error 
could not have “flowed through” event E; thus the source 
of our error is not upstream of E.  It must be either 
downstream or in some entirely different branch of the 
graph.  If event E is erroneous, and E is one of the initial 
events of the application (one with no predecessor events in 
the graph), then E is identified as the root cause.  If E is not 
one of the initial nodes, then it is on the path that led to the 
error, but is not necessarily the original cause of the error.  
We can then repeat the algorithm, but with event E as the 
root of the graph, not the event that the developer originally 
observed, and we continue this process until we find the 
root cause. 

With a little thought, one realizes that the ideal choice 
of the first event to suggest to the developer would be an 
event which, if it proves correct, eliminates half of the 
remaining graph from consideration.  If such an event 
proves incorrect, it eliminates the other half of the graph, 
since either this event or something upstream must be the 
root cause, not anything downstream.  (There is an 
assumption here that errors do not simply “go away.”  

Thus, if we are examining event E because an erroneous 
event downstream of E was observed, and the event E is 
also erroneous, the Interaction Analyzer assumes that the 
path of error flowed through event E.)  If no event whose 
examination can eliminate half the graph can be found, due 
to the shape of the graph, then selecting the event whose 
analysis will eliminate as close to half of the graph as 
possible is the right choice.  

The Interaction Analyzer uses this heuristic to select 
events for developer investigation.  After pruning irrelevant 
events from the execution history graph, it directs the 
developer to investigate the event node in that graph whose 
elimination would most nearly divide the remaining graph 
in half.  The algorithm proceeds as suggested above, 
eliminating roughly half of the remaining nodes at each 
step, and eventually the highest erroneous event in the 
graph is identified as the root cause. 

The algorithm stops when it finds this event. It assumes 
that the incorrectness of the event causes the observed 
problem that led to debugging, and thus it is the root cause.  
That is not necessarily true.  Consider event X caused by 
events Y and Z.  We observe some incorrect behavior in X, 
examine Y, and determine it is incorrect.   The algorithm 
would report Y as the root cause, if nothing upstream of Y 
is incorrect.  However, it’s possible that the real problem is 
in event Z, which the algorithm never suggested 
examining. 

 However, if the incorrectness of the event reported did 
not actually cause the observed problem, then it is the root 
cause of a different problem. In other words, this algorithm 
will find the root cause of either the original problem 
detected by the developer or another problem that he does 
not know of a priori. If the developer can determine that 
this event, despite being incorrect, could not have caused 
the observed behavior, he can run the Analyzer again, this 
time indicating that this incorrect event actually is correct.  
This will cause the Analyzer to look elsewhere, and thus to 
find a different root cause of the original problem.  In the 
example above, having determined that, despite its 
incorrectness, event Y could not have caused the observed 
misbehavior in event X, a second run of the Interaction 
Analyzer with Y marked as correct would lead us to event 
Z, the true cause of the problem. 

At each step, the developer manually investigates one 
event and tells the Interaction Analyzer whether that event 
is correct.  But by using this technique, the developer need 
not work his way entirely up the whole execution history 
graph until he finds the problem.  In general, the 
Interaction Analyzer allows the developer to perform the 
debugging with few human analysis steps.  (In four real 
cases, using the Analyzer required examination of 4-12 
events, out of 200-21,000 total events, depending on the 
case.  Some detailed examples will be discussed in Section 
IV B.) As long as the Interaction Analyzer’s automated 
activities (building the graph, analyzing it to find the next 
event to recommend, etc.) are significantly cheaper than a 
human analysis step, this process is much faster and less 
expensive than a more conventional debugging approach. 



IV. EVALUATING  THE INTERACTION 
ANALYZER 

There are several aspects to the performance of the 
Interaction Analyzer that should be addressed in 
determining its value.  We outline them here. 

The Interaction Analyzer will be of most value in 
diagnosing problems in large complex ubiquitous 
environments where many events and possible causes of 
problems muddy the waters.  In such situations, though, 
there are obvious questions about whether the Interaction 
Analyzer can perform sufficiently well at that scale. It will 
need to gather and analyze a great deal of information, and 
perhaps the costs of doing so will be too high for practical 
use. Therefore, we performed various simulation 
experiments to investigate the Interaction Analyzer’s 
performance on large execution graphs. 

Ultimately, the Interaction Analyzer is valuable if it can 
actually help ubiquitous computing application developers 
find tricky problems in their systems.  To demonstrate the 
Interaction Analyzer’s promise in meeting this fundamental 
goal, we present case studies involving the actual use of the 
Interaction Analyzer in finding bugs in the Smart Party 
application and a second smaller application. 

