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In its present form, distributed routing extracts a prohibi-
tive price when used in large networks because of the proces-
sing time, nodal storage and line capacity required to update,
store and exchange routing information among network
nodes. In an earlier paper we have shown that hierarchical
routing schemes with optimally selected clustering structures
yield enormous reductions in routing table length and hence
in routing cost, at the price of an increase in network path
length. That increase was shown to be negligible in the limit
of very large networks. In this paper, we evaluate the tradeoff
between the reduction in routing table length and the
increase in network path length in terms of the more
meaningful network performance measures of delgy and
throughput. Extended queueing models are developed to
exhibit the interrelationships which exist between network
variables such as delay, throughput, channel capacity, nodal
storage, network path length, routing table length, etc. These
models are an extension of the classic model for networks in
that they account for line overhead and storage requirements
due to routing. The models demonstrate the enormous effi-
ciency of optimized hierarchical routing for a class of large
networks. :
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1. Introduction

In order to reduce the cost of adaptive routing in
large networks, we studied hierarchical routing in a
previous paper [11]. This cost is mainly composed of
the nodal storage required by the routing tables, the
line capacity needed for the exchange of routing
information and the nodal processing capacity to
update the tables. In an N-node network, present
routing schemes ordinarily provide one entry per
destination node in the routing rable (RT) which
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leads to a routing table length of N entries. As N
becomes large (i.e., “large” networks), the cost of
routing in its present form clearly becomes prohibi-
tive. The purpose of hierarchical routing is to reduce
this cost through the reduction of the RT length
without impacting the network performance.

In our previous study, we capitalized on the
intuitive idea of grouping nodes into ‘‘natural”
clusters and consequently provided one entry per set
of clustered destinations in the RT. That is, we dealt
with an m-level hierarchical clustering of the set of
nodes. We also observed that an optimal clustering
structure could be selected so as to minimize the
table length. Such an optimal structure leads to very
significant savings in table length. The price we pay
for this table reduction is an increase in the network
path length since we have somewhat less routing
information available at each node. Bounds were
derived to evaluate the maximum increase in path
length for a given table reduction. The bounds
demonstrated a key result, namely, that in the limit
of very large networks, enormous table reduction
may be achieved with no significant increase in net-
work path length. In other words, in the limit, hier-
archical routing schemes achieve a performance as
good as present schemes with very substantial savings
in storage and capacity.

In this paper we evaluate the performance of the
hierarchical routing (MHR *) in terms of delay and
throughput, and determine those values of N where
clustering becomes economical.

In what follows, we first recall the classic model
for network delay analysis due to Kleinrock [8]. We
observe that the model does not account for overhead
in nodal storage requirements and line capacity due
to routing updates, both of which become critical in
large networks. In this paper, after introducing a key
assumption which permits us to map hierarchical and
non-hierarchical adaptive routing into deterministic
(fixed) routing, we develop extended network queue-
ing models. These models serve in the evaluation of
the delay-throughput performance of the MHR as
applied to an interesting class of networks. In our
first model (based directly on the classic model in
[8]), we relate the gains obtained by hierarchical
routing simply to the relative table length I/N. In
other words, we consider an ideal situation where
infinite nodal storage is available and where the line
capacity used by the update information is still negli-

* M stands for the number of levels 7 in the hierarchy.

gible. As a result of this idealized situation and as
shown in our previous paper, Non-Clustered Routing
(NCR) schemes yields a network performance which
is superior to the MHR except in the limit of very
large nets where they are quite equivalent.

In the second model we account for the traffic
generated by the routing updates while keeping the
infinite nodal storage assumption. This model is the
first to exhibit the infeasibility of the NCR techni-
ques and the efficient behavior of the MHR’s for a
class of large networks.

In the third model the nodal storage is assumed to
be finite whereas the update traffic is considered
negligible. First, some new results are developed
which show the effect of finite storage on network
performance. Then, this model is used to evaluate the
MHR schemes. The MHR’s are found to achieve a
behavior similar to that obtained with our second
model. )

Finally our fourth model accounts both for the
routing updates and nodal storage in an approximate
way. This fourth model also confirms our earlier
observations which support the use of MHR in large
networks.

?

2. A Queueing Model with no Updates and no Storage
Limitation

In what follows we recall the major results for the
classic delay analysis in computer networks developed
in [8]. The key performance measure of a store and
forward network (S/F net) is the total average delay:
T that a message spends in the network. T can be
expressed simply in terms of the individual channel
delays.

L
T=22T, (1)
i=17

where \; = average traffic rate on channel i [msg/sec],
T; = average nodal processing plus queueing plus
transmission time on the jth channel [sec], M=
number of network channels, = total input rate
(network throughput). We have 7y =Z; yyjx where
Yjx = average message rate (msg/sec) from source j to
destination k. Moreover, making the assumptions of
external Poisson arrivals, exponential message length
distribution (identical for all messages), single packet
messages, error-free channels, no nodal processing
delay, independence assumption, deterministic rout-

ks
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ing and infinite nodal storage, the S/F net can be
modelled as a network of Jackson type queues
[4,10].

1 A |
T=—27 ——t—, @)
vi=1 .
where: 1/u = average message length [kilobits/mes-
sage], C;=capacity of channel i [kilobits/sec —
KBPS].
A simple relationshjp exists between the total

internal traffic A = 2, 1 A;, the total external traffic-

v, and the average traffic-weighted path 1ength A,
namely [8],

=Ny ' 3)

The average rate A\;(i=1, ..., M) can be computed
numerically, given the underlying deterministic rout-
ing. Fortunately, for some symmetrical networks (see
below) a simple analytical relationship exists among
these variables.

Remarks: A discussion of the above assumptions
and further extensions of this model can be found in
[2,3,5,8—10,14]. In what follows we systematically
relax the routing and storage assumptions.

Typically, a network is designed using determinis-
tic routing and then operated using adaptive routing.
Consequently the validity of our deterministic rout-
ing assumption depends critically on the difference in
behavior between deterministic and adaptive techni-
ques. In [2], Fultz finds a close agreement between
the two techniques. He shows in a 19-node applica-
tion that the difference in delays obtained with a well
chosen adaptive technique and with a near-optimal
deterministic technique is less than 5 to 10% almost
until saturation. The “adaptive” delay “tends to be
higher, mainly because of the line overhead utilized
by the update traffic. Fultz’s study is, of course,
dependent on the particular adaptive policy and net-
work considered. However, it demonstrates that ade-
quate adaptive policies can be devised to achieve a
performance very close to that of a near-optimal
deterministic policy. Further refinement of the above
assumption can be realized by including the line over-
head due to the-update traffic. This consideration will
become crucial when dealing with large nets, as we
show below.

