
Debugging Ubiquitous Computing Applications With the Interaction Analyzer

Nam Nguyen, Leonard Kleinrock, and Peter Reiher
Computer Science Department, UCLA

 Los Angeles, CA, USA
songuku@cs.ucla.edu, lk@cs.ucla.edu, reiher@cs.ucla.edu

Abstract—Ubiquitous computing applications are frequently
long-running and highly distributed, leading to bugs that
only become apparent far from and long after their original
points of origin. Such bugs are difficult to find. This paper
describes the Interaction Analyzer, a debugging tool for
ubiquitous computing applications that addresses this
problem. The Interaction Analyzer uses protocol definitions
and histories of executions that displayed bad behavior to
assist developers in quickly finding the original root cause of
a bug. We discuss characteristics of ubiquitous computing
applications that can complicate debugging. We describe the
architecture of the Interaction Analyzer and the methods it
uses to rapidly narrow in on bugs. We also report overheads
associated with the tool, simulation studies of its ability to
find bugs rapidly, and case studies of its use in finding bugs
in real ubiquitous computing applications.

Keywords-ubiquitous computing; distributed debugging;
ubiquitous applications

I. INTRODUCTION
Ubiquitous and pervasive computing systems are often

complex systems consisting of many different objects,
components and agents, interacting in complicated and
unpredictable ways. The real world frequently intrudes
into pervasive systems, adding to their unpredictability. As
a result, such systems can frequently display unexpected,
and often erroneous, behaviors. The size and complexity
of the systems and their interactions make it difficult for
developers to determine why these unexpected behaviors
occurred, which in turn makes it difficult to fix the
problems [1][2][3][4].

We built a system called the Interaction Analyzer to
help developers of complex ubiquitous computing systems
understand their systems’ behaviors and find and fix bugs
[1]. The Interaction Analyzer gathers data from test runs of
an application. When unexpected behavior occurs, it uses
the data from that run and information provided during
system development to guide developers to the root cause
of errors. The Interaction Analyzer carefully selects events
in the execution of an application and recommends that the
human developers more carefully examine them. In real
cases, the Interaction Analyzer has guided ubiquitous
application developers to the root cause of system bugs
while only requiring them to investigate a handful of
events. In one case, the Interaction Analyzer helped
developers find a race condition that they were previously
unable to track down; the entire debugging process took
less than five minutes, while previously developers had

spent several days unsuccessfully tracking the bug using
more traditional debugging techniques.

In this paper, we describe how the Interaction Analyzer
works and give both simulation results of its efficiency in
tracking bugs and cases where it found real bugs in a real
ubiquitous application. Section II describes the Panoply
system, for which the Interaction Analyzer was built, and
introduces the example ubiquitous application. Section III
describes the Interaction Analyzer’s basic design and
architecture. Section IV provides simulation results and
real case studies; this section also includes basic overhead
costs for the Interaction Analyzer. Section V discusses
related work and Section VI presents our conclusions.

II. PANOPLY AND THE SMART PARTY
The Interaction Analyzer was designed to be a general-

purpose system usable in many ubiquitous computing
contexts. However, since we wished to demonstrate its use
in a real environment, we needed to connect it to some
particular system. We chose to integrate the Interaction
Analyzer with Panoply. Panoply is a middleware
framework to support ubiquitous computing applications.
While the work described here treats the Interaction
Analyzer in the Panoply context, we should emphasize
that, with relatively little effort, the Analyzer could be
integrated with other types of ubiquitous computing
system. The suitability and ease of the port will depend on
the degree to which the target system relies on a message-
based paradigm for interactions, since that is what the
Analyzer itself expects.

While the key elements of the Interaction Analyzer do
not depend on Panoply constructs, understanding how we
used it in the Panoply context requires a little knowledge of
how Panoply works. The core representational unit of
Panoply is the Sphere of Influence, which can represent an
individual device or a group of devices united by a
common interest or attribute such as physical location,
application, or social relationship. Spheres unify disparate
notions of “groups,” such as device clusters and social
networks, by providing a common interface and a standard
set of discovery and management primitives.

Panoply provides group management primitives that
allow the creation and maintenance of spheres of influence,
including discovery, joining, and cluster management. A
publish/subscribe event model is used for intra- and inter-
sphere communication. Events are propagated between
devices and applications, subject to scoping constraints
embedded in events of interest. Every sphere scopes policy

and contains a policy manager [5] that monitors the
environment, mediates interactions and negotiates
agreements.

Panoply supports the design of applications that express
their needs and communicate through events. Panoply
applications (e.g., the Smart Party) can create custom
events, and designate the scope and destination of such
events. More details on Panoply can be found in [6].

For the purpose of understanding the Interaction
Analyzer, one can regard Panoply as a support system for
applications made up of discrete, but interacting,
components at various physical locations. These
components communicate by message, and generally run
code in response to the arrival of a message. Code can also
be running continuously or periodically, or can be triggered
by other events, such as a sensor observing a real-world
event.

Several applications have been built for Panoply [5],
[6], [7], and the Interaction Analyzer has been used to
investigate many of them. We will concentrate our
discussion of the Interaction Analyzer’s use on one
Panoply application, the Smart Party [7], touching more
lightly on its use for other applications.

In the Smart Party, a group of people attends a
gathering hosted at someone’s home. Each person carries a
small mobile device that stores its owner’s music
preferences and song collection. The party environment
consists of a series of rooms, each equipped with speakers.
The home is covered by one or more wireless access
points. Figure 1 shows the configured version of a Panoply
Smart Party, in which three rooms in a house are capable of
playing music and party attendees with various different
musical preferences are located in each room.

Figure 1. A Panoply Smart Party

As each guest arrives, his mobile device automatically

associates with the correct network to connect it to the
Smart Party infrastructure. As party attendees move within
the party environment, each room programs an audio
playlist based on the communal music preferences of the
current room occupants and the content they have brought
to the party. For example, for the party in Figure 1, rock
music would play in the family room, since the guests there
all have that preference, while folk or jazz would play in
the living room.

A Smart Party room determines which guests are
present because they have enrolled automatically in a
Panoply sphere belonging to that room, triggered by
wireless network enrollment. The Panoply sphere
controlling the Smart Party in that room periodically
queries the devices of the users in that room for their music
preferences. These preferences are currently expressed as
particular songs the user would like to hear played. The
Panoply sphere then uses the combined responses and a
voting procedure [8] to select a song from among those
suggested by the users’ devices. That song is downloaded
to the room (from the user’s device or somewhere he
specifies) and played, after which the process repeats.

As guests move from room to room, the underlying
Panoply framework notices their movements and removes
them from their old room, adding them to the new one.
Thus, each room’s playlist adjusts to the current occupants
and their preferences.

The Smart Party is a real, working application,
extensively tested in our labs.

