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Analysis of Shared  Finite  Storage  in  a  Computer  Network 
Node  Environment Under General  Traffic  Conditions 

FAROUK  KAMOUN, MEMBER, IEEE, AND LEONARD  KLEINROCK, FELLOW,  IEEE 

Absrrucr-Nodal storage  limitations  in a store  and  forward  com- 
puter  network  lead  to  blocking;  this  results  in  degradation  of  network 
performance  due  to  the loss or retransmission of blocked  messages. In 
this  paper,  we  consider several  schemes  for  sharing a pool of buffers 
among  a  set  of  communication channels  emanating  from  a  given node 
in a  network  environment so as to  make effective use of  storage  in a 
variety of applications. Five  sharing  schemes  are  examined,  analyzed, 
and  displayed in a fashion  which  permits one to  establish  the  tradeoffs 
among blocking probability,  utilization, throughput,  and  delay.  The 
key to  the  analysis  lies in  the  observation  that  the  equilibrium  joint 
probability  distribution  of the  buffer  occupancy  obeys  the  well-known 
product  form  solution  for networks of  queues.  The study  indicates 
advantages  and  pitfalls  of  each  of the  sharing  schemes. We observe, in 
general, that sharing with  appropriate  restrictions  on  the  contention 
for  space  is very  much desirable. 

Q 
I. INTRODUCTION 

UEUEING models  for  computer  networks  often assume in- 
finite storage at  the switching  nodes.  Such an assumption 

is questionable, especially in view of  the storage capacity issues 
which have been observed in the ARPANET. Furthermore, 
storage  becomes  critical  in the  context  of large computer  net- 
works [ l ]  - [ 3 ] .  As a result, a  storage constraint must  be in- 
troduced  in realistic network models.  This we do  for a single 
node  in this  paper. The  application  of  the results derived here 
to  the  performance analysis of a class of symmetrical networks 
can be found in, [ I ]  and [ 3 ] .  

In store-and-forward  (S/F)  computer  nets,  the  outgoing 
channels of a node share  a  certain number (say B )  of  buffers 
(S/F) buffe,rs). If no feedback is considered (i.e., no retrans- 
mission of rejected messages), the S/F function  of a node  may 
be modeled as a set of M/M/l queueing  systems (one  for  each 
channel) which share  a finite waiting  room’ under some 
scheme [ 11.  The  purpose of this paper is to analyze and 
compare a  few  existing and/or  intuitive storage  sharing 
schemes. The first  (and  simplest) is the complete partitioning 
(CP) scheme where actually  no sharing is provided, but where 
the  entire  finite storage (waiting room) is permanently  parti- 
tioned  among  the (say) R servers. At the  other  extreme is the 
second scheme, complete sharing (CS), which is such  that  an 
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1 The waiting  room  accounts for all  the  switching  node  buffers,  in- 
cluding  those  occupied  by  messages  in  transmission (Le.,  in  service). 

arriving customer is accepted if any storage space is available, 
independent of the server to which it is directed. We find  that 
CS succeeds in achieving a better performance (smaller proba- 
bility  of blocking) than CP under  normal traffic conditions 
and  for fairly balanced input systems. However, for highly 
asymmetrical message input rates (Xi i = 1, -., R )  and  equal 
service rates, CS tends  to heavily favor servers with higher in- 
put rates, even though  they  may be close to saturation  (input 
rate close to service rate). The failure to recognize servers at 
or near saturation results in most of the space being occupied 
by customers waiting for  those servers, to  the  detriment  of  the 
others. Moreover, even with perfectly  balanced arrival rates 
(i.e., X i  = X, i = 1, .-, R) ,  under overload conditions, CS fails 
(where CP succeeds) in securing  a full utilization  of all the R 
servers. The above considerations suggest that  contention  for 
space must be limited in  some  way. In order to avoid the pos- 
sible utilization of  the  entire space  by any  particular  output 
channel, we impose  a  limit on  the  number  of  buffers  to be al- 
located  at  any  time to any server. This  idea is incorporated in 
our  third scheme: sharing with maximum queue lengths 
(SMXQ). Of course,  the  sum of those  maxima must  be  greater 
than  the  total space if some sharing is to be  provided. SMXQ 
still does not  guarantee a  full utilization  of  the servers under 
heavy traffic  conditions. This deficiency  motivates the  .fourth 
scheme: sharing with a  minimum allocation (SMA) scheme. 
With SMA, a minimum  number  of  buffers is always reserved 
for  each server and, in addition, a common  pool  of  buffers is 
to be shared among all servers, with no further  constraints on 
the  queue size. With SMA, the shared area tends to be un- 
fairly  utilized as mentioned earlier; hence, we have the  fifth 
and final scheme: sharing with a maximum queue and min- 
imum allocation (SMQMA). A  schematic representation  of  the 
first four schemes is  given in Fig. 1 ,  as well the  constraint  set 
for R = 2 servers. The  constraint set  shows the feasible regions 
for  the  four schemes  in an nl  X n2 plane where ni = number 
of  buffers available to server i. Note  that  the feasible set is the 
largest for  the CS scheme  where all points 0, 0, a are included 
and  the smallest for  the CP scheme where only  the  points 0 are 
included. In between, we find  the feasible sets for  the SMA 
and SMXQ schemes;  these two schemes  are  equivalent  when 
R = 2 .  