With respect to the infinite nodal storage assump-
tion, it is fairly accurate when reasonable storage is
provided, however, this assumption often is unaccept-
able. This situation is very likely to occur in a large

network environment if the routing tables are not
reduced to a reasonable length. A model is presented
below to deal precisely with this question. First we
describe a class of networks for which we will obtain
explicit results.

2.1. A Class of Symmetric Networks

The class of nets to be considered in this paper is
composed of all those which belong to the family of
nets presented in [11]. Briefly, the networks con-
sidered are all the connected graphs upon which it is
possible to fit an m-level hierarchical clustering such
that all cluster subnets are of diameter (d) which is
bounded by a power law function of the number (1)
of nodes in that cluster: d < bn' + ¢, where b,c and v
are given constants. Moreover, they must also satisfy
the following properties:

i All nodes are equivalent with respect to the topo-
logy of the network; hence, for example, they are
of equal degree K.

ii All channels are of equal capacity C.

jii All external input traffic rates are equal: 7y =,

Yo v j’ k(} i k)

As an example, torus nets [7] fall into this category.

For this class of nets, the following relations exist:

Number of (simplex) channels: M = RN,
Total external traffic y = MV — 1) vo.

Furthermore, it is obvious that with this particular
topological structure, capacity assignment and traffic

requirement, that the optimal flow assighment [3,8]

is a shortest path routing. The selection of the parti-
cular shortest paths (if more than one exists) must
result in perfectly balanced flows, i.e., \; =Xo(i =1,
., M). Consequently the network path length n
becomes the average shortest path length 7, and so
7 = h = \/v. (Path length is measured in hops).
Also, the total internal traffic becomes A = MA,.
Hence,

Xo=hvy/M. “4)

If we let t=T; denote the average delay on any

channel (the same value for all channels), then from
Eq. (1) the average total delay simply becomes

T=ht. (5)
Moreover as a consequence of Egs. (2) and (4)

1
T=————. (6)

uC/h) — (v/M)
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This simply relates the delay T, the traffic v, the
channel capacity C and the network path length 4.

The last equation permits the interesting observa- '

tion that the net is equivalent (with respect to average
delay) to a single M/M/1 queue with an input rate of
v/M and service rate uC/h. This leads to the definition
of the network channel utilization.

uCM’ . ™
This definition will be used throughout the paper,
mainly for normalization purposes.

Since our main objective is to study routing in
large nets, it is necessary to specify the structure of
those large nets with respect to the number of nodes,
N, in some continuous way. Such a specification will
be referred to as a scaling scheme (or strategy).

2.1.1. A Scaling Scheme

As a network grows, a reasonable objective of a
scaling strategy is to maintain the average delay T
constant (say T=T,) and to let the total throughput
7 increase linearly with the number of nodes. Due to
the uniform traffic condition (yjx = 7o), the total
input rate per node is, consequently, maintained
constant, i.e., y/N=constant. Also since M =RN
then y/M is constant. Thus, from Eq. (6), in order to
maintain constant delay, the capacity must grow in
proportion to the network average path length, i.e.,

C=hCy. (8)
Substituting this into Eq. (6), we arrive at
¥/M = puC, — To' %)

which is constant with respect to N. Note with this
scheme that p is also maintained constant. Such a
property will not be true when dealing with network
models which take into account the updates and/or
the storage limitation.

In order to evaluate the performance of the MHR
_ schemes we must recall some of the results obtained
in [7,11] and introduce the additional assumption
discussed in the next section.

2.2. Modelling of the Hierarchical Adaptive Routing

In [11} we considered three hierarchical schemes:
the Overall Best Routing (OBR), the Closest Entry
Routing (CER), and the MNon-Clustered Routing
{NCR). We observed that NCR is equivalent to a
degenerate one-level OBR or CER. As a result and

throughout the balance of this paper we will refer to
the three routing schemes (OBR, CER, NCR) as hier-
archical routing schemes with the understanding that
m =1 refers to NCR where m is the number of levels.
Moreover we observed that the underlying optimal
clustering structure is completely defined once we
know the table length / or the number of hierarchical
levels, m. In [11] it was shown that given m, the
optimal table length is/ = mNY™ with 1 <m <InN.
In addition we let m take on non-integer values. In
what follows, m will be referred to as the degree of
clustering. (In a real application, we must, of course,
make m discrete by raising it to its upper integer value
and then choose the clustering structure which leads
to the best performarice.) In [7] we observed that
such a choice of clustering structure in general
achieves tighter bounds on the increase in path length
(E), and therefore we are justified in allowing m to be
a real variable. Note if m =1 then /=N, ie., a full
table length is required which corresponds to an
NCR.

The increase in network path length due to cluster-
ing can be computed numerically, given a specific
network and a specific MHR scheme. Fortunately, we
have derived bounds which allow us to conduct a

worst and/or best case analytical performance evalua-

tion of hierarchical routing for the class of networks
considered here. Recall that those networks consti-
tute a subset of the family studied in {11], and hence
we are able to use the following explicit expression
for the bound on the relative increase in path length
(for a table length, I = mN'/™):

h 1
0SS —-1<FE% —

. h F1<E aN — 1) N
NV — Nv/m
X|\Nb——+ —1

[(N”/’”—l i 1))

NUtHl _]V(v+l)/m N—-Nllm
b ‘CW_—I}

Here, h_ refers to the average path length with cluster-
ing

(10)

The bound * E is valid for both the OBR and the
CER schemes. Other bounds on the increase in path
length on a node-pair basis have also been derived; we
require one such bound in Section 4.

* In the numerical applications below a, b, ¢, and v will be
assigned values for torus nets, thatis,a = 1/2,b=2,¢c = -2,
v=1/2.

3
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Note also that the above bound is tight for m =
1= E£=0. As a result, the comparison between the
hierarchical and non-hierarchical schemes simply
reduces to the comparison of an MHR with m > 1
(OBR, CER) to one with m =1 (NCR).

Even with the above simple specifications of the
hierarchical adaptive routing scheme, the queueing
analysis is still far too complicated for an exact solu-
tion. This is true for any adaptive scheme because of
its dynamic nature. In the face of these difficulties we
make the following assumption:

Assumption 1

a. The performance of adaptive hierarchical routing is
the same as that of a deterministic routing policy
whose routes satisfy Proposition 8 in [11]. That is,
the length of the “fixed routing” paths are equal to
the minimum estimated path lengths as obtained with
an MHR.

b. With the deterministic routing specified above, and
with the class of symmetrical nets considered here,
there will be equal loads on all channels.