A secondary, but important, practicality aspect of the 
Interaction Analyzer is its basic performance overheads, so 
we present data on those overheads, as well. 

A. Simulation Results 
To determine how the Interaction Analyzer would 

perform when handling large execution graphs, we 
generated artificial execution graphs of varying sizes and 
properties (such as the branching factors in the graph).  
Erroneous events and their root causes were generated 
randomly. The results are too extensive to report 
completely here (see [12] for full results), but some 
example graphs will show the actual benefits of using this 
tool and the value of the algorithms it uses to find events 
for developers to examine.   

For each point in the simulation figures shown here, 20 
different rooted execution graphs were generated 
randomly. For each generated graph, 10 different scenarios 
were generated randomly for different root cause nodes. 
For a given execution graph and root cause, most of the 
tested algorithms are deterministic, except for the Terminal 
Walk algorithm (described below).  Even for that 
algorithm, only one simulation was performed for a given 
graph and root cause. Thus, each point in the figures 
represents 200 different runs.  The value at each point in 
the figures is the mean value of the number of validation 
requests for all scenarios. The size of the graph in all 
simulations represents the rooted graph size. In other 
words, we assume all irrelevant events that could not 
directly or indirectly cause the detected incorrect event are 
already pruned from the graph. The confidence level is 
95%.  In some cases, the variation is small enough that the 
error bars are essentially invisible. 

A major question for the Interaction Analyzer is how it 
chooses which event to suggest for further investigation.  

When looking for a Type 2 error (“why did this incorrect 
event occur?”), one could examine the graph of all events 
that directly or indirectly caused the erroneous event and 
randomly choose one to recommend for examination.  
Unless some nodes are more likely to be erroneous than 
others, randomly selecting one of the nodes to examine is 
just as likely to pinpoint the root case as walking back step-
by-step from the observed error, which is a traditional 
debugging approach. For reasons not important to this 
discussion, we have termed the algorithm that randomly 
selects a node from the graph “Terminal-Walk.”  Results 
for the Terminal-Walk algorithm thus also describe the 
traditional approach, under the assumption that any event 
in the pruned graph is equally likely to be the original 
source of error. 

The algorithm that the Interaction Analyzer actually 
uses (see Section III.E.2) analyzes the portion of the 
execution graph associated with the erroneous event and 
directs the developer to an event whose correctness status 
will essentially eliminate half the nodes in this graph, as 
described earlier.  We term this approach the “Half-Walk” 
algorithm.   

Figure 4 shows the performance of these algorithms for 
event graphs of different sizes.  The x-axis parameter refers 
to the number of nodes in the pruned causal graph rooted at 
the observed erroneous event, any one of which could be 
the root cause of the observed error.  The x-axis is a log 
scale.  The “Validation Cost” is in number of events, on 
average, that the developer will need to examine by hand to 
find the error.   The first graphs we discuss have uniform 
branching factors (i.e., the branching factor of each node in 
the graph is randomly chosen from a uniform distribution, 
with each branch indicating an event caused by the event 
described by this node).  The probability that each node in 
the graph (including the node where the error was 
observed) is the root cause of the error is generated from a 
uniform distribution. The actual root cause is then 
randomly selected following that probability distribution.  
The Terminal-Walk algorithm is unaware of this 
probability distribution, and merely randomly selects one 
of the possible events from the graph for examination.  

 
Figure 4.  Terminal-Walk vs. Half-Walk Algorithm 

 



The Terminal-Walk algorithm becomes expensive as 
the number of potential causes of the observed error 
grows.  Each validation represents a human developer 
examining code and state information for an event in the 
system, which is likely to take at least a few minutes.  The 
Half-Walk algorithm, on the other hand, is well behaved, 
displaying log2 behavior. 

In some situations, the probability of failure in each 
event is known.  For example, the system may consist of 
sensors with a known rate of reporting false information.  
Even if event failure probabilities are not perfectly known, 
an experienced developer may have a sense of which 
events are likeliest to be the root cause of errors.    

If the developer has perfect knowledge of the 
probability that each event was performed correctly, he 
might use an algorithm that first examines the event with 
the highest probability of being correct.  If that event is 
indeed correct, he could eliminate from further 
consideration all events that caused that event.  He could 
then move down the list of probabilities as candidates are 
eliminated.  We term this algorithm the Highest-Walk 
algorithm. 