Rich and  Schwartz  [4]  studied a  scheme  very similar to 
SMA except  that  the entire common storage is dynamically 
allocated to  one server at a time.  Drukey [5] analyzed the CS 
scheme  with  the  assumption  that all the pi’s are equal;  for  the 
general case of  different pi’s ,  he restricts his study  to  two 
channels. 
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Fig. 1. Storage sharing schemes:  (a) CP; (b) C S ;  (c)SMXQ; (d) SMA; 
and (e) set of constraints, R = 2. 

Irland [6] studied the SMXQ scheme. He obtained  a z- 
transform expression for  the  constant  term in the expression 
of  the  joint  queue length distribution. An explicit  expression 
for that  term was derived only for  the special case of two 
servers. With the two-server environment, he also performs  a 
numerical  search for  the  optimal value of the  constraint  on  the 
queue  length. Lam [7] also tackled the storage constraint  prob- 
lem for both  a single node  and  a  network  environment. His 
model assumes a  complete sharing (CS) scheme and, moreover, 
it  accounts  for more  nodal functions  such as time-out, ac- 
knowledgment, and retransmission. These added  features make 
the model  and the results fairly different. However, no  com- 
parisons with  other sharing schemes were attempted. 

Problems of  this  sort are frequently  encountered in tele- 
phony  and are referred to as “graded” systems [8].  The main 
interest there, however, is in sharing (extra) lines as opposed 
to storage. In this  paper, we intend  to characterize the five 
storage schemes under  steady-state  conditions;  namely, we 
derive expressions for  the probabilities of blocking, the average 
time in system, and the  throughput.  A comparison  of the 
sharing  schemes is also provided. The  key to  the analysis lies 
in the observation that  the equilibrium joint  probability dis- 
tribution  for  the  buffer  occupancy  obeys  the well-known prod- 
uct  form  solution  for  networks of  queues (see [9] -[13] and 
the bibliographies  therein). The results  of the analysis are 
presented and displayed in a fashion which permits one  to 
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establish the tradeoffs among blocking probability,  utilization, / 
thr@ghput, and delay. We conclude  that  no  one  scheme is 
always optimal.  The selection of  a specific scheme  depends 
upon  the particular operational  environment. This study es- 
tablishes the  importance  of storage on  the nodal performance. 
It also shows that, in general,  sharing with  some restriction on 
the  contention  for space is more  advantageous than  no sharing, 
especially when little storage is available. A  summary  of results 
obtained  for  the case of equal pj’s was reported  by  the  authors 
in [14]. 

11. MODEL AND GENERAL SOLUTION 

..&We consider R M/M/l  queueing  systems which share a 
:&te storage capacity of size B under  one of the above schemes. 
Queueing system i(i = 1, ..., R )  is characterized by a Poisson 
input stream at  a rate Xi  and  an exponential service time of 
mean l / p C j ;  Ci is the  channel  capacity (bits/s) and l/p is the 
average number of bits per message. Customers to  be served by 
server i are  referred to as type or class i customers. Arriving 
customers not  admitted  to  the queue (because of the sharing 
scheme) depart  without service. Accepted (nonrejected)  custo- 
mers of type i are served by server i on  a first-come  first- 
served basis. 

The sharing of space introduces dependencies  among the R 
queueing  systems. The  entire system is a  birth-death process 
[ 121 , whose state can be simply described by  the  vector n = 
( n l ,  -, n R )  where n j  is a nonnegative random variable de- 
noting  the  number of type-i customers. The basic equation 
which  describes the behavior of the system  of  queues in steady 
state  obeys  the well-known product form solution for a  net- 
work  of  queues, i.e., 

P ( n l ,  122, ’.’) n R >  

= (0, 

P ( n ) = C x p l n l p 2 n 2  . . . p R ” R ,  f o r n E F ,  

otherwise 
(1) 

where pi = &//.LC,. The subscript x indicates the scheme re- 
ferred to,  i .e.,xE{a,b,c,d,e} where a stands  for CP, b for CS, 
c for SMXQ, d for SMA, and e for SMQMA (see Fig. 1). F, 
represents the set of possible system states.  The  proof  for (1) 
comes from  the fact that it satisfies the system’s .balance 
equations  for all the schemes considered [ 11. 

In what  follows, we first  characterize C, for each of  the 
five sharing  schemes; then, from the  joint probability dis- 
tribution, we obtain  the  probability  of blocking, the  through- 
put,  and  the average delay. 