Assumption 1.a is motivated by our earlier remark
on deterministic routing and becomes more accurate
when we include the line and storage utilization due
to the adaptive routing in the fixed routing model.
~ Moreover, if the Jnain objective is to compare hier-
archical with non-hierarchial routing, then this
assumption appears to be quite acceptable.

Assumption 1.b is motivated by the highly sym-
metrical structure of the networks considered here,
and also by the fact that the main objective of an
adaptive policy is to balance the flows over all the
channels in the net,

Note that, due to the above assumption, NCR
(MHR with m = 1) is modelled by the shortest path
fixed routing which, as observed above, leads to the
optimal flow assignment for this class of nets.

In summary, a hierarchical routing procedure is
characterized by the table length'/ or equivalently by
the degree of clustering m, and by the path length h,;
it can be modelled by a balanced deterministic
routing procedure which results in paths of the same
']ength in our symmetric networks.

We now proceed with the performance evaluation
of the MHR schemes using our first model.

2.3. Performance Evaluation with no Updates and no
Storage Limitations

From the above considerations, the delay analysis
for our class of symmetrical nets is reduced to the

T, = .5sec
; ° / ‘,
-; uCq = 10 msg/sec e /;
PO
075! 7 /i
' 7 /o
N=10 /
+ w——’j/ /,/ ;
! /
Z o5
e
0.251 N- 102
I -
r
!  N=103
R —
0.0
0.0 02 0.4
LB(YJ7)

Fig. 1. The Lower Bound on Relative Throughput, LB(yc/v)
Versus /[N

one performed in Section 2.1, except that & is to be
replaced by h.. With the above scaling scheme (7' =
Ty, C=hCy), the ratio of throughputs * with and
without clustering is

Ye _ huCo/h, — 1/T, .
¥ uCo — 1/T,

From the above expression, the effect of clustering
can be seen in the reduction of the line capacity by
the fraction h/h..

We may now state an asymptotic result similar to
thatin [11]:
As the number of nodes, N, goes to infinity, the
throughput at constant delay obtained with an MHR
(CER, OBR) with a fixed m, approaches that of an
NCR, while the relative table length I/N, approaches
zero, i.e., with significantly less nodal storage and
channel capacity requirements.
This result is due to the fact that under these condi-
tions hcfh—~1 and /N~ 0. For the continuous
behavior of vy /y versus //N, we may apply Eq. (10) to
Eq. (11) and obtain the following lower bound:
LB(E) s WCLHE) ~(UTo) 7e (12)

Y uCo — (1/Ty) v

Fig. 1 illustrates the behavior of LB(y./y) with
respect to //N for several values of V. In this plane,
the optimal operation is obtained in the lower right
hand corner where //N =0 and y = y,. Similar proper-
ties as in [11] are exhibited here. We reemphasize the

an

* The notation vy, k. and 7, will be used throughout the
paper when dealing with clustered routing.
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Fig. 2. Degradation in Throughput at Constant Relative Table
Length.

fact that substantial table gains * can be obtained
with a relatively small degradation in throughput.
Larger table reduction may drive the lower bound
to zero. The asymptotic property is nicely illustrated
in the sharp behavior of the lower bound, for large N.

We note also that the curves in fig. 1 meet at the
point //N =1, LB(y./y) = 1. That point corresponds
to m = 1 where the bound is tight.

Fig. 2 shows the same information in a different
way, illustrating the behavior of LB(y./y) with
respect to V for several balues of I/N. We see that as
N increases, the cost incurred with a fixed relative
table length //N goes to zero.

3. A Queueing Model with Updates and no Storage
Limitation )
Lt

In this section we intend to account for the line
traffic generated by the routing updates (in the
evaluation of the A;’s) while keeping the infinite
storage assumption. )

As noted earlier, the average delay in our class of
symmetric nets is very simply related to the average
delay at any channel; therefore, we first analyze a
single channel and then generalize to a net.

* Recall from [11] that most of the table reduction is
obtained for small values of m, and the remaining reduction
up to the global minimum table length is obtained with a
much larger m (where m < In N).

3.1. Priority Model for a Channel

A simple and realistic Head-of-the-Line (HOL)
model [10] is considered here, mainly to capture the
effects of updates on the average time spent by a
data * message waiting to be transmitted on a
channel. We assume that updates are originated at
regular intervals of time (motivated by the ARPA-
NET procedure). An optimistic approximation to the
performance with aperiodic updates is to use a “nmo
update” model (Sections 2 and 4), or a more realistic
model would be to use certain distributions governing
their generation times. The latter possibility can
easily be included if we use the Poisson distribution.
Thus, our model for a channel consists of a single
queue operated with a HOL priority discipline and
the following traffic characteristics.

i Update traffic: Deterministic arrival process at rate
Au. Constant message length 1/u, [kilobits/msg].

ii Data traffic: Poisson arrival process at rate Ag. Ex-
ponential message length of mean 1/u [kilobits/
msg].

ili Queue discipline: HOL preemptive resume between
data and update traffic, with a higher priority for

updates and FCFS (first-come-first-serve) within.

each priority.
iv Channel capacity: C [KBPS].
The “preemptive resume” assumption in (iii) is intro-
duced to further simplify the analysis of the model.

The above model is slightly different from the
usual HOL model which considers the arrival pro-
cesses of all types of customers (messages) to be
governed by a Poisson distribution. However, the
methodclogy can still be used here to approximate
the average time in system for a data message.

The update traffic sees a D/D/1 system; hence, as
long as A, <p,C there is no queueing of update mes-
sages (A > py,C means that more than the total capa-
city is required by the updates). An arriving data mes-
sage will incur a delay from any message (data or up-
date) already in service, from all data messages
already in the queue and from updates arriving during
its time in the system as follows.

Delay due to messages already in queue: Let 1 be
the average number of messages in queue as seen by
our arriving message. Since data arrivals are Poisson,
then 7 is also the average number of messages in the
queue at any arbitrary time [10]. Therefore, if ¢ is

* A data message is differentiated from an update (control)
message.

e o s SR AR
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the average time in system (queueing + service) for a
data message, then because of our previous observa-
tion and from Little’s result, 7=2Xo(t — 1/uC).
Because of the exponential distribution of message
lengths, the average delay due to customers already in
queue is equal to 77/uC,

Delay due to the message in service: Let Y be the
residual life (remaining service time) of the message
in service and let £ denote the expectation operator.
E(Y) is the contribution to delay that we must eva-

luate. Conditioning on the type of message in service,

it is clear that

E(Y) = E[residual life of data message] >\—2,
. M

+ E[residual life of update message]
u

Hence,

N LA, 1
=— 42
EM uCuC  u,C2u,C°

Delay due to updates arriving while in system: A
data message spends an average time ¢ in the system.
During that time, on the average, approximately *

A, update messages arrive and get serviced; hence the

average delay due to these updates is approximately *
At (1 /1, C).