The Smart Party application could fail in many ways.
It could overlook users, or it could localize them into the
wrong rooms. It could fail to obtain preferences from some
users. Its algorithms for song selection could be flawed,
resulting in endless repetitions of the same song. It could
unfairly disadvantage some users in the selection. These
are just a few of the many possible causes of failures.
Because it must take into account user mobility, and even
the possibility of users leaving the Smart Party in the
middle of any operation, flawed code to handle dynamics
can lead to multiple problems. These characteristics,
which caused a good deal of difficulty in getting the Smart
Party to operate properly, are likely to be common to a
wide range of ubiquitous computing applications.
Therefore, the Smart Party is a good representative
example of the complexities of debugging such
applications.

The problems we actually encountered during the
development of the Smart Party application included music
playing in rooms with no occupants, failure of some Smart
Party components to join the application, and race
conditions that sometimes caused no music to play when it
should. These and other bugs in the Smart Party were
attacked with the Interaction Analyzer. The results will be
presented in Section IV.

III. THE INTERACTION ANALYZER

A. Basic Design Assumption
The Interaction Analyzer was designed to help

developers debug their applications. Therefore, it was built
with certain assumptions:

• The source code for the application is available
and can be altered to provide useful information
that the Interaction Analyzer requires.

• The system was intended for use during
application development, not ordinary application
use. This assumption allowed us to rely on the
presence of more capable devices (with greater

storage capacity and processing power, for
example) than might be available in real
deployment.

• Knowledgeable developers would be available to
use the recommendations of the Interaction
Analyzer to find bugs. The Interaction Analyzer
does not pinpoint the exact semantic cause of a
bug, but guides developers in quickly finding the
element of the system, hardware or software, that
is the root cause of the observed problem. Also,
this assumption meant that we did not need to
provide descriptions of problems that would be
meaningful to naïve users unfamiliar with
Panoply or the design of the application.

The Interaction Analyzer works on applications that
have been specially instrumented to gather information that
will prove useful in the debugging process. This
instrumented application is run in a testing environment,
gathering data as the application runs. The data is stored
and organized automatically for use during debugging, if
necessary. When developers observe a bug that they need
to diagnose, they stop the application and invoke the
Interaction Analyzer on the information that has been
saved during the run.

The Interaction Analyzer is not intended to find bugs on
its own. Rather, it assists developers in finding and
understanding the causes of observable bad or unexpected
application behaviors. The Interaction Analyzer is not
intended as a replacement for tools that perform automated
analysis of source code, but as a tool for diagnosing
problems with application behavior.

The instrumented code is wrapped by a conditional
statement that checks the value of a predefined boolean
constant. By altering this value, the instrumented code can
be easily removed in the final release of the binary.

The Interaction Analyzer was designed for use in a
Linux environment, and is implemented in C. It was
designed for debugging programs written in C or C++. It
could be ported to other environments with reasonable
ease.

B. Protocol Definitions and Execution Histories
The Interaction Analyzer uses a protocol definition

(which specifies how the application is expected to work)
and an execution history (which describes what actually
happened in the run of the application) to debug
applications. Each of these is a directed graph of events,
where an event corresponds to some interesting activity in
the execution of the system. Developers instrument their
code to indicate when events occur and to store important
information about those events. An event can be primitive
or high-level. High-level events are typically composed of
one or more primitive events, as specified by the developer.

The Interaction Analyzer uses both temporal order (one
event occurring before another) and causal order (such as
the event that sends a message must precede the event that
receives the message) of events to build the execution
history of an application’s run. Some of these relationships
are found automatically by the Interaction Analyzer’s

examination of the source code, while others must be
provided explicitly by the developers using instrumentation
tools. By recording all events that occur during the
execution of a system and their causal relationships, one
can reconstruct the image and the detailed behavior of the
running system at any time [9].

The protocol definition describes how the system
should react and behave in different situations. We store
the protocol definition in an event causality graph format.
The protocol definition is produced at design time, and the
execution history is produced at run time.

C. Creating the Protocol Definition
The protocol definition is a model of the application’s

expected behavior. Such modeling is always an essential
part of a large software project, and is helpful in smaller
projects, as well. Models help software developers ensure
that the program design supports many desirable
characteristics, including scalability and robustness [10].
The Interaction Analyzer requires developers to perform
such modeling using UML, a popular language for
program modeling. We added some additional elements to
the standard UML to support the Interaction Analyzer’s
needs, such as definitions of protocol events and relation
definitions. We modified a popular graphical UML tool,
ArgoUML [11], to create a tool called Argo-Analyzer that
helps developers build their protocol definition.

The Argo-Analyzer is itself a complex system. Briefly,
developers use this tool to specify an application’s objects,
the relationships between them, the context, and the kinds
of events that can occur in a run of the application.

The application is organized into objects. Object types
are defined using the Argo-Analyzer. For source code
written in OOP languages (such as Java), the classes
correspond to the object types. These object definitions are
used to organize the protocol definition and describe
interactions between different application elements.

Relationship definitions describe relationships between
objects. The Argo-Analyzer supports commonly used
relationships such as parent-child, as well as other user-
defined relationships.

Event templates define the properties of an instance of
an important event in the application. There must be an
event template for each type of event in the application.
The Interaction Analyzer will use these templates to match
an execution event with an event in the protocol definition.
For an event to match a template, not only must their event
type and parameter fields match, but their causality
requirements must also match. If the execution event does
not have the same kinds of preceding events as the
template, it will not match.

The developer uses these and a few other UML-based
elements to specify the protocol definition, which describes
how he expects his application to work. This definition is,
in essence, a directed graph describing causal chains of
events that are expected to occur in the application.

Serious effort is required to create the protocol
definition, but it is a part of the overall modeling effort that
well-designed programs should go through. As with any

modeling effort, the model might not match the actual
instantiation of the application. In such cases, an execution
history will not match the protocol definition, requiring the
developer to correct one or the other. In practice, we found
that it was not difficult to build protocol definitions for
applications like the Smart Party, and did not run into
serious problems with incorrect protocol definitions.
Mismatches between definitions and executions were
generally signs of implementation bugs, which generally
should be fixed even if they do not instantly cause incorrect
behavior.

D. Creating the Execution History
There is one protocol definition for any application, but

each execution of that application creates its own execution
history. The Interaction Analyzer helps direct users to
bugs in particular runs of the application by comparing the
execution history for that run to the expected execution
described in the protocol definition.

Each event in the application should generate a record
in the execution history. There are three ways to collect the
system information required to create such records that
describe an execution history of a program: software,
hardware and hybrid. For the Interaction Analyzer,
software monitoring was used since it provides more
flexibility and does not need extra hardware support.

The monitoring could have been based on external
observation of the application’s behavior, which would
have had the advantage of not requiring any
instrumentation of the application. We would have needed
some way to observe the scheduling of events, which
would have involved observing messages being sent
between objects in the system. Inter-machine messages
could have been sniffed off the wire (though use of
cryptography would have complicated this approach).
Messages that did not cross real network boundaries would
have been more challenging to capture. In either case,
obtaining information about the state of the sending and
receiving objects would have been difficult.

We chose instead to gather information about the
execution history by instrumenting the application. This
approach provides greater detail and produces more
powerful execution traces than external monitoring could
provide. It does so at the cost of changing the application
source code. However, since the target use of the
Interaction Analyzer is by application developers during
their development and debugging process, the costs were of
less concern, and the benefits more compelling.