Figure 5 shows the relative performance for the 
Highest-Walk algorithm vs. the Half-Walk algorithm 
(which the Interaction Analyzer actually uses) for graphs 
and root causes of the same kind shown in Figure 4.  If we 
have this knowledge of probability of event failure, the 
Half-Walk algorithm is altered so that, instead of selecting 
an event that eliminates half the nodes in the graph, it 
selects an event that eliminates half the probability of error 
in the graph.  Highest-Walk is, unlike Terminal-Walk, 
competitive with Half-Walk, but Half-Walk is clearly 
better.   For 200,000 events in an execution graph, Half-
Walk will require the developer to examine less than half 
as many events as Highest-Walk would. The probability of 
being incorrect is propagated down the event path, and 
thus the event with highest probability of being incorrect 
is normally very far from the root cause.  Thus, the 
Highest-Walk algorithm does not perform as well as Half-
Walk. 

 
Figure 5.  Highest-Walk Algorithm vs. Half-Walk Algorithm 

Many factors can cause variation in the performances 
of these algorithms.  For example, the distribution of 
branching factors can be varied, where branching factor 
describes how many events are caused by a given event. 
The figures already discussed assumed a branching factor 
for each node chosen from a random distribution.  
Perhaps, instead, there is a distribution of branching 
factors randomly generated in a linear scale, where nodes 
with a lower branching degree appear more often in the 
event graph.  Thus, branching factors of 1 are more 
probable than branching factors of 2, which are more 
probable than branching factors of 3, and so on. 

Figure 6 illustrates the relative performance of the 
Highest-Walk and Half-Walk algorithms in this case. 
Since the distribution used here favors small branching 
factors, generally a node will have a lower branching 
factor in these graphs than in those discussed earlier.  
Here, the Highest-Walk performs much worse than the 
Half-Walk because the Highest-Walk chooses the node 
with highest probability of being correct for validation. 
Consequently, after each validation, the new size of the 
event graph (in the Highest-Walk) tends to be large. In 
other words, it prunes the tree less effectively. With 
uniform branching (as in Figure 5), the graph is more 
balanced; whereas in linear branching, the graph is less 
balanced. With uniform branching, we are less likely to 
find nodes with a really high probability of being 
incorrect. Thus, in uniform branching, the Highest-Walk 
has better performance, though it is still inferior to the 
Half-Walk algorithm.  

 

 
Figure 6. Constant Root Cause Factor – Linear Branch 

B. Case Studies Using the Interaction Analyzer 
Simulation studies are helpful in understanding the 

Interaction Analyzer’s behavior in many different 
circumstances, but ultimately the point of a debugging tool 
is that it prove helpful in solving real problems.  In this 
section we describe how the Interaction Analyzer helped us 
find real bugs in real applications.  The primary application 
discussed is the Smart Party application introduced in 
Section II.  This application was not written to help us 
investigate the behavior of the Interaction Analyzer.  On 



the contrary, the Interaction Analyzer was built to help us 
debug problems with the Smart Party and other Panoply 
applications. 

We also present a case study for a second real 
application, one that is much smaller.  Our graduate 
students grew tired of having to get up to open the locked 
door to our lab when someone without a key knocked on it, 
so they designed a bit of hardware and a small Panoply 
application that would automatically unlock the door under 
certain conditions.  For example, if a knock was heard 
during regular working hours and someone was actually in 
the lab, the door should open.  Also, users in the room with 
sufficient privilege could simply order the door to open.  
This application was vastly simpler than the Smart Party, 
but it was also real working Panoply software, and 
exhibited real bugs. 

1) Smart Party Bug 1: Music Playing in the Wrong 
Room 

This bug occurred in the Smart Party when the 
application was run with three rooms and one user.  Music 
played in a room where no user was present.  Before 
availability of the Interaction Analyzer, the developers of 
the Smart Party had used traditional methods to find the 
root cause of this problem, which proved to be that the 
user location determination module had put him in the 
wrong room.  We did not keep records of how long the 
debugging process took before the Interaction Analyzer 
was available, but it was far from instant. 

This was a Type 2 error, an event occurring 
incorrectly.  As mentioned in Section III, the Interaction 
Analyzer uses contextual information when available to 
guide the process of finding root causes.  We investigated 
this bug both with and without contextual information.  
Without contextual information, the Analyzer had to 
suggest six events (out of a possible 8000 in the execution 
history) to pinpoint the problem.  With contextual 
information (the developer indicating which room he was 
concerned about), the Interaction Analyzer found the 
problem in one step. 