C, is simply the  probability of  an empty  system, i.e., C, = 
P(0). When there is no  confusion as to  the scheme under  in- 
vestigation, we use the  notation Po instead of C, or P(0). C, 
can be computed  by requiring that  the probabilities  sum to 
one, i.e., 

exp1 = 2 p l n l p Z n 2  ... p R n R .  (2) 
n E F ,  

111. COMPLETE PARTITIONING (CP) 
CP is a degenerate case where  actually all the R queueing 

systems are independent.  The basic equations describing the 
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behavior of  any  of  the queues  are well known (see, for ex- 
ample, [ 121). Further'more, each  of those systems is equiva- 
lent to CS with  only  one  type of customer,  and so we present 
the results for CP  in the following section as the special case 
of CS for R = 1. We note  that 

where bi is the  number  of buffers reserved for  type-i  customers. 

w. COMPLETE SHARING (CS) 

We now  combine  the  buffer space into a common  pool [see 
Fig. l(b)] , whose size will be denoted  by B. Empty space is 
allocated on a 'FCFS basis regardless of the  type  of arriving 
customer. In what follows, we analyze the general case of ar-  
bitrary pi (i = '1, --, R )  and  then we apply  our results. to  the 
special case of equal pi's.  

A. General Case: Arbitrary pi 
In this  section,  the pi's are arbitrary.  The  set  of feasible sys- 

tem  states is 

Let us define G(K) as 

From (2) and (3), we see that 

Several efficient  algorithms exist to  compute G(K) [ 151 - [ 171 . 
Moreover, if all the pi's are different,2 we can use the  generat- 
ing function  approach  to derive a closed  form expression f o r  
G(K) which  leads to  faster  computational  algorithms  and  ex- 
hibits  the  interrelationships  -among  the system variables. In 
this  study, however, the numerical applications deal mostly 
with  the  equal pi case [14]. Briefly,  let 

' R  R 

From  this  expansion  and  from (4), we recognize that G(K) is 
the  coefficient  of p. A partial fraction expansion of  the first 
product yields 

R 
G(K) = AipiK 

this section. 
2 This  condition (p i  # p,) will be assumed  throughout the rest of 

where 

k # i  

Then from (2), ( 9 ,  and (7), we get 

Equations (1) and (8) completely characterize our sys- 
tem in the  steady sta'te. Note that  for R = 1, A l  = 1 ; if we 
then  let B = bi in (S), we obtain  the expression  of Po-' (or 
ea-') for  the CP &heme. Now we proceed to derive the 
steady-state  distribution  and expressions of  other variables of 
interest. 

Distribution of the. Total  Number in System;  Probability of 
Blocking: Let n be the  number in system  and P, = Pr[Zni  = 
n] be its  corresponding  distribution;  then 

K=O 

for 0 < n 5 B and  zero otherwise.  Due . .  to  Poisson arrivals, the 
probability  of blocking PB is simply 

PR = PoG(R). (9) 

Marginal Distributions  and Averages: A marginal distribu- 
tion is defined as.the  probability  distribution of a given class 
of customers. Here we derive the  probability  that  there are at 
least j type i customers in the  system Pr[ni  5 j ]  . That  proba- 
bility is equal to  the sum  of P(n) for n E F b  and  such  that ni 2 
j ;  after  some'algebra, we find (for 0 < j  < B) 

Then  the expression for  the average number  of  type i custo- 
mers is 

B -  1 

Let Xi' be  the average rate of  nonrejected  type-i  customers, 
i.e., the  throughput  of server i, and  let PBi be the  probability 
of  blocking for  type-i  customers;  then  for all schemes con- 
sidered  in this paper, 

For CS, we have PBi = PB for all i = 1, 2, --, R.  
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If  we let Ti denote  the average time in  system  (queue  and 
server) of  nonblocked  type-i  customers,  then  from Little's re- 
sult 

A similar approach is used  throughout  this  study  whereby  the 
marginal  distribution  of  the  number  of  type i customers is de- 
termined;  then  an  expression  for iii (hence, Ti) is derived.  De- 
rivations  of  marginal distributions  and averages will be  omitted 
in  this paper;  they  can  be  found in [ 11 . 

This  terminates  the  characterization  of CS in the  general 
case. Of interest is the  study  of  its  behavior  under  some special 
limiting  conditions  of  storage  and traffic. 

B. Limiting  Behavior 

We consider  two cases: first,  when  B goes to  infinity,  and 
second,  when all arrival rates  increase  uniformly  toward  in- 
finity. In the first  case, for  the  existence  of  a  steady  state,  it is 
necessary  that  pi < l(i = 1, -, R). With this  condition, in the 
limit (B = a) the  system  becomes  equivalent to  R  independent 
M/M/l queues [ 11 . 

We now  let all input rates  increase  proportionally  toward 
infinity. In [ I ] ,  we show  that  our  system  becomes  equivalent 
to  a closed  network  of  R  queues  and  B  customers.  Let 

hi =ghio i = 1, , R  (14) 

where  the scale factor q is a positive real variable and Xio is a 
constant.  The service rates (pCi) are  maintained  constant. 
Equation  (14) is also  equivalent to  saying  that  pi = gpio  with 
pi0 = x ~ O I ~ C ~  constant. 