We provide a library to help with this instrumentation
process. This general-purpose Java library provides an
interface to generate different kinds of event records and
their important attributes and parameters. An application
generates an entry in its execution history by calling a
method in this library. Doing so logs the entry into a trace
file on the local machine. Applications can also define
their own kinds of events, which the library can also log.
Panoply itself logs its own special kind of events, such as
“sphere joins,” using this mechanism.

A typical analyzer record contains several fields,
including a unique ID for the event being recorded, a
developer-defined ID, information on the producer and
consumer of the event (such as the sender and receiver of a
message for a message-send event), timestamps, pointers to
all events that directly caused this record’s event, and
various parameters specific to the particular kind of event
being recorded. Most of the parameters are defined by the
application developers, who can also add more parameters
if the standard set does not meet their needs.

Adding the code required to record an analyzer event
costs about the same amount of effort as adding a printf
statement to a C program. For example, the command to
generate an event in the Smart Party application under
Panoply looks similar to this:

PanoplyLogger.logPanoplyObjectCreated(codeID
,panoply-specificEvent,creator,createdObject,
directCauses,additionalParameters);

Compare this to an actual print statement that the Smart
Party developers used before the Interaction Analyzer was
available:

Debug.println(ModuleName,Debug.DETAIL,
panoply-specificEvent.EventType +“ “+panoply-
specificEvent.EventSubType+“ “
+additionalMessage);

The two statements are of similar length and
complexity, and require that the developers provide
roughly the same information. However, the old version
merely allowed a message to be printed, while the
Interaction Analyzer version allowed much more, as will
be discussed later.

Typically, all statements that record information on the
execution history for the Interaction Analyzer are bracketed
by compiler commands to include or exclude them,
depending on a compile-time option. Thus, a final
recompilation when debugging is finished produces a
version of the code without any overheads related to the
recording of event history.

Panoply applications run on virtual machines, one or
more on each participating physical machine. Each virtual
machine can run multiple threads, and each thread can
generate and log execution events to a local repository
using the Event Analyzer’s Execution History Generator
component. When a run is halted, the Log Provider
component on each participating physical machine gathers
its portion of the execution history from its local virtual
machines and sends this history to a single Log Collector
process running on a centralized machine. When all logs
from all machines have been collected, the Log Collector
collates them into a single merged execution history.

E. Using the Interaction Analyzer
After developers have created the protocol definition,

instrumented their code to build the execution history, and
run the instrumented application, they are likely to observe
bugs or unexpected behaviors during testing. This is when
the Interaction Analyzer becomes useful. Upon observing
behavior of this kind, the developer can halt the

application, gather the execution logs (with the help of the
Log Collector), and feed them into the Interaction
Analyzer. The Interaction Analyzer makes use of both the
protocol definition and the execution history.

The Interaction Analyzer is a graphical tool that was
built using an internal frame model where the main
window contains multiple sub-frame-like windows of two
types:

1. System-type windows: These windows are
created by default and support the major
functions of the Interaction Analyzer.

2. User-type windows: These windows are
created (and destroyed) by the developer who
is using the Interaction Analyzer for
debugging. Typically, each user-type window
contains information about particular events or
objects in the protocol definition or the
execution history.

Figure 2. Screenshot of the Interaction Analyzer

Figure 2 is a snapshot of what use of the Interaction
Analyzer looks like when the developer starts it. At this
point, no execution history has yet been loaded, so all the
windows are generic to the application in the abstract,
rather than being specific to the erroneous run being
debugged. Using a menu option, the user would choose the
execution history describing the buggy run he wishes to
analyze, at which point the windows would become
populated with information specific to that run, and the
developer could start to work.

Figure 3. A Sample User-Type Window for an Event

As debugging proceeds, the developer opens and
closes windows and navigates between them to assist in
tracking down the problem he has observed. Figure 3 is an
example of one user-type window that describes an event
from the execution history. In this case, it is a Panoply
event that has created a sphere. The window shows various
event parameter values, such as when the event occurred
and what type it was. The Interaction Analyzer will
suggest events that are particularly likely to be helpful in
debugging various problems, and the user performing the
debugging might open this window to help him determine
whether there was an obvious error in this particular event.

When a developer opens such an event window, he can
take various actions. For example, if the Interaction
Analyzer has suggested that this event might be the cause
of the error, the developer can investigate the event and, if
he determines it is correct, he can validate the event. That
action tells the Interaction Analyzer that it should offer a
different event as the possible cause. Alternately, the user
can ask to see upstream events, perhaps because he
suspects that the error that was observed here originated
further back in the execution trace, or because he needs
more context to understand what should be going on in this
event. He can view events at different hierarchical levels,
diving down for more detail or popping up to see a higher-
level picture of the sequence of events. Similarly, he can
ask for downstream events to see what this event led to.

Another option is to find the matching event description
in the protocol definition. This option would allow the
developer to compare what the protocol said should happen
to what actually occurred for this event. Protocol events
are described by a similar window, and allow similar kinds
of actions: navigation forward and backward, changing of
hierarchical levels, obtaining more detail, and so on.

The Interaction Analyzer allows the developers to
obtain answers to a number of useful debugging questions,
including:

1. Why did an event E not occur?
2. Why did an incorrect event E occur?
3. What are the differences in behavior between

objects of the same type?
4. Why did an interaction take a long time?

The developer asks these questions from one of the
system-type windows created when the Interaction
Analyzer starts execution. For example, to ask a question
of Type 1, the developer would specify the event ID of the
protocol event he expected to see, but did not, in a field in
the Tools system-type window, which is the window in the
upper right of Figure 2.

Each of the types of questions that a developer can ask
requires somewhat different support from the Interaction
Analyzer. We will concentrate on how it addresses
questions of Type 1 and 2. The Interaction Analyzer also
supports searching for particular execution events and
protocol events.

1) Type 1 Questions
Type 1 questions are about why something did not

happen when it should have. For example, in the Smart
Party, if a user is standing in one of the rooms of the party

and no music is playing there at all, developers want to
know “why is no music playing in that room?” There are
several possible reasons for this bug. Perhaps the user is
not recognized as being in that room. Perhaps the user’s
device failed to receive a request to provide his music
preferences. Perhaps the room was unable to download a
copy of the chosen song from wherever it was stored.

The Interaction Analyzer handles Type 1 questions by
comparing the protocol definition and the execution history
to generate possible explanations for the missing event.
The protocol definition describes event sequences that
could cause an instance of that event. The execution
history shows the set of events that actually happened, and
usually contains partial sequences of events matching the
sequences derived from the protocol history. The
Interaction Analyzer determines which missing event or
events could have led to the execution of the event that
should have happened. These sequences are presented to
the developer, ordered by a heuristic. The heuristic
currently used for presenting possible descriptions of
missing events is, following Occam’s Razor, to suggest the
shortest sequence of missing events first. The developer
examines the proposed sequence to determine if it explains
the missing event. If not, the Interaction Analyzer suggests
the next shortest sequence.