Finally, summing up all the delays incurred by our
arriving message and its own service time, we arrive at
the approximation

~ (/HC) + M\/2[1C]?)

e (Ro/uC) - (Au/1,C)
The above equation exhibits the effect of updates on
the message delay ovér one channel.

(13)

3.2. Network Model With Updates

Eq. (13), with X, replaced by A;, and Eq. (1) yield

the expression for the average delay in the network.

- It'is assumed that all channels receive an equal update
. Tate A,

Eqgs. (4) and (5) are still valid when we replace h

by h¢ for our class of symmetric networks operating

* We are indebted to T.J. Ott {12] for pointing out that At
is not an exact expression for the average number of arriv-
als: however, we choose to use it as an approximation. This
will yield an approximate expression for r in Eq. (13)
which in turn will yvield approximations in section 3.2
below.

with an MHR scheme. Using a similar notation as in
Section 2 (h, k¢, T, T., 7, Yc), we arrive at the follow-
ing throughput-delay relation which characterizes the
approximate performance of hierarchical routing.

. 1+ (ﬂ/ﬂu)o\u/zuuc)
€uC - he(y M) ~ (/) Ny )

Recall that the size of an update message, 1/, is
fixed and proportional to the length 7 (I = mN ™) of
the routing table. Hence, it is of the form 1, =€l
where € is the amount of storage (in kilobits) per
table entry. As an example, in the ARPANET, an
entry requires 16 bits of storage, hence € =0.016 =
1/62.5. For further normalization with respect to the
average data message, 1/u, we choose ¢ such that
1/uy = €lfu. (In the numerical examples we choose
1/u=1KB and € = 1/64 which closely resembles the
ARPANET))

The behavior of hierarchical routing may now be
studied for networks whose growth is governed by
our scaling scheme. First we must select the update
rate A, as a function of the network size V.

n

h

T, (14)

3.2.1. Scaling of A,

The main purpose of the routing updates is to
provide the routing decision algorithm with a good
estimate of network congestion. Since at each update,
exchange of information (not necessarily synchro-
nized among all nodes) occurs only between neigh-
boring nodes, then the propagation of a change occur-

ing in a certain region of the net to another region

requires a number of updates equal to the distance
separating the two regions. Consequently, as the net-
work grows and if we wish a change (conveyed
through the exchange of updates) to reach remote
areas within a reasonable time, then it is necessary to
increase the update rate as NV increases. We may also
argue that the “very” remote areas would not be as
concerned with that change as the closer ones; thus
the update rate probably need not increase as fast as
N. A realistic compromise would consists in the use
of higher update rates (as N increases) but only to
propagate less and less information about a region as
we move away from that region. This remark is again
a key motivation behind the hierarchieal routing.

From the above considerations emerge three pos-
sible specifications for A,.

i. Ay =22 = constant ,
. Ay = AN =aNAd ANYAS for a torus)
fi. Ay = aNY 28 (ANY420 for a torus) .

A Nl " 512 ¢ Gl i ok o At

E S AN
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Choice (i) represents the case whereby the update
rate is insensitive to a change in network size.

Choice (ii) appears to be more intuitive since the
update information needs on the order of h (average
path) periods to percolate throughout the net.

Choice (iii) is a compromise between the two
above; it indicates that routing information need not
percolate as fast in the entire net, but only within a
certain area comprising roughly N'/2 nodes.

The behavior of hierarchical routing may now be
studied for our class of symmetric networks. With our
scaling scheme, C=hCo, T=T,, and the network
throughput becomes
Yo _h 1 el Ao €

e 4Gy — o — e o . 15
MoRE T TR, 2uCeT, h (15)
For any routing to be feasible, the right hand side of
the above equation must be positive. Let us assume

Ay to be of the form A, = M (0 <x < 1),

3.2.2. Asymptotic Behavior

As the number of nodes goes to infinity and under
the constraint, 0 < x < v, for a hierarchical routing to
be feasible, its number of levels m must be greater
than 2/(v —x), For x 2 v there are no feasible hier-
archical routing schemes.

The proof follows readily when we replace / by
mNY"™ and h by 2A® in Eq (15), and we use the
property [see 11], that for a fixed m: N—>eoo=
hih.— 1. Then,if m > 2/(v — x):

.Y 1
Alrl_r,ngo M IJ’CO TO )

The above limiting throughput is equal to that
obtained in our previous model where no updates
were considered. It is a more realistic result because
now only a feasible routing [m>2/(v —x)] can
achieve that performance.

Applying the above result to our selected scaling
schemes for A, and using the fact that 0 <v <1, we
arrive at a value of 2/(v — x) (which is greater than or
equal to 2) for scheme (i), infinity for scheme (ii) and
4 for scheme (iii). As a consequence, only the first
and third schemes (for A,,) yield a feasible hierarchical
routing in the large network limit. Moreover a non-
hierarchical routing (m = 1) is always infeasible at the
limit of very large networks in the sense that for an
NCR to be feasible, A, must be a decreasing function
of N.

3.2.3. General Behavior
As in Section 2.1, a lower and upper bound on the

throughput can be derived using Egs. (10) and (15).
The expression for the approximated lower bound is

212
(19 ¢ L -] L
M) 1+E h To 2uCoToh

Let us examine the behavior of y./M with respect
to N and m (or equivalently //NV) by plotting its
bounds normalized by the maximum throughput per
channel uCy— Ty!'. The values selected for the
different variables are: uC, = 6 msg/sec, Tp = 0.5 sec,
A=0.07 uCy, € = 1/64. Recall that £ and / are given
in Eq. (10).

Figures 3, 4, and 5 illustrate the behavior of the
lower bounds on throughput with respect to N for
several values of the degree of clustering m. Lower
and upper bound envelopes are also plotted in those
figures (the upper bound curves themselves have been
omitted and only their envelope is shown). The opti-
mal m corresponding to a particular envelope as well
as the envelope itself, can be determined numerically.
Suvch an operation can easily be done by hand from
the graphs presented here. Given N, choosing # on
the lower bound envelope guarantees at least a
throughput equal to the corresponding point on the
envelope. Equivalently, given N we can determine the-
optimal table length which leads to the maximum
lower bound throughput. This fact is illustrated in
fig. 6 for Ay = 3.