From  the above  definition  and (7), 

G(K) = VkG0(K) (15) 

where 

R 
Go ( K )  = 

i= 1 

Note  that A i  is invariant to  the rate  increase;  hence, Co(K) 
is also independent  of g. From  the  above definitions, we de- 
termine  the  limiting  throughput 

Also, P,.[ni = 01 = 1 - Co(B - l)pio/Co(B);  hence,  there 
is a  nonzero  probability  that server i is idle (i.e., not fully 
utilized) even with  infinite  input rates.  This is not the case 
with CP, since  for R = 1, Co(K) = (P:)~; hence,  Pr[ni = 

The  numerical  example  below  illustrates  the  general  and 
limiting  behavior  of  this  system  with  respect to g. In this ex- 
ample, we assume  that  R = 4,  B = 20, p I o  = 0.1,  pZo = 0.4, 
p30 = 0.6, p40 = 0.9,  and we let  pi = gpi 0 . 

01 = 0. 

i 
OY' I 1 I 1 I I f  I . . . .. 

0 2 4 6 8 10  12 14 16 18 20 
t) 

Fig. 2. Average number of customers in the system, CS scheme with 
asymmetric input rates. 

The  utilization  of server i is pi' = (1 - PB)pi = (1 - PBhp?. 
T h e l i m i t i n g v a l u e o f q ( 1   - P B ) =   l . l l l ; h e n c e , g + ~ * p p l ' =  
0.1 11  1,p2' = 0.4444,  p3' = 0.6666,  and  p4' = 0.9999.  Note 
that server 4  reaches  saturation,  whereas  the  others are far 
from  it.  The average total  limiting utilization is P = = 
0.555 instead  of 1 which  could  be  obtained  with CP. 

Fig. 2  shows  the  behavior  of  the average number  of  type-i 
customers  in  the  system (i = 1, -, 4)  with  respect  to g. Also 
represented is the average total  number in  system ii. The 
limiting values for  the averages are  (evaluated  at g = 20) 

7il + 0.125, i i z  -+ 0.800, i i~  + 1.99, is4 + 17.02, 
and 

7i + 19.94 % B = 20. 
Note  that  for large g, most  of  the  buffers are, on the average, 
used by  type  4  customers. Also, a  sharp  increase  of i i4 (from 
4.8 to  14)  occurs  when g varies from  0.95  to 1.5. The value of 
71 = 1.1 11  corresponds to  the  saturation  of server 4 (Le., p4 = 
1) if there were no limitation in  buffer  storage,  and  at  that 
point  the  queue size becomes  infinite.  This  explains  the 
sharp  increase  in Ti4. 

In summary, we conclude  that  with  asymmetrical utiliza- 
tions (pio}, CS tends  to  favor  the server with  the  highest utili- 
zation even though  it  has  reached  saturation.  Furthermore, 
the  other servers are  left  with very little  space to share,  and 
therefore,  they  often  go idle.  These  considerations  motivate 
the  schemes  studied in the rest of  this  paper. Before we pro- 
ceed,  let us apply  the  general results obtained in this  section 
to  the case where  all pi's are  equal. 
C. Special Case: Equal pi's 

This  section  deals  with  the case where all the pi's are  equal 
and we let  p  be  the  common value. As a result, a  simpler  ex- 
pression is obtained  for G(K), and  thus  for  the  other  variables 
and distributions. 

G(K) is the  well-known  expression  obtained  for  networks 
of queues [ 121 . 

G(K)= ( )PK. 
K + R - 1  

R - 1  



996 IEEE  TRANSACTIONS  ON  COMMUNICATIONS, VOL. COM-28, NO. 7 ,  JULY 1980 

Also, the average time in  system of  the nonrejected type-i 
customers is 

1 - P  

Of interest are the  two cases when p = 1 and p + -. 
p =  1: 

”(n, , .-, n R )  =Po Mn E Fb 

R 
PB =- 

R + B  

B + R  1 
T i = -  - 

R + 1 pCi 

Note  that all states n have equal  probability Po. 
The expression for PB may be rewritten as 1/(1 + B/R), 

which is exactly  the same as for a single M/M/1 queue  with 
B/R buffers.  This  means that  for p = 1, CS and CP (with bi = 
B/R)  lead to the  same  probability of blocking.  This  fact is 
illustrated in the figures below. 

p + - :  
The service rates (pCj) are assumed to be constant.  The 

limits  are 

I B 

B + R - 1  
hi’ + pCi, i = 1, ..e, R 

B + R - 1  1 

R 
i = 1 ,  .-, R .  

As noted earlier, infinite  input rates do  not lead to full  utili- 
zation of  the servers (except for R = l), but  only  to a  frac- 
tion B/(B + R - 1) of  the capacity. 

The  illustration  of  the behavior of the  probability  of 
blocking, the  utilization,  and  the delay with respect to  the 
load p = h/pC and  for several values of B can be found in [ 11 . 

This  concludes the analysis of the  complete sharing (CS) 

1, 

10-1 

PB 10-2 

10-3 

10‘4 
0. 0.4 0.8 1.2 1.6 

Fig. 3.  Comparison of CP and CS:  blocking. 
P 

D. Comparison of CP and CS 
In this section, we assume that all pi’s are  equal (to p )  and 

that each server “contributes” Bo buffers, i.e., bi = B o ,  i = 1, 
-e, R [see Fig. l(a)] ; therefore, B = RB,. 