2) Smart Party Bug 2: No Music Playing 
This bug occurred in some, but not all, runs of the 

Smart Party.  A user would join the Smart Party, but no 
music would play anywhere.  Since this bug was non-
deterministic, it was extremely difficult to find using 
standard methods.  In fact, the Smart Party developers 
were unable to find the bug that way. 

Once the Interaction Analyzer was available, it found 
the bug the first time it occurred.  This was a Type 1 error, 
an event that did not occur when it should have.  The 
Interaction Analyzer found the root cause by comparing 
the protocol definition to the execution history and noting 
a discrepancy.  The Interaction Analyzer made use here of 
its ability to deal with events at multiple hierarchical 
levels.  At the high level, it noted that music did not play 
and that the high-level protocol definition said it should.  

The Analyzer determined that the failure was due to not 
responding to a request by the user for a localization map.  
To further determine why that request wasn’t honored, the 
Analyzer suggested to the developer that he dive down to 
a lower protocol level, and eventually, to an even lower 
level.  The bug ultimately proved to be in the code related 
to how Panoply routed messages.   

The Interaction Analyzer found this bug in three 
queries, a process that took less than five minutes, 
including the time required by the developers to examine 
the code the Analyzer recommended.  Without the 
Analyzer, the developers had been unable to find this bug 
over the course of several weeks. 

3) Door Opener Bug 
The door opener application described previously had a 

bug that caused the door not to open when it was ordered 
to do so. Since the bug appeared to be failure of an 
expected event, a query of Type 1 was used, and the 
Analyzer was able to find two different root causes. The 
first cause was a serial port configuration problem, and 
thus the application failed to open the port and could not 
send commands to the hardware controlling the door lock. 
The second cause was a mistake in the policy describing 
which spheres should talk to each other, and thus the 
command could not reach the controller. The first cause 
was found immediately since it happened in the highest 
protocol layer. The second root cause was found after 
going down five protocol layers. There were about 340 
execution events in the log files. The Interaction Analyzer 
recommended that a total of 6 events be examined to find 
both problems. This case demonstrates both the value of 
the Interaction Analyzer even for relatively simple 
applications, and how the Interaction Analyzer can find 
multiple bugs that cause a single observed problem. 

 
TABLE 1.  INTERACTION ANALYZER COSTS 

Operation Example Cost Average Cost 
Import Exec Hist. 3.5 seconds .35 msec/event 
Preprocessing .3 seconds .03 msec/event 
Load Prot. Def. 7 seconds .82 msec/element 
Matching 12.2 seconds 1.18 msec/event 
Total Time 23.0 seconds 2.48 msec/event 

C. Interaction Analyzer Overheads 
Table 1 shows some of the overheads associated with 

using the Interaction Analyzer.  The Example Cost column 
shows the actual total elapsed times for handling all events 
in a sample 11,000 event execution history.  The Average 
Cost column shows the normalized costs averaged over 20 
real execution histories.  These costs are paid every time a 
developer runs the Interaction Analyzer, and essentially 
represent a startup cost.  For an 11,000 event run, then, the 
developer needs to wait a bit less than half a minute before 
his investigations can start. 



The other major overhead is the cost for the Interaction 
Analyzer to respond to a user query.  For queries of Types 
1, 3, and 4, this cost is less than a second.  For queries of 
Type 2, it depends on the size of the portion of the 
execution history that is rooted at the event the developer 
needs to investigate, not the size of the entire history.  Any 
event that exerted a causal influence on the event under 
investigation must be considered. Figure 7 shows the time 
required to choose an event for the developer to evaluate 
for causal graphs of different sizes. If there are 100,000 
events in the causal graph of the investigated event, it 
takes around 17 seconds to recommend one to the 
developer.  This graph is log scale on the x-axis, so the 
time is roughly linear as the number of events grows.  The 
Interaction Analyzer chooses an event for validation such 
that its examination will eliminate around half of the 
graph; so if the event in question is not the root cause, the 
second recommendation will be made on a graph of half 
the size of the original, and thus half the cost. 

 
Figure 7.  Time to Pick Validation Node 

D. Usability and Utility Issues 
The goal of the Interaction Analyzer is to ease the 

burden for developers, so whether it does so is a major 
concern.  We have anecdotal evidence to support its value.  
In terms of cost, there is a learning curve associated with 
first using the system and with instrumenting applications.  
This curve is not steep, in our experience.  The actual cost 
of instrumenting applications is relatively low.  The 
statements that must be inserted into the code are no more 
complex than more traditional print debugging statements 
that most programmers already use (see Section III.E). 