Note also that the lower bound envelopes for A, =
A NP2, (figs. 3, 4) show an initially decreasing
and then slowly increasing behavior with respect to
N; the increase will eventually bring the curves close
to their asymptote 1. However, for A = NYRAS2
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Table 1
Critical values of N

Point at which NCR
becomes infeasible

Point beyond which
clustering is better

(A=0,m=1)
Ap =AY N = 2000 N =200
Aw=AdNE2 NV = 1000 N =150
M=V M= 300 N ~ 100

(fig. 5), the lower bound envelope is a decreasing
function of N which, as predicted earlier, will even-
tuall reach zero. This means that in the neighborhood
of a certain size N, hierarchical routing with this
update function altogether becomes infeasible. For
our values, that size is well beyond N = 108,

Finally Table 1 shows the approximate values of
the points where a non-hierarchical routing (m = 1)
becomes infeasible and also shows the points beyond
which a 2-level hierarchical routing surely becomes
more efficient (based on the lower bound). Note that
the faster the update exchange rate A, is, the smaller
are those critical values of V. '

In summary, even though the above study did not
account for the storage gains obtained with hierarchi-
cal routing, we were able to prove for a class of large
networks, that the MHR schemes are very efficient
when operated with an optimal table length and that
non-hierarchical schemes are infeasible. Next we
account for the gains due to nodal storage.

4. A Queueing Model with no Updates and with
Storage Limitation.

The purpose of this section is to develop and
analyze a Kleinrock-like model which takes into con-
sideration the limitation of nodal storage. Based on
that model, we will once again study the behavior of
hierarchical routing as applied to the class of sym-
metric networks. We choose not to account for the
effect of updates on the line capacity utilization, in
order both to model situations where updates can be
neglected and, mainly, to isolate the consequences of
firiite nodal storage on the network performance.

As in the previous section, this study will also
demonstrate a remarkable efficiency of hierarchical

_routing in large networks.
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4.1. A Loss-Queueing Model for Symmetric Networks

4.1.1. The Model

Again we consider the class of symmetric networks
and, in addition impose a constraint on the number
of buffers reserved for the store-and-forward func-
tion. As a result of the limited storage, three issues
arise: the validity of the exponential message length
distribution; the fate of the rejected messages; and
the sharing of the pool of S/F (store-and-forward)
buffers among the outgoing channels.

With respect to the message length, it is clear that
a maximum size must be imposed, as is always the
case in practical situations. As an example, in the
ARPANET the maximum packet size is equal to 1008
data bits. The ARPANET IMP S/F storage is divided
into buffers, each of which can accommodate a maxi-
mum size packet (plus header) and cannot be utilized
by more than one packet at a time. As a result, one
might feel that the assumption of exponentially
distributed packets should be replaced with a
constant length packet assumption. However,
measurements on the ARPANET [9] have shown that
the average size of a data message is roughly 250 bits.
The fact that the average message length is much
smaller than the buffer size, and that messages *
which do not fit in a single buffer occur with a very
small probability (and hence can be neglected), moti-
vates us to Keep the exponential message length
assumption. A better approximation perhaps would
be to assume a truncated exponential message length
distribution, but this makes the analysis much more
complicated and no closed form solution has been
obtained [1].

As for the rejected messages, we can assume that
they are either retransmitted by the sending node
(after a time-out, as jn the ARPANET) or are lost (as
with blocked telephone calls). The retransmission
mode is a more realistic assumption in general S/F

networks. However, this mode introduces strong.
dependencies in the stochastic.behavior of neighbor- -

ing (and even more distant) nodes [13] to the point
that an analysis seems out of reach. As a result, we
restrict our considerations to a loss model, in which
case the dependencies between nodes due to storage
limitation are eliminated.

Finally, with respect to the sharing of the pool of
S/F buffers among the outgoing channels, we assume
that accepted messages are first submitted to the

* Recall that we are assuming single-packet messages.

routing policy routine and then conceptually occupy
one buffer from a common pool of B buffers. The
routing decision is assumed to be fixed (determinis-
tic) and hence independent of buffer utilization.

Also, as with the independence assumption [8] we
will assume that the queue lengths in front of
channels in different nodes are stochastically
independent and that the input streams at each node
are governed by independent Poisson distributions.

As a result of the above considerations and
assumptions, the network can be considered as a col-
lection of independent nodes, each of which can be
modelled as R M|M|1 queues sharing a waiting room
of total size B. The traffic offered at each node is
governed by a fixed routing decision, and the
probability of blocking at a node is a function of the
sharing scheme utilized. Severa! such schemes have
been proposed and studied in [6,7] where, among
others, we consider the Complete Sharing (CS) which
is such that an arriving customer is accepted if any
storage space is available, independent of the server to
which it is directed. We assume the CS scheme in this
section.

4.1.2. Analysis

¥

Before we proceed with the analysis we make a -

few observations. Because of the symmetry of our
class of networks, we assume that the fixed routing
results in equal loads on each channel. The offered
load A, is defined as the input rate of traffic on any
given channel before acceptance or rejection by the
corresponding node. Moreover, all nodes are assumed
to contain the same number of buffers B and to use

the same CS sharing strategy. As a result, the pro-~

bability of blocking (to be denoted by Pg) is the same
at all nodes.
Because of the possibility of loss of messages, the

“offered external traffic y is no longer equal to the
" throughput of the network, which we denote by v (s

for “successful” traffic). In what follows, we intend
to find 7y, and the average delay T, for the successful
traffic in a network of this type.

" 4.1.3. Throughput versus load

v is now referred to as the traffic load. Let us
define P, as the probability that in steady state, a
message transmitted over the network reaches its
destination successfully. Clearly

Py =vlv - (16)

Since nodes are assumed independent, the probability
that a message is not rejected over k& hops is [1 —

o
o

oy



F. Kamoun, L

PB]k. We assume that a message in transit is subject
to rejection, whereas a message reaching its destina-
tion is always accepted.

Let 7}x be the rate of successful traffic from node j
to node k, and let 4;; be the path length between the
two nodes, then

7;1( = 7ik(1 - PB)hik .

The sum of 7jy is what we have defined above as 7.