As a simplified example, say that music is not playing
in a room in the Smart Party when guests are present there.
The missing event is thus “play music in this room.” The
developer performing the debugging will ask a Type 1
question focused on why the “play music” event did not
occur in this instance. Complicating factors include the
fact that, in the same run, music might have been properly
played in other rooms, or even previously or subsequently
in the room in question. Thus, the Interaction Analyzer
offers methods of specifying the particular context in
which debugging should proceed. In this case, the context
is the room where the music didn’t play, at the moment
when silence was noticed.

The Interaction Analyzer will compare the sequence of
events in the actual execution where music did not play to
the protocol definition. It might come up with several
hypotheses for why music did not play. For example,
perhaps the guest who selected a song failed to send it to
the player. Or the module that gathers suggestions might
have failed to ask any present guests for recommendations.
Or the guests might not have been properly recognized as
being in that room at all.

There are many possible approaches to determining the
relevance of different possible explanations, which then
guides where the Interaction Analyzer directs the
developer. As mentioned, the Interaction Analyzer
currently chooses the explanation with the shortest path,
where the path length is defined as the number of events to
be added or removed to resolve the problem. In this
example, the first of these three explanations (that the guest
failed to send the song to the player) requires the fewest
“missing events” to serve as an explanation, so it would be
investigated first.

The actual methods used by the Interaction Analyzer
are more complex [12], since links in the protocol
definition and execution history can have AND and OR
relationships. Further, real protocols tend to be
multilayered and complex. In the case under discussion,
for example, sub-protocols are used for user localization,
voting, and file transfer. The error could have arisen in any
one of these lower-level protocols, in which case
eventually the developer would need to move down from
the high-level protocol that deals with Smart Party
concepts, like asking users for music preferences, to the
low-level protocol that might control the transfer of a large
file from one or several places to a destination. The
Interaction Analyzer understands the concept of multi-layer
protocols and offers tools for navigating up and down
through these layers.

 Further, the Interaction Analyzer makes use of
contextual information defined in the protocol definition
and recorded in the execution history. For example, if a
Smart Party supports music played in several different
rooms, a question about why music did not play in the
living room will not be matched by events that occurred in
the kitchen. The developer performing the debugging will
need to specify the context he cares about, since the
Interaction Analyzer itself does not know that an event that
should have occurred in the living room did not, and thus
cannot specify that the location context is the living room.
As the developer navigates through the execution graph
using the Interaction Analyzer’s advice, he is able to refine
his search with further contextual information.

2) Type 2 Questions
Type 2 questions are about why an incorrect event

occurred. In the Smart Party context, such questions might
be “why was Bill localized in the dining room instead of
the family room?” or “why did music play in the entry hall
when no one was there?” Type 2 questions are thus about
events that appear in the execution history, but that the
developer feels do not belong in the history, or have some
incorrect elements about their execution.

The Interaction Analyzer works on the assumption that
errors do not arise from nowhere. At some point, an event
in the application went awry, due to hardware or software
failures. The Interaction Analyzer further assumes that
incorrectness spreads along causal chains, so the events
caused by an incorrect event are likely to be incorrect
themselves. If a developer determines that some event is
incorrect, either that event itself created the error or one of
the events causing it was also erroneous. Working back, a
primal incorrect event caused a chain of incorrect events
that ultimately caused the observed incorrect event. The
developer must find that primal cause and fix the bug there.

Given these assumptions, the job of the Interaction
Analyzer in assisting with Type 2 questions is to guide the
developer to the primal source of error as quickly as
possible. A standard way in which people debug problems
in code is to work backwards from the place where the
error is observed, event by event, routine by routine,
eventually line by line, until the primal error is found.
However, this approach often requires the developer to

check the correctness of many events. In situations where
the execution of the program is distributed and complex (as
it frequently is for ubiquitous applications), this technique
may require the developer to analyze a very large number
of events before he finds the actual cause of the error.

Is there a better alternative? If one has the resources
that the Interaction Analyzer has, there is. The Interaction
Analyzer has a complete trace of all events that occurred in
the application, augmented by various parameter and
contextual information. Thus, the Interaction Analyzer can
quickly prune the execution history graph of all events that
did not cause the observed erroneous event, directly or
indirectly, leaving it with a graph of every event in the
execution history that could possibly have contained the
primal error. The question for the Interaction Analyzer is
now: in what order should these events be analyzed so that
the developer can most efficiently find that primal error?
Eventually, the developer will need to perform some
amount of detailed analysis of code and execution data, but
can the Interaction Analyzer help to minimize how much of
that analysis is required?

In the absence of information about which events are
more likely than others to have run erroneously (which is
generally the case), any event in this pruned graph is
equally likely to be the source of the error. Assume this
graph contains N events. The final event where the error
was observed is not necessarily any more likely to be the
true source of the error than any other. After all, one of its
predecessor events could easily have run erroneously, with
the error propagating and only being discovered at this
point. If the developer examines the observed incorrect
event first, and it was not the source of the error, only one
of N possibly erroneous events has been eliminated from
the graph.

What if, instead, the Interaction Analyzer directs the
developer to analyze some other event E chosen from the
middle of the graph? If that event proves correct, then all
events that caused it can be eliminated as the source of the
primal error. Event E was correct, so the observed error
could not have “flowed through” event E; thus the source
of our error is not upstream of E. It must be either
downstream or in some entirely different branch of the
graph. If event E is erroneous, and E is one of the initial
events of the application (one with no predecessor events in
the graph), then E is identified as the root cause. If E is not
one of the initial nodes, then it is on the path that led to the
error, but is not necessarily the original cause of the error.
We can then repeat the algorithm, but with event E as the
root of the graph, not the event that the developer originally
observed, and we continue this process until we find the
root cause.

With a little thought, one realizes that the ideal choice
of the first event to suggest to the developer would be an
event which, if it proves correct, eliminates half of the
remaining graph from consideration. If such an event
proves incorrect, it eliminates the other half of the graph,
since either this event or something upstream must be the
root cause, not anything downstream. (There is an
assumption here that errors do not simply “go away.”

Thus, if we are examining event E because an erroneous
event downstream of E was observed, and the event E is
also erroneous, the Interaction Analyzer assumes that the
path of error flowed through event E.) If no event whose
examination can eliminate half the graph can be found, due
to the shape of the graph, then selecting the event whose
analysis will eliminate as close to half of the graph as
possible is the right choice.

The Interaction Analyzer uses this heuristic to select
events for developer investigation. After pruning irrelevant
events from the execution history graph, it directs the
developer to investigate the event node in that graph whose
elimination would most nearly divide the remaining graph
in half. The algorithm proceeds as suggested above,
eliminating roughly half of the remaining nodes at each
step, and eventually the highest erroneous event in the
graph is identified as the root cause.

The algorithm stops when it finds this event. It assumes
that the incorrectness of the event causes the observed
problem that led to debugging, and thus it is the root cause.
That is not necessarily true. Consider event X caused by
events Y and Z. We observe some incorrect behavior in X,
examine Y, and determine it is incorrect. The algorithm
would report Y as the root cause, if nothing upstream of Y
is incorrect. However, it’s possible that the real problem is
in event Z, which the algorithm never suggested
examining.