With the above conditions,  the behavior of CP (for  any  of 
its queues) is identical  to CS with R = 1. 

Fig. 3 illustrates the behavior of  the  probability  of blocking 
PB with respect to p for a  set of values of R ,  (R = 1, - a ,  4). 
R = 1 corresponds to CP; R = 2, 3, 4 corresponds to  the 
merging of 2, 3, 4 single queues. Note  that all the curves meet 
at p = 1 where,  from (19), PB = 1/(1 + Bo). Note also that  for 
0 G p < 1, CS leads to a smaller PB, and,  hence, a better  per- 
formance  than CP. This improvement is quite considerable for 
small values of Bo and increases with R. However, for p > 1, 
CP shows  a better  performance (smaller PB) than CS. 

Fig. 4 shows the respective channel  utilizations p(1 - PB) 
(normalized throughputs A‘IpC). Note  the loss in  limiting 
throughput (p  + -) with CS for small values of Bo. 

Finally, Fig. 5 shows the respective average delays. We note, 
of  course,  that  the average message  delay for  the  nonblocked 
traffic increases as more buffers  are  provided, i.e., as R in- 
creases. 

The  better  performance  of CP for p > 1 intuitively  indicates 
that some buffers should  be permanently allocated to each 
server. This  idea is incorporated in scheme 4, SMA. Moreover, 
we observed  earlier that very unbalanced input rates  lead  (on 
the average) to uneven usage of  the storage  space.  This  remark 
motivates the  next  scheme, SMXQ. 

V. SHARING WITH  MAXIMUM QUEUE LENGTHS (SMXQ) 

Like CS, SMXQ allows the sharing of a pool  of B buffers 
with a further  constraint imposed on  the  number  of  buffers  to 
be allocated to  any server, and  at  any time.  Let b j  be the  maxi- 
mum  number  of  buffers  that can  be used by  type-i  customers; 
the  set  of feasible states becomes 

I i= 1 

O < n i < b i ;  i =  I;-.,€? 1 scheme.  Let us now  compare  it  with  the  complete  partitioning 
(CP) scheme. 
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l.O I- In order  to  find Q(K), we use a method similar to the 
generating function  approach. Let f ( t )  be  defined as 

R 1.8 i 
I .< 

0.4 t From  the  expansion  of  the first product, we recognize Q(k) as 
the  coefficient of tk .  

Let o.2v! 0 0 0.4 , 0.8 I P , 1.2 ! . 1.6 ! 2.0 

Fig. 4. Comparison of CP and  CS: utilization. 
Then, recalling (6), we have At) = f(t)h(t); this leads to an 
equation relating Q to G in terms of Ci. Ci is computed  from 
the partial fraction expansion of h(t). 

ExFl Bo = 9 
1 

where 

j # i  
! I I !I 

0.4 0.8 1.2  1.6 2 
P 

Fig. 5 .  Comparison of CP and  CS: delay. 

Equating  the  terms  of equal degrees in t in (24)' we arrive at 
a  relation between G, Q, and  the Ci's. This  relation is quite 
complicated  and requires the ordering  of the bi's. However, 
if we restrict our  consideration,  either to  the case where bi 2 
B/2 or where bi = b for all i, then we obtain  the simple rela- 
tions below. 

1) We assume that  each queue is allowed to  occupy  more 
than half of  the  entire space, i.e., 

The evaluation of C, is much  more  complicated  here be- 
cause of  the  added  constraint  on ni. In what follows,  we again 
consider the  two cases of  different  and  equal pi's. 

A. General  Case 

In this  section,  the pi's are all different. We first  evaluate 
C, (also denoted  by Po). From  the above considerations, 

where 
2) Now assume bi = b for i = 1, -, R.  As with G(K), let 

us define 

L(K) = p 1 ( 1 + b ) n 1  ... p R  ( I + b ) n R .  (28) 
Zni=K 

Similarly 
R 

L(K) CiPi(1+b)K 
i= 1 

Note that  the difference  between Q(K) and G(K), (4), comes 
from  the  added  constraint ni < bi. 
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and 

h(t)  = 'L(K)t(' + b ) K .  
KbO 

Substituting this into (24), we arrive at 

Q! 

C(a(b + 1 )  + k ) = 2: &((a - i)(b + 1 )  + k)L(i) 
i=O 

where 

O<k<b 

and 

O < a ( b + l ) + k < B .  

Note  that G(0) = Q(0) = L(0) = 1 ,  and  that (31) allows the 
sequential  computation  of  the sequence Q(K) for K varying 
from 1 to B. 

Note  that  if b > B/2, then (31) becomes 

W )  = Q(k) f o r O < k < b  
G(b + 1 + k )  = Q(b + 1 + k )  + Q(k)L(l)  

O < k < B - b - 1  

and  from (28), 

R 
L(1) =x 

i= 1 

thus,  the  combination of the last three  equations gives (27) 
with bi = b. 

