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ABSTRACT

A large class of queueing disciplines is defined for Poisson arrival
statistics. For this class, a Conservation Law is proven which con-
strains the allowed variation in the average waiting times. Specifically,
defining pp as the product of the average arrival rate and the average
service time for customers from the pt priority group (where the pri-
ority system is any queue discipline included in the defined class) and
Wp astheir average waiting time (in queue), the Conservation Law states
that = Pp Wp is invariant over the set of queue disciplines in the class.

INTRODUCTION

When one considers the many classes of queue disciplines which have been analyzed
(for example: last come first served, Wishart [10]; random service, Vaulot [9]; head of the
line, Cobham [2]; delay dependent, Kleinrock [3]; etc.) and compares these to the first come
first served discipline, one suspects that some measure of the average waiting time in all these
systems should remain constant. In fact, it is quite reasonable to expect such an invariance
based on the simple physical argument that some customers are given preferential treatment,
and so need not wait as long as they would in a first come first served system; consequently,
lower priority customers are forced to wait some additional time.

Indeed, we find that there is a law of conservation which holds for queueing systems
subject to a large class of disciplines. For this class, the Conservation Law says that for a
fixed set of arrival and service statistics, a particular weighted sum of the waiting times is a
constant independent of queue discipline.

THE MODEL

A sufficient set of restrictions to define the class under consideration is as follows:

1. All customers (units) remain in the system until completely serviced (i.e., no
defections);

2. There is a single service facility which is always busy if there are any units in the
system;

*Material similar to this appears in a book by Leonard Kleinrock in the Lincoln Laboratory
Publication Series entitled, Communication Nets; Stochastic Message Flowand Delay (McGraw-
Hill Book Co., N.Y., 1964.

TThis work was done while the author was employed at Lincoln Laboratory (operated with sup-
port from the U.S. Army, Navy, and Air Force), Massachusetts Institute of Technology, Lex-
ington, Massachusetts.
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3. Pre-emption is allowed only if the service time distributions are exponential, and
the pre-emption is of the pre-emptive resume type;

4. Arrival statistics are all Poisson; service statistics are arbitrary; and arrival and
service statistics are all independent of each other.

It is assumed throughout that the systems under consideration are in the steady-state
equilibrium. In general, this is equivalent to requiring that the system has been operating for
a long time, and that p < 1 where p, as usual, is the product of the average arrival rate of
units and their expected service time [see (4)]; however, in some of the priority systems stud- (.
ied, it is possible to have p = 1 and still obtain a steady-state type solution for some of the
higher priority units. For a full discussion of this aspect of the problem, the reader is re-
ferred to Phipps [7].

Specifically, we define a queue discipline as a system in which an entering unit is as-
signed a set of parameters (either at random or based on some property of the unit) which
determine its relative position in the queue. This position will vary as a function of time due
to the appearance of units of higher priority in the queue. At any time t, the priority of a par-
ticular unit is calculated as a function of the assigned parameters; the higher the value obtained
by this function, the higher the priority. That is, the notation used is such that a unit with pri-
ority 4 is given preferential treatment over a unit with priority a4, where 49 > dq- When-
ever a tie for the highest priority occurs, the tie is broken by a pre-determined rule (such as
first come first served, random selection, and so on).

Consider a total of P different priority classes. Units from priority class p (p = 1,2,
. .., P) arrive in a Poisson stream at rate )‘p units per second; each unit from priority class
p has a total required service time selected independently from an arbitrary distribution, with
mean l/up. We define

P
(1) 3 Z -
p=1
1 P
@ = ) /)
p=1
(3) By ® Ap/up,
and
P
(4) p=A/u=pr.
p=1

We further define

Wp = expected value of the time spent in the queue for a unit with assigned

parameter p.
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THE CONSERVATION LAW
THEOREM 1:* For any queue discipline and any given arrival and service time pa-
rameters subject to restrictions 1-4 above,

P
(5) Z pp Wp = constant with respect to variation of the queue discipline.
p=1

where P represents the total number of groups to be distinguished in the traffic. In partieular,

B [o/(1-p]Vy 0=p<1
(6) L ppW, = ,
‘ p=1 © p=1
where
P
() vy = (1/2) Z )\pE(tpz),
p=1

and E(tg) = second moment of service time distribution for group p.