Because of the uniform traffic assumption [7jx = 7o,
=NV - 1) 7,),

Yo =7 2327 (1 — PpYik .
jok

Let h be the discrete random variable: which
represents the distance in hops between a randomly
selected pair of nodes, as derived from the fixed
routing policy, given a specific network. Also, let
P [k =k] be the fraction of node-pairs at distance k
and let H(z) be the corresponding z-transform, i.e.,
H(z)=Z2"P [h =k]. As a result H(z) charactenzes
the lengths between pairs of nodes in a particular
network. As an example, for a torus network such
that N'/? is an odd integer (this condition is irrele-
vant for a large N) [7],

az(1 — NP0y
W-nQ1 -2

z(N”z—l)/2).

HE) = (18)

From the above considerations we find

Yoy =Ps= 25 (1 —Pgl*P. [k = k] = H(1 — Pg) .
k=1

(19)

4.1.4. Relation between the load v and the total
offered internal traffic X

A is now the sum of the offered input rates to each
of the network channels, so that X = MA,. Eq. (3)
(A =7y) is no longer true due to the possible loss of
messages. A similar approach, as used in [8] for the
derivation of Eq. (3), is considered here to derive the
correct relation between A and vy in this lossy
medium,

The contribution of v,,, the rate of traffic froms
Jto 1 (vs: = 70), to his simply

hse—1

E Ysr(1 — Py )k w

Pa Vst -
The contribution of all v, vields the value of A
1 —-H(l —Pg) 1-PF

Py 7 Py Y

A= (20)

a7y~
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The above relation and Eq. (19) are quite general;
they only assume that all nodes are independent and
have an equal probability of blocking Pg. Again, H(z)
can be determined analytically or numerically given
a particular network and the associated fixed routing
policy.

Note that if Pg=0, ie., infinite nodal storage
assumption, Eq. (20) becomes undefined; however,
application of L’Hospital’s rule results in A = H'(1)y
where H'(z) is the derivative of H(z) with respect to
z. H'(1) is, in fact, equal to the average network path
length; hence we are back to the expression derived in
[8] Ge., A =n7).

4.1.5. Average Delay of Successful Traffic

Due to the symmetry of our class of nets, a non-
rejected message will incur the same delay ¢ at each
hop; therefore the average network delay is,

T="n,, 20

where ng is the average path length of the successful
traffic. Note, we expect 7y to be smaller than A.
Intuitively, this is due to the fact that messages which
travel on longer paths are more likely to be rejected.
The determination of 7, follows a derivation similar
to that of P;. From the definition of the average path
length [11]

4? Z}; itk

ng =

_;s_ ;? (1- PB) ]k7/khjk

Grouping together all paths of length k, and using the
definition of H(z), wer arrive at

1—PB _ H'(I _PB)‘
=, H(I—PB)-(I—PB)m-

= h [recall that H'(1) =

Note that if Pg = 0, then 7
hand H(1)=1].

If we let Pp— 1 and apply ’Hospital’s rule to the
above equation we arrive at /i, = 1, [recall that H(Q) =
0]. This result indicates that in the limit (Pg— 1)
only 1-hop traffic can ever be successful.

4.1.6. Probability of Blocking

As noted earlier, 2 node may be modelled by R
MIMI1 queueing systems with a shared finite waiting
room of size B. Each server is offered an input rate

(22)-

-

.
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Xo(Ro = A/M), and has a service rate equal to uC.
Among the sharing schemes studied in [6,7], Com-
plete Sharing (CS) is optimal when p = \/uC is small
and behaves fairly well for p up to a value close to 1.
Below, we show that the maximum throughput vy is
obtained for p < 1. As a result it seems reasonable for
us to choose the complete sharing scheme. However
under heavy traffic conditions or if a retransmission
mode is used or if the channels receive very
unbalanced traffic loads, then a different scheme may
be necessary.

The analysis of the complete sharing scheme leads
to an expression of Pp in terms of Ao/uC which, when
combined with Eq. (20), results in the system of
equations below.

N = —HLIB— Pg] ;_4 @
B+R - 1\(A B (23)
Py- ( R -1 )(uC) (b

I

The average delay in the network is then

ren e 2, (5 ) - (224

R-1 uC R
B-1 -1
xo)B (K+R—l o\ X
(EREERIET Y
uC o/ KZ;O R—1 NaC

(24)

From Eq. (23, we have two relations between A, and
Pg. The first relation (a) shows that A is a mono-
tonic decreasing fungtion of Pg whereas the second
relation (b) shows that Py is a monotonic increasing
function of Ag. As a result, there exists a unique solu-
tion for A and Pg which can be determined using any
converging iterative procédure. One such procedure is
given in [7].

The limiting throughput of the network obtained
with an infinite traffic load is

lim 7, = H'(0) MuC . (25)

y—r®

B+R -1

This limiting result has the following simple inter-
pretation. First, H'(0) =P, [k =1] is the fraction of
node pairs at distance one (i.e., neighboring nodes),
and BuC/(B+R —1) is the limiting throughput of
any channel of the R M{M11 system of queues (with

a CS scheme). As a result, the limiting throughput
represents the fraction of successful traffic which has
to travel over a single hop. The other (finite) fraction
of initially successful traffic has to travel over at least
one other hop; in trying to do so, it will compete
with an infinite amount of traffic generated at the
next node, and thus it will be rejected. This checks
with the previous result: Pg = 1 = ng > 1.

4.1.7. Application of the Loss Model to Torus Net-
works

Let us consider a torus (i.e., R = 4) operating with
a fixed shortest path routing whose z-transform is
given by Eq. (18). Of interest is the study of the
behavior of the successful traffic A; with respect to
the load v, as well as the behavior of the delay T"and
the probability of loss 1 — P;.

Numerical results are shown in Figs. 7, 8 and 9.
These results were obtained for N =121, and uC=20
msg/sec. More precisely, the graphs show the nor-
malized traffic and delay and loss probability. The
normalization is based on Eq. (7) which defines the
utilization of the net, and on Eq. (6) for the delay.

Recall that & = {N'/2/2 for a torus (with N'/2 an
odd integer). Fig.7 shows that as vy increases, v,
increases to a maximum value and then decreases to
its limiting value in Eq. (25). These results are similar
to that of a contention system, except that the non-
retransmission (loss) of rejected messages eliminates
the possibility of unstable states.