In what follows, we restrict our  considerations to the case 
where bi > B/2 unless specified  otherwise. As a  result, and 
from (21) and (27), we arrive at 

(32) 

Note that if bi = B for all i, then SMXQ becomes CS, and  the 
above equation reduces3 to (5). 

Similarly to Section IV, we now assume that all the pi's are 
different (pi # pi V i # j ) ;  then, using (7)  and (8), we arrive at 

i s . t .  0 4 bi<B 

3 By convention,  we  set & 0," n integer. 
a-1 

a 

(33) 

Equation (1) and  either (32) or (33) completely characterize 
the queueing system  under SMXQ and  the  condition of (26). 
Similarly to Section IV, we proceed with  the derivation of 
distributions  and average quantities of interest. 

Dism'bution of the Total Number in System-Probability 
of Blocking: Let n be the  total  number in system;  then,  for 
0 < n < B, P,, = Pr[xini = n]  = PoQ(n); and  then  from (27), A 

R 

C(n) - 2: pil+biG(n - bi - 
i= 1 

i s.t. bi<n 

(34) 

Let us now derive the  probability of blocking of type-i  custo- 
mers PBi. Recall that  type-i  customers are  blocked if,  upon 
arrival, the  entire space is full or if the  number of type-i 
customers is equal to bi. Since arrivals are  Poisson, then 

PBi = Pr[Zini = B or ni = bi] (35) 

which is also 
B-bi-1 

pBi=Pr[Zni=B] + 2: Pr 
K=O 

- and  x n i = b i + K  . 
i 1 

Because of (26), 

hence, 

Note  that Gi(K) is similar to G(K), except  that we have de- 
leted pi (Le., type-i customers). 

We now  proceed  with  the derivation of  the marginal  distri- 
bution  and average number  and delay of  type-i customers. 

Marginal Distribution and Limiting Behavior: Let k < bi; 
then 

ni=k 
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The summation above is similar to  that  of P0-l except  that 
B is now B - k and  the  component ni is deleted. Also note 
that bj 2 (B - k)/2 'd j # i and,  hence,  the above summation 
i s  given by (32) where B is replaced by B - k and G(K) by 
Gi(K) [as  defined  in (37)].  Thus, 

K=O 

j t i  -1 

The above summations  can  be  further  reduced to  expressions 
similar to  the  one in .(33). From (38), we may derive the aver- 
age number, delay, and  utilization of type-i customers. 

This terminates  the  characterization  of  the  system as oper- 
ated  with SMXQ and  with  the  assumption  of bi 2 B/2 and 
different pi's.  Next we study  the case'  of equal pi's;  we leave 
numerical  applications to  Section  VIII. Before we proceed, 
let  us note  that in  a similar environment as that  of  the  nu- 
merical .example in Section IV-B, we obtain in the limit of 
77 -+ 00 and  for bi = b = 10, 

p l '  = 0.1985, p 2  = 0.7904, p 3  = 0.9958, ~ 4 '  = 0.9999. 

(These values correspond  to 77 = '20.) Therefore,  the average 
utilization = 0.746, which  represents an improvement 
over the value obtained  with CS, F = 0.55'5. As for  the  limit- 
ing average numbers  of  customers, we find (evaluated at 77 = 
20), E l  = 0.242, F2 = 2.49, E3 = 8 . 0 1 , E 4  = 9.16. 

B. Special  Case:  Equal p i  S 
As in Section IV-C, let p i  = p 'd i; then  G(K) is  given by 

(17). Also, we assume that all the hi's are  equal to  b and  that 
b >'B/2. Therefore,  from (32), Po-' becomes ' 

From (37) and similarly to G(K), we have 

(39) 

From (34),  (36), and (40), we derive the  probability  of  block- 
ing PB which is independent of the customer's type: 

The rest  of the expressions, P,[ni = k ]  , Ei, X i ' ,  Ti ,  follow  in 
the same  way as before.  This terminates  the analysis of  the 
SMXQ schemes; further expressions  of the above variables 
(Po, PB) at p = 1 and p + can be  found in [ l ]  . We note, in 
particular,  that if p + 00, then  the  utilization  of  any server 
p ( 1  - PB) does not reach one  except  for R = 1 and R = 2 
(assuming that b < B for R = 2). For R > 2 (and p -+ -), 
SMXQ still  does not provide  a  full utilization of the server. 
Our  next scheme is motivated  by  this deficiency. 

VI.  SHARING WITH'MINIMUM ALLOCATION (SMA) 

Similarly to CS,  SMA allows the sharing of  a pool  of B 
buffers and,  in  addition, ai buffers are permanently allocated 
to type-i  customers, i = 1, -, R (see  Fig. 1). As a  result, the 
set  of feasible states becomes 

R 

O<ni<B+ai 

Following the same steps as earlier, we first  consider the gen- 
eral case of  different pi's .  