V1 may be interpreted as the expected time required to complete service on the unit
found in service upon entry, for a first come first served system. That is, convert the system
at hand to one in which the same arrival and service time distributions apply, but where the
entire priority and pre-emptive structure is removed and the system therefore operates on a
first come first served basis. Thus, V1 is itself independent of the particular queue discipline
chosen.

CONCLUSIONS
Note that the Conservation Law constrains the allowed variation in the W_ for any

p
discipline within the wide class considered. If we form the sum

P
®) ) 0/MW,
p=1

(which weights the expected waiting time of the pth priority group by its relative arrival rate

X../1), the Conservation Law says that this sum is a constant in the case where all p are
equal. This sum (if multiplied by A) represents the average number of units in the queue (see
the appendix). If we form the time-averaged waiting time T

%*See the appendix for proof of this theorem. Along with the proof, we state and prove two
related corollaries.

tPhysically, we may think of this average as the following. Let us sample the system at ran-
dom points in time; each time we sample, we record the time spent in the queue by the unit
currently being serviced. The average value of this set of numbers is the average we are
referring to.
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: ' P
©) ) 0 Au) W,
p=1

(which weights the Wp not only by ?\p/)\, but also by 1/ Hps the average service time of a p
type unit), then the Conservation Law says that this average is a constant.

In conclusion, we state that the Conservation Law probably holds for a more inclusive
class of queue disciplines than that described by restrictions 1-4. Indeed certain disciplines
with non-Poisson arrival distributions have been investigated (see for example, Kleinrock [4])
and have been shown to obey the Conservation Law.

APPENDIX

We make extensive use of a well-known result in queueing theory in this appendix. The
result was conjectured by many researchers, and recently, a formal proof of its validity was
published by Little [6]. Roughly stated, the result says that the expected number, E(n), of
units in a queueing system which has reached equilibrium, is equal to the product of input rate,
A of these units to the system, and the expected value, 7, of the time spent by these units in
the system, i.e.,

(10) E() = AT.

Certain weak restrictions are placed upon the queueing process, but these need not concern us
since all the systems with which we deal satisfy these conditions.

The definition of system in this equality is left unspecified, and so, we may choose to
define it as the queue itself, in which case we use the notation 7 = W; or we may choose to de-
fine it as the system which includes both the queue and the service facility, in which case we
use the notation 7 = T. In addition, we may choose to separate the units in the system into a
set of subgroups, in which case, the equality above holds for each subgroup separately (i.e.,
labeling the pth subgroup by the subscript, p, we have E(np) = Ap T where Tp WAy take the
form Wp or Tp, depending upon the choice of the definition of the system).

PROOF OF THE CONSERVATION LAW

Let us define U(t) as the total unfinished work* present in the system at time t. In
particular, U(t) represents the time that it would take to empty the system of all units present
at time t, if no new units were allowed to enter the system after time t. A typical section of
U(t) might look like the graph shown in Fig. 1.

The instants ti are the times of arrival (independent and Poisson) of new units to the
system, each unit having its service time, \ chosen independently from some distribution.
The U(t) function decreases at a steady rate of 1 sec/sec as long as U(t) is positive; it jumps
by A at the times ti’ and once having reached zero, it remains there until the next unit's

*Benes [1] defines a function W(t) similar to U(t), which he calls the virtual waiting time, which
is the time a customer would have to wait for service if he arrived at time t in a first come
first served system. U(t) is distinct from W(t) in that it does not, in general, represent a cus-
tomer's waiting, but rather, represents the backlog of work from the service facility's point
of view. When service is given in order of arrival, then W(t) and U(t) are identical.
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u(t)

Figure 1 - Total unfinished work, U(t), in the system

arrival. Now, it is clear, that the following limit is well-defined (and exists whenever p< 1
for the system under consideration):

i i
W = lim —f U(t) dt.
T—w T 0

Thus W is defined as the time average of U(t).