Note that if B = e then 7, is equal to v for p vary-
ing from 0 to 1. For p>1 a steady state solution
does not exist; this is no longer true for a finite buffer
size. However, with limited storage, as p increases
beyond 1, the throughput decreases quite a bit!
Another effect of finite storage is reflected in the
behavior of the average delay T which asymptotically
reaches a constant value as p goes to infinity. For p >
o (i.e., y=> ) only l-hop traffic can be successful
[see Eq. (25)], and then the asymptotic value of T
corresponds to the delay on one hop (i.e., at one
node) under the condition of an infinite input rate.
From [7], that value for one node is

lim uCr=B/(B+R - 1);

proo
thus
lim uCT/h =B/[(B+R - 1) h].

p—roo

As the number of buffers B increases, the plots
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Fig. 7. Normalized Throughput ps, Versus Normalized Load
p, fora 121 Node Torus with Storage Limitation.

show substantial improvement in maximum through-
put in the region of small B(B < 30), whereas as B
gets large tlie improvement becomes less significant.
The maximum throughput asymptotically reaches 1
as B goes to infinity. This phenomenon is clearly
shown in Fig. 9 where the probability of loss, 1 - P,
is plotted versus the normalized load for different
values of B. Furthermore, a larger B improves the
network throughput but yields larger network delays
(see Fig. 8).

In summary, we are now able to evaluate the
importance of buffer storage, and as expected, small
values of B can degrade the network performance
significantly. For the example above, at p = 1,B=20
reduces the throughput to roughly 0.68 of that which

4

10.0 LR

yCo = uC/h = 3.81 msg/sec B8=70

Fig. 8. Normalized Delay pCoT verus Load p, for a 121 Node
Torus with Storage Limitation.

10.0

Fig. 9. Probability of Loss for a 121-Node Torus with Sto-
rage Limitation.

could otherwise be obtained with an infinite number
of buffers.

4.2. Performance Evaluation of Hierarchical Routing

The above model and Assumption 1 will now' .

allow us to study the behavior of hierarchical routing
for the class of symmetric nets. We must, however,
extend our scaling schemes to scale the nodal storage

(B).

4.2.1. A Buffer Scaling Scheme

As seen in the conclusion above, the effect of B is
naturally characterized by the maximum throughput
7¥s» OI, using our normalized notation, it is character-
ized by the maximum of p,. Under the conditions of
Section 2.1, the scaling scheme maintains p constant
as V varies. It is now natural to attempt to keep the
maximum pg constant. With this objective in mind,
let us observe the effect of storage limitation first in a
single node situation and then in a network environ-
ment. From Eq. (23) we see that Py depends only on
Ao/uC and that constant B will result in a constant
Pp. In a network environment, keeping Py constant
will still result in a smaller probability of success P, as
the network grows. This comes about because of the
increase in network path length (aA") which results
from a larger V. It is then necessary to increase B
with &V, in order to maintain max p constant.

An ad-hoc (heuristic) scaling scheme for B has
been devised which, as we will see, satisfies our needs
over a large range. Such a scheme is

B =[Boln h] - (26)

T L R T

LRI
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Fig. 10. Buffer Scaling: Normalized Delay and Maximum
Throughput.

This scheme combined with the scaling of C(C = hCy)
has been tested on the torus nets as shown in Fig. 10
where the maximum pg and the corresponding delay
are plotted versus the network size N. The maximum
ps is computed numerically using a Fibonacci search
[13].

The curves show that our scaling scheme is quite
acceptable, especially when & > 1000. For that range
of N. the maxima of p; lie between 0.7 and 0.8,
Further graphs showing the probability of success P,
and the average path length of successful traffic nor-
malized with A, ng/h, at those maximum points are
available in [7]; both functions increase with N to
values close to 1 (for N =10%,ng/h =1, p, =0.95).

4.2.2. Behavior of Hierarchical Routing

Recall that Assumption 1 led us to consider deter-
ministic routing to model an adaptive hierarchical
routing. If we know the distribution of the path
length of the equivalent routing, we can use the loss
model and scaling scheme to predict the behavior of
such routing schemes as m and N vary. Once again,
we use the bounds derived in [7,11] to characterize
the message path lengths which result from hierarchi-
cal routing.

4.2.3. Distribution of Path Length

Since the distribution of path length deals with
paths on a node-pair basis, we can no longer use the
bound £, which was only valid for the average
distance. Instead we use the more general bound on
individual paths (to be denoted by A)

m-—1

hS, —h, <KA= 2 dy Vs, t network nodes
k=1

st

where dy is an upper bound on the diameter of any
kth level cluster {[11]. However this bound, always
true for CER, is only valid with OBR if s and ¢ belong
to clusters at lower levels than the mth level cluster
(entire net). The fact that first, A is a very generous
bound, and second, that we expect OBR to behave
better than CER, lends credence to our use of A as an
approximation on paths for the OBR scheme.

As a result of the above considerations, the con-
clusions reached below are rigorous for the CER
scheme, which is then sufficient to prove the effi-
ciency of hierarchical routing in large networks.

For our class of networks and for an optimal
clustering of degree m, we have
NY — No/m
WT+ cm—-1).

Note again thatm =1 = A=0.

A “best case” and a “‘worst case’ distribution can
now be defined if we assume respectively that hS, =
hgrand b, = hg, + A,

The “best case” distribution corresponds to the z-
transform H(z) of the shortest paths in the network.

The z-transform Hz) of the worst case distribu-+
tion can be found by observing that the distribution
of h¢, is simply a shift of kg, by an amount A at
most. Thus H(z) = z2H(z).

Since m=1=A=0, we also have that m=1=
H/(z) = H(z). This fortunate property again allows us
to compare a lower bound performance of the MHR’s
with the exact performance (within our model
assumptions) of a non-hierarchical scheme.

A=b

4.24. Buffer Assignment and Feasibility

Recall that in this study we intend to account for
the storage utilized by the routing tables. The size of
such storage is a linear function of the table length
and counted in number of buffers it is equal to

[e21]

where 1/e, is the number of entries which fit in one

‘buffer (in the numerical applications below €, is

chosen equal to 1/64). As a consequence, if the total
number of buffers to be shared between the routing
table and the S/F function is as defined in Eq. (26),
then the number of buffers strictly reseved for the
S/F function is

B=[BoInk] - [e,1].

With an optimal clustering of degree m, and for our
class of symmetrical nets (h = aA"), the above equa-
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tion becomes

B =[Bo(lna +vln NM)] - [e;mN1/m] . @27)

For a hierarchical routing to be feasible, B must be
greater than or equal to one; we conclude that:

i. For a fixed m, the routing becomes infeasible for
networks of size larger than a critical number N N,
is the solution of B =0 in Eq. (27) and it obviously is
an increasing function of m.

ii. For very large networks, and under the condi-
tion Bou = €,e, only a hierarchical routing operating

with a globally minimized table length is feasible, i.e., -

m=m,21InN;hencel =mN'/" =¢ln N.