 However, if the incorrectness of the event reported did
not actually cause the observed problem, then it is the root
cause of a different problem. In other words, this algorithm
will find the root cause of either the original problem
detected by the developer or another problem that he does
not know of a priori. If the developer can determine that
this event, despite being incorrect, could not have caused
the observed behavior, he can run the Analyzer again, this
time indicating that this incorrect event actually is correct.
This will cause the Analyzer to look elsewhere, and thus to
find a different root cause of the original problem. In the
example above, having determined that, despite its
incorrectness, event Y could not have caused the observed
misbehavior in event X, a second run of the Interaction
Analyzer with Y marked as correct would lead us to event
Z, the true cause of the problem.

At each step, the developer manually investigates one
event and tells the Interaction Analyzer whether that event
is correct. But by using this technique, the developer need
not work his way entirely up the whole execution history
graph until he finds the problem. In general, the
Interaction Analyzer allows the developer to perform the
debugging with few human analysis steps. (In four real
cases, using the Analyzer required examination of 4-12
events, out of 200-21,000 total events, depending on the
case. Some detailed examples will be discussed in Section
IV B.) As long as the Interaction Analyzer’s automated
activities (building the graph, analyzing it to find the next
event to recommend, etc.) are significantly cheaper than a
human analysis step, this process is much faster and less
expensive than a more conventional debugging approach.

IV. EVALUATING THE INTERACTION
ANALYZER

There are several aspects to the performance of the
Interaction Analyzer that should be addressed in
determining its value. We outline them here.

The Interaction Analyzer will be of most value in
diagnosing problems in large complex ubiquitous
environments where many events and possible causes of
problems muddy the waters. In such situations, though,
there are obvious questions about whether the Interaction
Analyzer can perform sufficiently well at that scale. It will
need to gather and analyze a great deal of information, and
perhaps the costs of doing so will be too high for practical
use. Therefore, we performed various simulation
experiments to investigate the Interaction Analyzer’s
performance on large execution graphs.

Ultimately, the Interaction Analyzer is valuable if it can
actually help ubiquitous computing application developers
find tricky problems in their systems. To demonstrate the
Interaction Analyzer’s promise in meeting this fundamental
goal, we present case studies involving the actual use of the
Interaction Analyzer in finding bugs in the Smart Party
application and a second smaller application.

A secondary, but important, practicality aspect of the
Interaction Analyzer is its basic performance overheads, so
we present data on those overheads, as well.

A. Simulation Results
To determine how the Interaction Analyzer would

perform when handling large execution graphs, we
generated artificial execution graphs of varying sizes and
properties (such as the branching factors in the graph).
Erroneous events and their root causes were generated
randomly. The results are too extensive to report
completely here (see [12] for full results), but some
example graphs will show the actual benefits of using this
tool and the value of the algorithms it uses to find events
for developers to examine.

For each point in the simulation figures shown here, 20
different rooted execution graphs were generated
randomly. For each generated graph, 10 different scenarios
were generated randomly for different root cause nodes.
For a given execution graph and root cause, most of the
tested algorithms are deterministic, except for the Terminal
Walk algorithm (described below). Even for that
algorithm, only one simulation was performed for a given
graph and root cause. Thus, each point in the figures
represents 200 different runs. The value at each point in
the figures is the mean value of the number of validation
requests for all scenarios. The size of the graph in all
simulations represents the rooted graph size. In other
words, we assume all irrelevant events that could not
directly or indirectly cause the detected incorrect event are
already pruned from the graph. The confidence level is
95%. In some cases, the variation is small enough that the
error bars are essentially invisible.

A major question for the Interaction Analyzer is how it
chooses which event to suggest for further investigation.

When looking for a Type 2 error (“why did this incorrect
event occur?”), one could examine the graph of all events
that directly or indirectly caused the erroneous event and
randomly choose one to recommend for examination.
Unless some nodes are more likely to be erroneous than
others, randomly selecting one of the nodes to examine is
just as likely to pinpoint the root case as walking back step-
by-step from the observed error, which is a traditional
debugging approach. For reasons not important to this
discussion, we have termed the algorithm that randomly
selects a node from the graph “Terminal-Walk.” Results
for the Terminal-Walk algorithm thus also describe the
traditional approach, under the assumption that any event
in the pruned graph is equally likely to be the original
source of error.

The algorithm that the Interaction Analyzer actually
uses (see Section III.E.2) analyzes the portion of the
execution graph associated with the erroneous event and
directs the developer to an event whose correctness status
will essentially eliminate half the nodes in this graph, as
described earlier. We term this approach the “Half-Walk”
algorithm.

Figure 4 shows the performance of these algorithms for
event graphs of different sizes. The x-axis parameter refers
to the number of nodes in the pruned causal graph rooted at
the observed erroneous event, any one of which could be
the root cause of the observed error. The x-axis is a log
scale. The “Validation Cost” is in number of events, on
average, that the developer will need to examine by hand to
find the error. The first graphs we discuss have uniform
branching factors (i.e., the branching factor of each node in
the graph is randomly chosen from a uniform distribution,
with each branch indicating an event caused by the event
described by this node). The probability that each node in
the graph (including the node where the error was
observed) is the root cause of the error is generated from a
uniform distribution. The actual root cause is then
randomly selected following that probability distribution.
The Terminal-Walk algorithm is unaware of this
probability distribution, and merely randomly selects one
of the possible events from the graph for examination.

Figure 4. Terminal-Walk vs. Half-Walk Algorithm

The Terminal-Walk algorithm becomes expensive as
the number of potential causes of the observed error
grows. Each validation represents a human developer
examining code and state information for an event in the
system, which is likely to take at least a few minutes. The
Half-Walk algorithm, on the other hand, is well behaved,
displaying log2 behavior.

In some situations, the probability of failure in each
event is known. For example, the system may consist of
sensors with a known rate of reporting false information.
Even if event failure probabilities are not perfectly known,
an experienced developer may have a sense of which
events are likeliest to be the root cause of errors.

If the developer has perfect knowledge of the
probability that each event was performed correctly, he
might use an algorithm that first examines the event with
the highest probability of being correct. If that event is
indeed correct, he could eliminate from further
consideration all events that caused that event. He could
then move down the list of probabilities as candidates are
eliminated. We term this algorithm the Highest-Walk
algorithm.

Figure 5 shows the relative performance for the
Highest-Walk algorithm vs. the Half-Walk algorithm
(which the Interaction Analyzer actually uses) for graphs
and root causes of the same kind shown in Figure 4. If we
have this knowledge of probability of event failure, the
Half-Walk algorithm is altered so that, instead of selecting
an event that eliminates half the nodes in the graph, it
selects an event that eliminates half the probability of error
in the graph. Highest-Walk is, unlike Terminal-Walk,
competitive with Half-Walk, but Half-Walk is clearly
better. For 200,000 events in an execution graph, Half-
Walk will require the developer to examine less than half
as many events as Highest-Walk would. The probability of
being incorrect is propagated down the event path, and
thus the event with highest probability of being incorrect
is normally very far from the root cause. Thus, the
Highest-Walk algorithm does not perform as well as Half-
Walk.