Let us restrict the class of queueing systems that we consider to those which satisfy
the conditions 1-4. In particular, these first three restrictions produce a U(t) function which
is a function only of the vy and the ti. This is true since the only times that U(t) increases is
at those times (ti) when a new unit enters the system bringing with it a required service time
Vi The third assumption guarantees that pre-emptive disciplines introduce no new work into
the system. Aside from the time (ti) when U(t) jumps, it must decrease at a rate of 1 sec/
sec (as long as it is positive) since the second assumption forces the service facility to be
busy working whenever any unit is in the system; as long as U(t) is positive some unit must
still be in the system. The U(t) function cannot jump downward discontinuously since this
would correspond to the premature departure of an incompletely serviced unit and this is pro-
hibited by the first assumption. As far as U(t) is concerned, the order in which units are
serviced is immaterial since the total unfinished work is what U(t) measures. Thus under
these restrictions, it is clear that no matter what discipline is used (priority, pre-emption, or
what have you), only the set ti and vy determine the form of U(t), and as long as the same set
of t; and v; are involved, the function U(t) will be the same. It is further obvious, that no
matter which U(t) function turns up, as long as the same statistics are used for the t and Vi
the expected value W, of the unfinished work will be the same.

One recognizes that the expected value of the waiting time (in queue only) for a unit in a
strict first come first serve discipline is just W (i.e., the waiting time is exactly equal to the un-
finished work in a Poisson arrival first come first served system). Now, in view of the indepen-
dence of W to the particular discipline used, we proceed to calculate Wfor a strict first come first
served discipline; the calculation consists of deriving an expression for the expected value of
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the waiting time (in queue) since we have seen that this value is just W itself. We consider
first, the case 0 =p < 1.

Accordingly, let us consider the value of U(t) at an arbitrary instant of time. Let there
be n_ type p units present in the queue at this time; also, let t:i represent the time which is
yet to be spent in service by the ith unit 2112y np) of type p. Further, let t; be the
time required to complete service on the unit found in service at this time. Thus, U(t) may be

written as
p "

(11) U =ty + Z Z B
p=1 i=1

We have separated the units in the system into P classes. This is done in anticipation of ap-
plying the result of this derivation to priority systems, etc., which have P classes of units.
Now t,, tip’ n, are all random variables. Let us next form the expected value* on both sides
of (11):

P ©0 np
(12) W vy ). ). vy ) B

p=1 n,=0 i=1
where clearly,T E(to) =V, and r(np) is the probability that n, type p units are present in the
queue. We define

E(tip) = l/llp’

where all service times for type p units are chosen independently from the same distribution
(not necessarily exponential)f whose mean is l/up. Thus (12) becomes

P o)
W=V, + Z (l/up) Z npr(np).
p=1 : np=0
Now, from (10) we recognize that
0
Z Pl = 4 W
np=0

Thus, we arrive at the following general form for Ww:

*Note that (11) is capable of yielding more relationships of the type stated in (6). These may be
obtained by first raising (11) to the nth power and then taking expected values.

TEquation (7) which gives an explicitexpression for V), has been derived by a number of authors;
for example, a simple derivation may be found in Saaty [8, Sec. 11-2.1a].
In the case of pre-emption, we insist upon an exponential distribution of service time (see as-
sumption 3) which, due to the memoryless property of the exponential distribution, allows us
to say that the expected time remaining for any pre-emptied unit is still l//.Lp.
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(13) W=v;+ Z Pp Wy -

Let us now evaluate W by considering a strict first come first served discipline with Poisson
input traffic; this implies that all waiting times, Wp are equal, and in particular, W_ =W for
all p since U(t) represents the virtual waiting time in the first come first served case. Thus,
we convert (13) to

(14) W =v,/(1-p).

Substituting the value of W, as given by (14), into (13), we obtain

Py W, = lo/(1-p)]Vy,

AR

which establishes (6) for 0 = p < 1.

For the case p = 1 we need only recognize that the input traffic rate exceeds* the
service rate in which case we see immediately that at least one of the W_ (where p_> 0)
grows without bound. Of course, in such a case, we have no steady-state solution. This com-
pletes the proof of the Conservation Law.