A .  General  Case 
In order  to evaluate cd (also denoted  by Po), we partition 

the set Fd into disjoint  subsets  which lead' to known  summa- 
tions. Let R be  the set of  customer  types, 

R = { 1 ,  2, .-., R}  

and  let X be  the set of all subsets of R ,  

The  set X contains 2R elements;  among  them are the  set R it- 
self and  the  empty  set. We then associate with  each subset X ,  
a subse't of Fd, namely, S, defined as 

Obviously, 

2 R  
S, nSn = @  f o r m Z n   a n d F d =  u S,. 

m = l  

Therefore, 

(41) 
m = l  

2 R  

2 H,(a, B). 
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H,(u, B )  is defined as the  summation  of  the  products  of  the I 

pi's over all states in S, ; Q is the vector ( a l ,  a2,  -.., aR).  From 

such  that \ 
denoted H,); let us define the generating function C,(k) 

iE X ,  n the  definition of S ,  , we may easily compute H,(u, B )  (also S, (k) = 
a i < n i < a i + k  i€X,,  (ni-ai)=k 

n i < a i  iGX, 

O Q n i Q K  

C,(K) is similar io G(K) given in (4); thus,  it can be com- 
puted in the  same way. . .  

It is obvious that F&) = S,(k) and,  consequently, 

Note  that if ai = 0 for all i,  then X = (R}, C,(K) = G(K), 
and  the above equations reduce to  the  description of CS. Also, 
the  summation  of C,(K) in  (44)'is  set  to 1 if X ,  = @. 

If we  now assume that all pi's are  different,  then from (7), 

where 

(45) 

k f i  

Using a similar summation as in (8), we arrive at 

(47) 

Equations (1) and (44) or (47) completely  characterize  our 
system. We now proceed with  the derivation of  distributions 
and averages of  the variables of  interest. 

Distribution of Total Number of Customers in Shared 
Area-Probability of Blocking: Let n, be the  total  number 
of  customers in the  shared  area, i.e., 

R 
n, G sup IO, ni -ai). 

i= 1 

Then  the  distribution  of n, is, for k < B, equal to the sum of 
probabilities of states n which  satisfy (48) for n, = k.  In order 
to evaluate that  summation, we  use 'the same methodology as 
for  the  determ'ination  of Po. Let F&) C Fd and S i ( k )  C S, 
be defined  as 

R 
sup{O,ni-ai} = k ,  O < n i < k + a i  

where h,(k)  is the  summation over all states in S,(k). Then, 
as above, 

For  the  probability of blocking of type-r  customers PBr, we 
have 

PB, can be computed  in a fashion similar to P,[ns = B] with 
the  restriction  that  the subset X ,  must  contain  r, i.e., 

PB, =Po z: h,(B). 
m 

m I re  X ,  

There  are 2R -' such sets  which  can  be obtained as follows. 
Let R ' =  R -{r}andX'={X, '   n=1, - - ,2R-1)be the  
set of subsets of R ' ;  then X ,  = X , '  U ( r }  is such a subset of R 
which contains r. 

Marginal Distribution  and Average Number  and Time in 
System: ' Below, we give the expression of the marginal distri- 
bution  of  type-r  customers  or,  more precisely, P, [n, 2 j ]  . The 
methodology is similar to  that used to find Po. 

P,[n, >,il 

(52) 
From  the above equation, we may obtain Z, and,  hence, T,. 

form  utilization  and allocations. 

B. Special Case: pi = p, ai = a 

Let us now  apply  the above  results to  the special caseof uni- 

The  assumption  of equal pi's and ai's leads to much simpler 
expressions for  the variables above. First, if p is the size of the 
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subset X,@ = I X ,  I), then from (43) 

Note  that if p = 0, then 

Also, from (44), 

Note  that C,(K) and H,  depend  only on the size p of the 
set X , .  The  number of  sets X ,  of size p is equal to  (5); thus, 
from (44) and (55), 

Similarly, we derive the expression for PB, (51). Recall that 
we only  account  for sets X ,  which contain r and,  hence, 
p >  1. 

PB, =Po 5 (" - 1) (-) 1 - - a  R - P  

p = l   p - 1  1 - p  

Note that in the above expressions, Q was assumed to be greater 
than  zero; if a = 0, then all subsets X ,  are empty  except  one: 
X ,  = R whose size is equal to R.  Moreover, with Q = 0, SMA 
reduces to CS.  If B = 0, SMA reduces to  CP. 

Let us now derive the marginal distribution  of  the  number 
of type-r  customers.  Equation (52) provides P,[ni 2 j ]  for j < 
a,; the  terms H,, [a', B] can be evaluated as in (56) except  that 
a,' = a, - j .  Therefore, we must  distinguish the sets X ,  which 
contain r from those  which do  not. If p = I X ,  1, then <p" 1 i) 
such sets contain r and  (R p ')'do  not. As a  consequence, 

For the case where j > a,, and using the same procedure as 
above,  we fipd 

The  calculation of Z,, A,.', T, follows from  the above consider- 
ations. 