In summary, as NV gets larger, it becomes impera-
tive to move toward more clustering, eventually
reaching a globally minimum table length. The deci-
sion to use a higher degree of clustering m should be
weighed against the degradation incurred by the
corresponding increase in network path length. This
phenomenon is illustrated in the numerical applica-
tion below.

Numerical Application

From the above considerations, the application of
the loss model to a network operated with a hier-
archical routing, results in the evaluation of lower and
upper bounds on the network throughput.

The lower bound performance is characterized by

vs =HJ{1 - Pg)7y. (28)

The probability of blocking Pg is the solution of Eq.
(23) where A is replaced by H.. With respect to the
delay 7, let H;C. be the average path length of the
successful traffic. Replacing H(z) by H(z) in Eq. (22)
we arrive at nS =7 ﬁ;A; therefore, T=(ns+4) 1t
instead of Eq. (24).

The upper bound performance is obtained by set-
ting A=0. ' :

In 7], we first evaluated the performance of an
MHR as applied to a network of size N = 1681. We
found that if we limit our considerations to an opera-
tional range of p (i.e., p is only allowed to vary from

.0 up to a value sligthly larger than the one producing
the maxima pg, roughly 0 < p < 1), then the value of
m which leads to maximum ps also leads to the best
performance over that entire range. As a consequence
we restrict our observations below to the behavior of
max p5 (lower or upper bound) with respect to N and
for a set of values of m. We take max pg as the
measure of performance of interest to computer net-
work design. -
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Fig. 11. Maximum Throughput Obtained with the Hierarchi-
cal Routing Model with No Updates and With Storage Limita-
tion.

Fig. 11 illustrates the behavior of the maximum
normalized throughput as obtained from the lower
and upper bound considerations [Eq. (28)], with
respect to NV for several values of m. Lower and upper
bound envelopes are also plotted.

A few remarks emerge from the observation of
Fig. 11. These remarks are, in general, quite similar to
the ones stated at the end of Section 3, namely with
regard to the optimal degree of clustering (m) for a
given N, and the feasibility and efficiency of
hierarchical routing. Before we proceed, let us note
that the jagged nature of the curves is due to the dis-
crete changes of B [see Eq. (27)]. This fact is more
accentuated for smaller values of N where B is small,
and consequently a change of one unit is relatively
noticeable. Round-off errors, as well as errors due to
our numerical algorithms for finding Py and espe-
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cially max pg (Fibonacci search), also contribute to
this jagged behavior.

Hierarchical routing with an appropriate degree of
clustering, m (equivalently with an appropriate table
length), guarantees that the max pg (with respect to
N) will lie between the upper and lower bound
envelopes. It is quite remarkable that the lower
bound envelope remains relatively flat (around 0.6),
for N beyond one hundred. Moreover, the upper
bound envelope is very close to the curves obtain in
Fig. 10 where we assume no storage was required by
the updates. This means that at the point (N, m)
corresponding to those envelopes, the storage
required by the updates is relatively negligible. As a
consequence, the gap existing between the lower and
upper bound envelopes is mainly caused by the
increase in path length A, ’

Finally, let us note that the performance of a non-
hierarchical routing (this is the m =1 curve in both
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Fig. 12. Network Delay at Maximum Throughput with the

parts of Fig.11; note these are the same curves in
both parts since the m =1 analysis is exact) deterio-
rates very rapidly for values of N around 1000, and
that for N greater than roughly 250, hierarchical rout-
ing clearly becomes superior.

Fig. 12 illustrates the behavior of the normalized
delay at the maximum points of Fig. 11 with respect
to N. The curves in the upper half of the figure
represent the delay at the maximum throughput as
obtained from the lower bound considerations, while
the curves in the lower half correspond to the upper
bound considerations. Equivalently, the curves show
upper (top curves) and lower (bottom curves) bounds
on delay at maximum throughput for a given network
size N and degree of clustering nz (i.e., for a given
table length 7 = mN'/™),

5. A Queueing Model with Updates and Storage Limi-
tation

In this section, we apply our previous results in
order to devise a model whereby we account borh for

line capacity and nodal storage used for routing. g

The R M|M]|1 single node medel with a finite
number of buffers B must now be modified in order
to account for the updates. Because of the results in
Section 3.1, a channel can be modeled by an HOL
priority queue (MIM|[1, D|D|1). This is, however a
major obstacle in an analytical solution. A more
careful observation of the approximate analysis of the

HOL system [Eq. (13)] shows that the effect of the .

updates is primarily to reduce the line capacity avail-
able for data traffic from C to (1 — p,) C. A second-
ary effect is the added term \,/2(i,C)? in the numer-
ator of Eq. (13); we neglect this term in our simplified
model here.

Moreover, we will assume that the handling of
updates utilizes some storage (working storage) other
than the S/F area.

As a result of the above considerations, our study
here is now reduced to the one performed in Sec-
tion 4, where C is to be replaced by (1 —p,) C. A
numerical application in [7] assumed the same
environment as the one used to obtain Fig. 11 and
Ay = NYANG/2, where A8 =0.14uC,. The results were
found to be quite similar to those in Figs. 11 and 12.
The effect of updates was seen in the drop of the
maximum normalized throughput (lower bound) by
roughly 0.05, except for very large A’s where the
drop became very small. In addition, hierarchical

-
%
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routing was superior to non-hierarchical routing for N
at around 180 instead of the previous 250.

6. Summary

In this paper we demonstrated the following for
a class of symmetric distributed networks:

i. In an ideal situation of sufficient storage and line
capacity, it is no surprise that the performance of
non-hierarchical routing is, in general, better than
that obtained with hierarchical routing. However, in
the limit of very large nets they become quite com-
parable! Moreover the hierarchical system gives
enormous table reductions (and this provides very
significant savings in nodal storage and line capacity).

ii. With a more realistic situation and with reason-
able assumptions on network growth, hierarchical
routing becomes not only a necessity for large nets,
but also it preseves a remarkably good network
performance for a phenomenal range of network
sizes.

The particular numerical examples studied in this
paper show that the transition point where hierarchi-
cal routing surely becomes better than a non-hier-
archial one, occurs for relatively small N (between
100 and 200).

Indeed, for a variety of performance and economic
reasons, we observe that the new public and private
packet switched networks (e.g., TELENET) are hier-
archical in structure even for 50 to 100 nodes.
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