In terms of run time costs, the Interaction Analyzer is 
not intended to be run in production mode, so the 
performance costs are paid only when performing 
debugging.  They are not sufficiently high to slow 
debugging, since they are no greater than printing log 
outputs.  There is a cost to gather and analyze the data 
from a run, but this is a matter of a few seconds to a few 
minutes for a typical run (see Section IV.C). 

While these costs are low, they are still not worthwhile 
unless there is commensurate benefit.  Our experiences 
show that there is, as outlined by the case studies above.  
The Interaction Analyzer succeeded in finding real bugs 
that standard debugging techniques could not, even in 
situations where analysts had spent days or weeks tracking 
the bugs down.  The Interaction Analyzer did so in a 
matter of a few minutes.  It was helpful in finding complex 
bugs that were non-deterministic and depended on race 
conditions, situations that are notoriously hard to deal with 
using standard debugging techniques.  

A fuller statement of utility and usability would require 
detailed human studies and experiments that have not been 
performed.  However, the initial results are promising and 
suggest that the system is worth far more than its costs. 

V. RELATED WORK 
Several systems have supported debugging problems in 

complex distributed systems.  The most closely related are 
those that build execution graphs based on data gathered 
during a run. RAPIDE [13] was an early system that used 
this approach. In RAPIDE, an event can be used to denote 
any action or behavior of a system. By capturing enough 
events, the image of the application runtime can be 
reproduced later.  The author also proposed hierarchical 
viewing for event management. RAPIDE aggregates sets of 
low-level system events into a higher-level event to give 
information about the component objects at the application 
level.  Different abstraction hierarchies can be used to 
display the system in different views. RAPIDE also 
supports event filtering based on a predefined pattern.  

RAPIDE was extended to build an execution 
architecture that captured causal relationships between 
runtime components [14]. This system creates an image of 
the running system that helps the developer visualize all 
interactions and relationships between components during 
execution. Based on the visual graph, developers can 
understand the execution architectures of dynamically 
changing software systems. If the execution architecture is 
different from the specification, an exception is raised to 
report the abnormality. This work supports building models 
of bad behavior to detect known problems. 

The Event Recognizer [15] treats debugging as a 
process of creating models of expected program behaviors 
and comparing these to the actual behaviors exhibited by 
the program.  The Event Recognizer matches actual system 
behavior from event stream instances to user-defined 
behavior models. Incompletely recognized behaviors 
indicate that the modeler should more closely examine the 
class of behaviors that are missing, or explain what is 
wrong with a particular program execution. The tool helps 
to detect abnormal behavior (that is not defined in the 
behavior models) and shows how well the actual behavior 
fits the user-defined pattern. If a bad behavior happens to 
fit one of the defined behavior models, the system will not 
be able to detect the problem. 

Poutakidis et al. [16] uses interaction protocol 
specifications to detect interactions that do not follow the 



protocol. Interaction protocols are specified using AUML 
and translated to Petri nets. The debugger uses Petri nets to 
monitor conversations and detect any unexpected or 
missing message when interaction does not follow the 
protocols. More specifically, it can detect failures such as 
un-initialized agents, sending messages to the wrong 
recipient, sending the wrong message and sending the same 
message multiple times. However, it does not explain why 
the problem occurs and the root cause. 

Other approaches use non-graph-based methods to find 
root causes.  Yemini and Kliger [17] treat a set of bad 
events as a code defining the problem, and use decoding 
methods to match it to known problems. This approach 
assumes that the developers know which sets of bad events 
occur when a problem happens.   

Piao [18] uses Bayesian network techniques to 
determine root causes of errors in ubiquitous systems. The 
Bayesian network describes a complex system as a 
compact model that presents probabilistic dependency 
relationships between various factors in a domain. System 
real-time performance data is collected, including the 
system health states. Certain parameters are selected and 
ranked in a node list that will be applied in structure 
learning. Bayesian machine learning is applied for 
topology structure learning to find a network structure that 
is the most probable match to the training data. This 
network structure is used to infer the root cause for real-
time data from an erroneous run. This approach requires a 
large training set to build a complete dependency graph and 
does not work well for a system with a large number of 
parameters due to the over-fitting phenomenon in machine 
learning. Therefore, it is more applicable for systems with 
small sets of parameters, such as a network system 
described solely by CPU, throughput, RAM use, and 
bandwidth. 