Of further  interest is the limiting  behavior  when p' goes to 
infinity. Indeed, we find  for  a nondegenerate SMA, ire., a .f: 
0, that p + 03 * Po -+ 0 ,  PB, -+ 1 ,  p(1 - PB,) -+ 1 .  Hence, as 
expected,  the  minimum allocation of  at least one  buffer per 
channel allows a full utilization  of  the channels  in the limit; 

With SMA, the shared area is prone to  be unfairly  utilized 
in the case of unbalanced traffic rates. We accommodate  for 
this  deficiency  in our  next  and final  scheme. 

VII. SHARING WITH MAXIMUM QUEUE  LENGTH AND 
MINIMUM ALLOCATIONS: SMQMA 

In addition to  SMA,  SMQMA (or  scheme e )  imposes a  con- 
straint on the  maximum  number  of  buffers  from  the shared 
pool to  be allocated to  any server at  any  time. 'Let bi  be  that 
constraint  with respect to  server i. As a  result,  the set of feas- 
ible states  becomes 

F , = ( n E F d  I O G S U ~ { O , ~ ~ - Q ~ } < ~ ~  i =  l ; . .  3 N .  

Equivalently, 

I R 

i= 1 I F e z  n I O < z S U p { O , n i - Q i } < B ,   O < ? i < ~ i + b i  . 

We proceed as earlier with  the evaluation of C,, which we also 
denote  by Po. 

General Case: The same procedure as in Section VI can be 
utilized to  partition  the  set F, into  disjoint  subsets which then 
leads to  known summations.  Those  subsets  are 

Consequently, 
2 R  

m = l  

with 

where Q(K) is as defined  in (22). 
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As a consequence,  the  computation of P 0 - l  follows as in 
Sections V [for Q(K)] and VI. This remark  holds  true for the 
computation  of  .the  summations which  appear  in the analysis 
of  this scheme. As.a result, we need carry  out'the  study  of  this 
scheme no further. 

VIII. FURTHER NUMERICAL RESULTS AND 
COMPARISONS 

In this  section, we intend  to  compare  our first four sharing 
schemes: CP, CS, SMXQ,  SMA under  the  assumption 'of equal 
pi's. Although SMQMA appears to  be an excellent' sharing 
scheme which  has the  ability to  avoid the deficiencies of  the 
other  four schemes,  we do  not include it in the  comparison 
since  a rather involved and detailed  numerical  evaluation is 
required and  then  the overall study of  optimizing its  many 
parameters must be carried out;  this comparison is currently 
under  study  and is the subject  of  a forthcoming  paper. Before 
we proceed,  let us recall that if B is the  total  number  of  buffers 
(B = RB,) and b is the  maximum  queue size (for any  queue) 
when using an SMXQ scheme,  then 

1) if b = B,  SMXQ is equivalent to  CS; 
2 )  if b =Bo,  SMXQ  is equivalent to CP; and 
3) if R = 2 ,  then. SMXQ  is equivalent to SMA with a  mini- 

mum  allocatlon per queue  equal to B - b. 
Thus,  the  study  of SMXQ with R = 2 and a variable b will 

allow us to  cover the  four sharing  schemes to  be considered 
here. 

In the numerical example  below, we assume that R = 2 ,  
B = 6 ,  and  that b  satisfies B/2 < b < B [see ( 2 6 ) ] ,  i.e., b = 
3,  4, 5, 6 .  'From  our previous considerations, we know  that 
b = 3 leads to  CP, b = 4 and b = 5 lead to  nondegenerate 
SMXQ and SMA, and.b = 6 leads to CS. 

Figs. 6, 7, and. 8, respectively, show  the  probability of 
blocking PB, the  channel  utilization' p(1 - PB), and  the 
normalized average message delay pCT, obtained  with  the  four 
schemes. 'With respect to blocking and  utilization,  the  optimal 
b (i.e., the  optimal scheme) is a function  of p. We note  that 
for small values ,of p,  b = 6 (i.e., CS)'is optimal; as p increases, 
b = 5, then b = 4 (i.e.,'  SMXQ,  SMA) becomes optimal,  and, 
finally, f0r.a larger d, b = 3 (i.e., CP) becomes optimal. How- 
ever, the  average delay is an  increasing function of b,  thereby 
showing a tradeoff  between  the  probability of  blocking and 
the  system delay. The' selection of a  particular  scheme must 
account  for these two variables, as well as the  load  on  the 
system. 

IX. SUMMARY 

In this  study, we  considered  various  schemes for sharing  a 
pool o f  buffers among a  set of  communication channels  in  a 
computer  communication  network  environment. Five sharing 
schemes were examined,  and  the. results of the analysis were 
presented  and displayed  in a' fashion  which permits  one to 
establish 'the  tradeoffs  among blocking probability,  utilization, 
throughput,  and delay. 

We have shown  that, in general,  sharing with  some restric- 
tions  on  the  contention  for space is certainly  more advantageous 
than nonsharing, especially when little storage is available: 

R = 2  

0 
P 

Fig. 6. Comparison of the  four  schemes:  blocking. 
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Fig. 7. , Comparison of the  four  schemes:  utilization. 
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Fig. 8. Comparison of the four schemes:  delay. 
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