Figure 5. Highest-Walk Algorithm vs. Half-Walk Algorithm

Many factors can cause variation in the performances
of these algorithms. For example, the distribution of
branching factors can be varied, where branching factor
describes how many events are caused by a given event.
The figures already discussed assumed a branching factor
for each node chosen from a random distribution.
Perhaps, instead, there is a distribution of branching
factors randomly generated in a linear scale, where nodes
with a lower branching degree appear more often in the
event graph. Thus, branching factors of 1 are more
probable than branching factors of 2, which are more
probable than branching factors of 3, and so on.

Figure 6 illustrates the relative performance of the
Highest-Walk and Half-Walk algorithms in this case.
Since the distribution used here favors small branching
factors, generally a node will have a lower branching
factor in these graphs than in those discussed earlier.
Here, the Highest-Walk performs much worse than the
Half-Walk because the Highest-Walk chooses the node
with highest probability of being correct for validation.
Consequently, after each validation, the new size of the
event graph (in the Highest-Walk) tends to be large. In
other words, it prunes the tree less effectively. With
uniform branching (as in Figure 5), the graph is more
balanced; whereas in linear branching, the graph is less
balanced. With uniform branching, we are less likely to
find nodes with a really high probability of being
incorrect. Thus, in uniform branching, the Highest-Walk
has better performance, though it is still inferior to the
Half-Walk algorithm.

Figure 6. Constant Root Cause Factor – Linear Branch

B. Case Studies Using the Interaction Analyzer
Simulation studies are helpful in understanding the

Interaction Analyzer’s behavior in many different
circumstances, but ultimately the point of a debugging tool
is that it prove helpful in solving real problems. In this
section we describe how the Interaction Analyzer helped us
find real bugs in real applications. The primary application
discussed is the Smart Party application introduced in
Section II. This application was not written to help us
investigate the behavior of the Interaction Analyzer. On

the contrary, the Interaction Analyzer was built to help us
debug problems with the Smart Party and other Panoply
applications.

We also present a case study for a second real
application, one that is much smaller. Our graduate
students grew tired of having to get up to open the locked
door to our lab when someone without a key knocked on it,
so they designed a bit of hardware and a small Panoply
application that would automatically unlock the door under
certain conditions. For example, if a knock was heard
during regular working hours and someone was actually in
the lab, the door should open. Also, users in the room with
sufficient privilege could simply order the door to open.
This application was vastly simpler than the Smart Party,
but it was also real working Panoply software, and
exhibited real bugs.

1) Smart Party Bug 1: Music Playing in the Wrong
Room

This bug occurred in the Smart Party when the
application was run with three rooms and one user. Music
played in a room where no user was present. Before
availability of the Interaction Analyzer, the developers of
the Smart Party had used traditional methods to find the
root cause of this problem, which proved to be that the
user location determination module had put him in the
wrong room. We did not keep records of how long the
debugging process took before the Interaction Analyzer
was available, but it was far from instant.

This was a Type 2 error, an event occurring
incorrectly. As mentioned in Section III, the Interaction
Analyzer uses contextual information when available to
guide the process of finding root causes. We investigated
this bug both with and without contextual information.
Without contextual information, the Analyzer had to
suggest six events (out of a possible 8000 in the execution
history) to pinpoint the problem. With contextual
information (the developer indicating which room he was
concerned about), the Interaction Analyzer found the
problem in one step.

2) Smart Party Bug 2: No Music Playing
This bug occurred in some, but not all, runs of the

Smart Party. A user would join the Smart Party, but no
music would play anywhere. Since this bug was non-
deterministic, it was extremely difficult to find using
standard methods. In fact, the Smart Party developers
were unable to find the bug that way.

Once the Interaction Analyzer was available, it found
the bug the first time it occurred. This was a Type 1 error,
an event that did not occur when it should have. The
Interaction Analyzer found the root cause by comparing
the protocol definition to the execution history and noting
a discrepancy. The Interaction Analyzer made use here of
its ability to deal with events at multiple hierarchical
levels. At the high level, it noted that music did not play
and that the high-level protocol definition said it should.

The Analyzer determined that the failure was due to not
responding to a request by the user for a localization map.
To further determine why that request wasn’t honored, the
Analyzer suggested to the developer that he dive down to
a lower protocol level, and eventually, to an even lower
level. The bug ultimately proved to be in the code related
to how Panoply routed messages.

The Interaction Analyzer found this bug in three
queries, a process that took less than five minutes,
including the time required by the developers to examine
the code the Analyzer recommended. Without the
Analyzer, the developers had been unable to find this bug
over the course of several weeks.

3) Door Opener Bug
The door opener application described previously had a

bug that caused the door not to open when it was ordered
to do so. Since the bug appeared to be failure of an
expected event, a query of Type 1 was used, and the
Analyzer was able to find two different root causes. The
first cause was a serial port configuration problem, and
thus the application failed to open the port and could not
send commands to the hardware controlling the door lock.
The second cause was a mistake in the policy describing
which spheres should talk to each other, and thus the
command could not reach the controller. The first cause
was found immediately since it happened in the highest
protocol layer. The second root cause was found after
going down five protocol layers. There were about 340
execution events in the log files. The Interaction Analyzer
recommended that a total of 6 events be examined to find
both problems. This case demonstrates both the value of
the Interaction Analyzer even for relatively simple
applications, and how the Interaction Analyzer can find
multiple bugs that cause a single observed problem.

TABLE 1. INTERACTION ANALYZER COSTS

Operation Example Cost Average Cost
Import Exec Hist. 3.5 seconds .35 msec/event
Preprocessing .3 seconds .03 msec/event
Load Prot. Def. 7 seconds .82 msec/element
Matching 12.2 seconds 1.18 msec/event
Total Time 23.0 seconds 2.48 msec/event

C. Interaction Analyzer Overheads
Table 1 shows some of the overheads associated with

using the Interaction Analyzer. The Example Cost column
shows the actual total elapsed times for handling all events
in a sample 11,000 event execution history. The Average
Cost column shows the normalized costs averaged over 20
real execution histories. These costs are paid every time a
developer runs the Interaction Analyzer, and essentially
represent a startup cost. For an 11,000 event run, then, the
developer needs to wait a bit less than half a minute before
his investigations can start.

The other major overhead is the cost for the Interaction
Analyzer to respond to a user query. For queries of Types
1, 3, and 4, this cost is less than a second. For queries of
Type 2, it depends on the size of the portion of the
execution history that is rooted at the event the developer
needs to investigate, not the size of the entire history. Any
event that exerted a causal influence on the event under
investigation must be considered. Figure 7 shows the time
required to choose an event for the developer to evaluate
for causal graphs of different sizes. If there are 100,000
events in the causal graph of the investigated event, it
takes around 17 seconds to recommend one to the
developer. This graph is log scale on the x-axis, so the
time is roughly linear as the number of events grows. The
Interaction Analyzer chooses an event for validation such
that its examination will eliminate around half of the
graph; so if the event in question is not the root cause, the
second recommendation will be made on a graph of half
the size of the original, and thus half the cost.