 Ramanathan [19] designed a system to find the root 
causes of errors in sensor networks.  This system collects 
network-related data such as routing table, neighbor list, up 
time, bad packets received, etc. Based on the specific 
relationship between these collected data, the system 
detects failures and triggers localization. For example, the 
neighbor list and the up time can be used to detect a failed 
sensor node. Since the collected metrics are sensor-network 
specific, this approach can only be directly applied for 
sensor network environments.  

Urteaga’s REDFLAG system [20] is a fault detection 
service for data-driven wireless sensor applications. It 
consists of a Sensor Reading Validity (SRV) sub-service, 
which detects erroneous sensor readings, and a Network 
Status Report (NSR) subservice, whose task is to abate data 
loss by identifying unresponsive nodes. These two 
subservices help to identify failed sensors in the network. 

Gardner [21] proposed a framework to monitor 
efficiently all system events and information in an 
operating system, with the goal of providing a detailed look 
at operating system kernel events with very low overhead. 
This collected information can be used to analyze problems 
in the underlying system and provide necessary 
information so that adaptive applications can adjust. This 

framework instruments the kernel and network library code 
to generate events; and the developers are expected to 
examine these recorded events by themselves to identify 
the problem. Also, this system is not distributed, and thus 
not easily adaptable for a ubiquitous environment.   

Hseush’s debugging approach [22] concentrates on 
data, rather than events, arguing that data is a more 
meaningful way for program users to approach debugging 
than control flow. In this approach, the user must be aware 
of data flow as well as control flow and/or message flow. A 
debugging language is provided to express breakpoints, 
single stepping and traces in terms of the data as well as the 
control. For example, concurrent accesses on a shared 
memory location can be described using the language; and 
when the user detects a matched behavior to the described 
concurrent accesses, the application can be stopped or 
suspended accordingly.  

Other researchers have approached debugging of 
ubiquitous environments and other distributed systems 
from entirely different angles, potentially offering 
complementary ways to help diagnose problems in such 
environments. [23] describes a suite of tools that help 
visualize multi-agent applications. Each tool provides a 
different perspective of the application being visualized. 
For example, a society tool shows the structural 
organizational relationships and message interchanges 
between agents in a society, while a report tool graphs the 
society-wide decomposition of tasks and the execution 
states of the various sub-tasks. The complete set of tools 
provides various perspectives on the condition of the 
distributed application. 

 [24] and [25] propose different system views that 
allow a graphical representation of the selected aspects of 
the system state and its dynamic behavior. An agent view 
shows the structural or behavioral agent model. An 
interaction view shows patterns of interactions such as 
message-passing activity. A cooperation view shows the 
potential or current task requests between agents.  These 
views represent the developer’s conceptual models, such as 
the agent, distribution and interaction models proposed by 
the authors.   

Such alternate approaches can conceptually be 
combined with the debugging services offered by the 
Interaction Analyzer, giving different perspectives from 
which to view any particular debugging problem.  Which 
set of views and tools is most helpful for actual debugging 
of complex ubiquitous computing problems is a question 
for further research. 

VI. CONCLUSIONS  
Ubiquitous systems are complex, consisting of many 

different components.  Their dynamic nature makes it hard 
to develop and debug them.  Bugs often become evident 
long after and far away from their actual cause.  The 
Interaction Analyzer provides quick, precise determination 
of root causes of bugs in such systems.  While developed 
for Panoply, it can be adapted for many ubiquitous 
computing environments.  The Interaction Analyzer has 



been demonstrated to have good performance by 
simulation, and has been used to find actual bugs in real 
ubiquitous computing environments, including cases 
where more traditional debugging methods failed.  

The Interaction Analyzer is fundamentally a tool to help 
developers perfect their ubiquitous computing applications.  
With significantly more work, it could perhaps be adapted 
to work in deployment scenarios, helping average users fix 
the problems they observe.  Generally, however, the advice 
the Interaction Analyzer can provide would not be very 
helpful to a typical user.  Much more effort would be 
required to assist in mapping from low-level problems to 
solutions that make sense to a typical user.  Further, if the 
problem is rooted in flawed code, rather than a failed 
hardware component or a mistake in configuration, it is not 
likely that the user will be able to solve the problem, even 
if he can pinpoint it.  Nonetheless, debugging for 
ubiquitous computing users is likely to be a problem of 
increasing importance for the future, and deserves more 
study.  
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