It is convenient to digress at this point in order to illustrate a simple method of estab-

lishing the result,
P
Vl = Z Pp/IJ-p

p=1

for exponentially distributed service times. Let us define Tn as equalto W_ + (1/ up). Also
define (1/ ul')) as the expected value of the additional time reﬁuired by a unit of type p, given
that this unit was still in the system at an arbitrary instant of time. Accordingly, the expected
value of the unfinished work is

P
(15) W = ZI: Ap Ty/ by
p:

where, once again, we have used (10). Taking advantage of the rn.emoryless property of expo-
nential distributions, we come to the conclusion that

1]
l/up = 1/ by -
Using this, as well as the substitution Tp — Wp + (l/up) in (15), we find that

*For p -» 1, we note that [p/(1-p)] V] approaches w. The limiting case for p = 1 is discussed
fully by Lindley [5].
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P P
w =Z (py/ bip) +Z PpWp-
p=1 p=1

Comparing this to (13), we conclude that, for exponential service times,

P

vy = Z pp/up.

p=1

COROLLARIES TO THE CONSERVATION LAW,
AND THEIR PROOF

There exist priority disciplines for which p = 1 and for which a subclass of the pri-
ority groups obtains a bounded steady-state solution for W_. In particular, this is true for the
head of the line discipline studied by Cobham [2]. If we consider such systems with 0 = p, we
expect that some of the Wp may grow without bound; let us label this set with the indices
p=12,...,j-1. For p=j, j+1,..., P we expect* bounded W_. The Conservation Law
holds, of course, but we wonder what conservation constraints on the waiting time may exist
for those groups with p = j. We express these constraints in the following two corollaries.

COROLLARY 1: For 0 = p and a head of the line priority discipline with no pre-
emption, and under restrictions 1, 2, and 4 above,

[

(16) Pp Wy, = [8/(1-8)] (v;+V)),
pP=]
where
P
= 2
(17) vy = 1/2 Z ApE<tp),
p=]
' 2
(18) vj = (/2) Aj_lE(tj_l),
P
(19) j = smallest positive integer such that Z pp <
p=j
P
5 =Z Pp
and p=j
0 p<1
(20) f=

(l’sj)/pj_l pZ 1

*Once again, the reader is referred to Phipps [7].
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P
g;,- Py W, = [s,/(1-8)] (v, +V)).

Due to the Poisson input statistics, we may apply the result that Cobham [2] and Phipps
[7] obtained,* i.e.,

<
"

0 P P
, = (1/2) J- {2 Z A, dF ) = (1/2) Z A E(t2>
| 0 p=j p=j L

and

0
Vi = (1/2) J tzxj_ldF]._l(t)=(f/2)xj_1E(tj2_1>
0

Also, we notice that fpj_l, the fraction of time that type (j - 1) units utilize the service facil-
ity, may be calculated as

fpj_1=1-sj for p=1,

and so

f = (l—sj)/pj_l for p=1(orj>1);
and for completeness, we define
£f=0 for p<1(=1).

With these substitutions, we note that for the case p < 1, we obtain the same result as
given in (6) which, of course, we must. This completes the proof of Corollary 1.

COROLLARY 2: For a head of the line priority discipline with pre-emptive resume,
exponential service time distributions, and under restrictions 1, 2, and 4 as expressed above,

P
(24) Z Py Wy, # [sj/(l—sj)] Vi
p=j

PROOF: We now show how an equation similar to (16) may be obtained for a pre-
emptive resume situation with exponentially distributed service times. Clearly, (21) still
holds. In order to evaluate U., we now use the same trick as for the nonpre-emption case
(i.e., form all priority groups into two groups — the first group consisting of classes j,j+1,...,
P and all others being in the second group) except we allow members of the first group to pre-
empt units from the second group. Then we see that, for p=j,

*The cumulative distribution function for the service time of the pth priority group is denoted

by Fplt).
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and so, (21) becomes

or
(25) U = Vj/(l—sj).

Substituting (25) into (21) yields

or

PV, = [sj/(l- sj)] Vj.

I

Once again, V. is as given previously. Note also that for i=1, (24) reduces to (6). This com-
pletes the proof of Corollary 2.
We note here that in the case of exponentially distributed service times, we define

P
p=)
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