Figure 7. Time to Pick Validation Node

D. Usability and Utility Issues
The goal of the Interaction Analyzer is to ease the

burden for developers, so whether it does so is a major
concern. We have anecdotal evidence to support its value.
In terms of cost, there is a learning curve associated with
first using the system and with instrumenting applications.
This curve is not steep, in our experience. The actual cost
of instrumenting applications is relatively low. The
statements that must be inserted into the code are no more
complex than more traditional print debugging statements
that most programmers already use (see Section III.E).

In terms of run time costs, the Interaction Analyzer is
not intended to be run in production mode, so the
performance costs are paid only when performing
debugging. They are not sufficiently high to slow
debugging, since they are no greater than printing log
outputs. There is a cost to gather and analyze the data
from a run, but this is a matter of a few seconds to a few
minutes for a typical run (see Section IV.C).

While these costs are low, they are still not worthwhile
unless there is commensurate benefit. Our experiences
show that there is, as outlined by the case studies above.
The Interaction Analyzer succeeded in finding real bugs
that standard debugging techniques could not, even in
situations where analysts had spent days or weeks tracking
the bugs down. The Interaction Analyzer did so in a
matter of a few minutes. It was helpful in finding complex
bugs that were non-deterministic and depended on race
conditions, situations that are notoriously hard to deal with
using standard debugging techniques.

A fuller statement of utility and usability would require
detailed human studies and experiments that have not been
performed. However, the initial results are promising and
suggest that the system is worth far more than its costs.

V. RELATED WORK
Several systems have supported debugging problems in

complex distributed systems. The most closely related are
those that build execution graphs based on data gathered
during a run. RAPIDE [13] was an early system that used
this approach. In RAPIDE, an event can be used to denote
any action or behavior of a system. By capturing enough
events, the image of the application runtime can be
reproduced later. The author also proposed hierarchical
viewing for event management. RAPIDE aggregates sets of
low-level system events into a higher-level event to give
information about the component objects at the application
level. Different abstraction hierarchies can be used to
display the system in different views. RAPIDE also
supports event filtering based on a predefined pattern.

RAPIDE was extended to build an execution
architecture that captured causal relationships between
runtime components [14]. This system creates an image of
the running system that helps the developer visualize all
interactions and relationships between components during
execution. Based on the visual graph, developers can
understand the execution architectures of dynamically
changing software systems. If the execution architecture is
different from the specification, an exception is raised to
report the abnormality. This work supports building models
of bad behavior to detect known problems.

The Event Recognizer [15] treats debugging as a
process of creating models of expected program behaviors
and comparing these to the actual behaviors exhibited by
the program. The Event Recognizer matches actual system
behavior from event stream instances to user-defined
behavior models. Incompletely recognized behaviors
indicate that the modeler should more closely examine the
class of behaviors that are missing, or explain what is
wrong with a particular program execution. The tool helps
to detect abnormal behavior (that is not defined in the
behavior models) and shows how well the actual behavior
fits the user-defined pattern. If a bad behavior happens to
fit one of the defined behavior models, the system will not
be able to detect the problem.

Poutakidis et al. [16] uses interaction protocol
specifications to detect interactions that do not follow the

protocol. Interaction protocols are specified using AUML
and translated to Petri nets. The debugger uses Petri nets to
monitor conversations and detect any unexpected or
missing message when interaction does not follow the
protocols. More specifically, it can detect failures such as
un-initialized agents, sending messages to the wrong
recipient, sending the wrong message and sending the same
message multiple times. However, it does not explain why
the problem occurs and the root cause.

Other approaches use non-graph-based methods to find
root causes. Yemini and Kliger [17] treat a set of bad
events as a code defining the problem, and use decoding
methods to match it to known problems. This approach
assumes that the developers know which sets of bad events
occur when a problem happens.

Piao [18] uses Bayesian network techniques to
determine root causes of errors in ubiquitous systems. The
Bayesian network describes a complex system as a
compact model that presents probabilistic dependency
relationships between various factors in a domain. System
real-time performance data is collected, including the
system health states. Certain parameters are selected and
ranked in a node list that will be applied in structure
learning. Bayesian machine learning is applied for
topology structure learning to find a network structure that
is the most probable match to the training data. This
network structure is used to infer the root cause for real-
time data from an erroneous run. This approach requires a
large training set to build a complete dependency graph and
does not work well for a system with a large number of
parameters due to the over-fitting phenomenon in machine
learning. Therefore, it is more applicable for systems with
small sets of parameters, such as a network system
described solely by CPU, throughput, RAM use, and
bandwidth.

 Ramanathan [19] designed a system to find the root
causes of errors in sensor networks. This system collects
network-related data such as routing table, neighbor list, up
time, bad packets received, etc. Based on the specific
relationship between these collected data, the system
detects failures and triggers localization. For example, the
neighbor list and the up time can be used to detect a failed
sensor node. Since the collected metrics are sensor-network
specific, this approach can only be directly applied for
sensor network environments.

Urteaga’s REDFLAG system [20] is a fault detection
service for data-driven wireless sensor applications. It
consists of a Sensor Reading Validity (SRV) sub-service,
which detects erroneous sensor readings, and a Network
Status Report (NSR) subservice, whose task is to abate data
loss by identifying unresponsive nodes. These two
subservices help to identify failed sensors in the network.

Gardner [21] proposed a framework to monitor
efficiently all system events and information in an
operating system, with the goal of providing a detailed look
at operating system kernel events with very low overhead.
This collected information can be used to analyze problems
in the underlying system and provide necessary
information so that adaptive applications can adjust. This

framework instruments the kernel and network library code
to generate events; and the developers are expected to
examine these recorded events by themselves to identify
the problem. Also, this system is not distributed, and thus
not easily adaptable for a ubiquitous environment.

Hseush’s debugging approach [22] concentrates on
data, rather than events, arguing that data is a more
meaningful way for program users to approach debugging
than control flow. In this approach, the user must be aware
of data flow as well as control flow and/or message flow. A
debugging language is provided to express breakpoints,
single stepping and traces in terms of the data as well as the
control. For example, concurrent accesses on a shared
memory location can be described using the language; and
when the user detects a matched behavior to the described
concurrent accesses, the application can be stopped or
suspended accordingly.

Other researchers have approached debugging of
ubiquitous environments and other distributed systems
from entirely different angles, potentially offering
complementary ways to help diagnose problems in such
environments. [23] describes a suite of tools that help
visualize multi-agent applications. Each tool provides a
different perspective of the application being visualized.
For example, a society tool shows the structural
organizational relationships and message interchanges
between agents in a society, while a report tool graphs the
society-wide decomposition of tasks and the execution
states of the various sub-tasks. The complete set of tools
provides various perspectives on the condition of the
distributed application.

 [24] and [25] propose different system views that
allow a graphical representation of the selected aspects of
the system state and its dynamic behavior. An agent view
shows the structural or behavioral agent model. An
interaction view shows patterns of interactions such as
message-passing activity. A cooperation view shows the
potential or current task requests between agents. These
views represent the developer’s conceptual models, such as
the agent, distribution and interaction models proposed by
the authors.

Such alternate approaches can conceptually be
combined with the debugging services offered by the
Interaction Analyzer, giving different perspectives from
which to view any particular debugging problem. Which
set of views and tools is most helpful for actual debugging
of complex ubiquitous computing problems is a question
for further research.

VI. CONCLUSIONS
Ubiquitous systems are complex, consisting of many

different components. Their dynamic nature makes it hard
to develop and debug them. Bugs often become evident
long after and far away from their actual cause. The
Interaction Analyzer provides quick, precise determination
of root causes of bugs in such systems. While developed
for Panoply, it can be adapted for many ubiquitous
computing environments. The Interaction Analyzer has

been demonstrated to have good performance by
simulation, and has been used to find actual bugs in real
ubiquitous computing environments, including cases
where more traditional debugging methods failed.

The Interaction Analyzer is fundamentally a tool to help
developers perfect their ubiquitous computing applications.
With significantly more work, it could perhaps be adapted
to work in deployment scenarios, helping average users fix
the problems they observe. Generally, however, the advice
the Interaction Analyzer can provide would not be very
helpful to a typical user. Much more effort would be
required to assist in mapping from low-level problems to
solutions that make sense to a typical user. Further, if the
problem is rooted in flawed code, rather than a failed
hardware component or a mistake in configuration, it is not
likely that the user will be able to solve the problem, even
if he can pinpoint it. Nonetheless, debugging for
ubiquitous computing users is likely to be a problem of
increasing importance for the future, and deserves more
study.

ACKNOWLEDGMENT
This work was supported in part by the U.S. National

Science Foundation under Grant CNS 0427748.

REFERENCES
[1] N. Nguyen, L. Kleinrock, and P. Reiher, “The Interaction

Analyzer: A Tool for Debugging Ubiquitous Computing
Applications,” Ubicomm 2011, November 2011.

[2] W. Edwards and R. Grinter, “At Home With Ubiquitous
Computing: Seven Challenges,” LNCS, Vol. 2201/2001,
2001, pp. 256-272.

[3] J. Bruneau, W. Jouve, and C. Counsel,”DiaSim: A
Parameterized Simulator for Pervasive Computing
Applications,” Mobiquitous 2009, pp. 1-3.

[4] T. Hansen, J. Bardram, and M. Soegaard, “Moving Out of
the Lab: Deploying Pervasive Technologies in a Hospital,”
Pervasive Computing, Vol. 45, Issue 3, July-Sept. 2006, pp.
24-31.

[5] V. Ramakrishna, K. Eustice, and P. Reiher, "Negotiating
Agreements Using Policies in Ubiquitous Computing
Scenarios," Proceedings of the IEEE International
Conference on Service-Oriented Computing and
Applications (SOCA'07).

[6] K. Eustice, Panoply: Active Middleware for Managing
Ubiquitous Computing Interactions, Ph.D. dissertation,
UCLA Computer Science Department, 2008.

[7] K. Eustice, V. Ramakrishna, N. Nguyen, and P. Reiher,
“The Smart Party: A Personalized Location-Aware
Multimedia Experience,” Consumer Communications and
Networking Conference, January 2008, pp. 873-877.

[8] K. Eustice, A. Jourabchi, J. Stoops, and P. Reiher,
“Improving User Satisfaction in a Ubiquitous Computing
Application,” SAUCE 2008, October 2008.

[9] P. Bates, “Debugging Heterogeneous Distributed Systems
Using Event-Based Models of Behavior,” ACM TOCS,
Vol. 13, No. 1, February 1995, pp. 1-31.

[10] The Object Management Group, http://www.omg.org, July
12, 2012.

[11] ArgoUML, the UML Modeling Tool.
http://argouml.tigris.org, July 12, 2012.

[12] N. Nguyen, Interaction Analyzer: A Framework to Analyze
Ubiquitous Systems, Ph.D. dissertation, UCLA Computer
Science Department, 2009.

[13] D. Luckman and J. Vera, “An Event-Based Architecture
Definition Language,” IEEE Transactions on Software
Engineering, Vol. 21, No. 4, April 2005, pp. 717-734.

[14] J. Vera, L. Perrochon, and D. Luckham, “Event Based
Execution Architectures for Dynamic Software Systems,”
IFIP Conference on Software Architecture, 1999, pp. 303-
308

[15] P. Bates, “Debugging Heterogeneous Distibuted Systems
Using Event-Based Models of Behaviors,” ACM
Transactions on Computer Systems, Vol. 13, No. 1,
February 1995, pp. 1-31.

[16] D. Poutakidis, L. Padgham, and M. Winikoff, “Debugging
Multi-Agent Systems Using Design Artifacts: The Case of
Interaction Protocols,” 1st International Joint Conference on
Autonomous Agents and Multiagent Systems, 2002, pp.
960-967.

[17] A. Yemini and S. Kliger, “High Speed and Robust Event
Correlation,” IEEE Communications Magazine, Vol. 34,
No. 5, May 1996, pp. 82-90.

[18] S. Piao, J. Park, and E. Lee, “Root Cause Analysis and
Proactive Problem Prediction for Self-Healing,” Int’l
Conference on Convergence Information Technology, 2007,
pp. 2085-2090.

[19] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler,
and D. Estrin, “Sympathy for the Sensor Network
Debugger,” Int’l Conference on Embedded Networked
Sensor Systems, 2005, pp. 255-267.

[20] I. Urteaga, K. Barnhart, and Q. Han, “REDFLAG: A
Runtime, Distributed, Flexible, Lightweight, and Generic
Fault Detection Service for Data Driven Wireless Sensor
Applications,” Percom 2009, pp. 432-446.

[21] M. Gardner, W. Feng, M. Broxton, A. Engelhart, and G.
Hurwitz. “MAGNET: a Tool for Debugging, Analyzing and
Adapting Computing Systems,” Proceedings of the 3rd
International Symposium on Cluster Computing and the
Grid, 2003.

[22] W. Hseush and G. Kaiser, “Data Path Debugging: Data-
Oriented Debugging for a Concurrent Programming
Language,” Proceedings of the 1988 ACM SIGPLAN and
SIGOPS Workshop on Parallel and Distributed Debugging,
Madison, Wisconsin, United States, May 1988.

[23] D. Ndumu, H. Nwana, L. Lee, and J. Collis. “Visualizing
and Debugging Distributed Multi-agent Systems,”
Autonomous Agents, Seattle WA, USA, 1999.

[24] M. Liedekerke and N. Avouris, “Debugging Multi-agent
Systems,” Information and Software Technology, 1995.

[25] M. Morris, “Visualization for Causal Debugging and
System Awareness in a Ubiquitous Computing
Environment,” Adjunct Proceedings of UbiComp, 2004.

