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INTRODUCTION A GENERALIZED MODEL 

The study of time-sharing scheduling algorithms has 
now reached a certain maturity. One need merely look 
at a recent survey by McKinney1 in which he traces 
the field from the first published paper in 19642 to a 
succession of many papers during these past six years. 
Research which is currently taking place within the 
field is of the nature whereby many of 'the important 
theoretical questions will be sufficiently well answered 
in the very near future so as to question the justifica
tion for continuing extensive research much longer 
without first studying the overall system behavior. 

Among the scheduling algorithms which have been 
studied in the past are included the round robin (RR), 
the feedback model with N levels (FBJV), and varia
tions of these.1 The models introduced for these sched
uling algorithms gave the designer some freedom in 
adjusting system performance as a function of service 
time but did not range over a continuum of system 
behaviors. In this paper we proceed in that direction 
by defining a model which allows one to range from the 
first come first served algorithm all the way through 
to a round robin scheduling algorithm. We also find a 
variety of other models within a given familv which 
have yet to be analyzed. 

Thus the model analyzed in this paper provides to 
the designer a degree of freedom whereby he may adjust 
the relative behavior for jobs as a function of service 
time; in the past such a parameter was not available. 
Moreover, the method for providing this adjustment 
is rather straightforward to implement and is very 
easily changed by altering a constant within the 
scheduler. 

* This work was supported by the Advanced Research Projects 
Agency of the Department of Defense (DAHC15-69-C-0285). 

In an earlier paper3 we analyzed a priority queueing 
system in which an entering customer from a particular 
priority group was assigned a zero value for priority 
but then began to increase in priority linearly with 
time at a rate indicative of his priority group. Such a 
model may be used for describing a large class of time
sharing scheduling algorithms. Consider Figure 1. 
This figure defines the class of scheduling algorithms 
which we shall consider. The principle behind this class 
of algorithms is that when a customer is in the system 
waiting for service then his priority (a numerical func
tion) increases from zero (upon his entry) at a rate a; 
similarly, when he is in service (typically with other 
customers sharing the service facility simultaneously 
with him as in a processor shared system4) his priority 
changes at a rate /3. All customers possess the same 
parameters a and j8. Figure 1 shows the case where 
both a and /3 are positive although, as we shall see 
below, this need not be the case in general. The history 
of a customer's priority value then would typically be 
as shown in Figure 1 where he enters the system at 
time t0 with a 0 value of priority and begins to gain 
priority at a rate a. At time t\ he joins those in service 
after having reached a value of priority equal to 
a(ti — to). When he joins those in service he shares on 
an equal basis the capacity of the service facility and 
then continues to gain priority at a different rate, 0. 
It may be that a customer is removed from service 
before his requirement is filled (as may occur when one 
of the slopes is negative); in this case, his priority then 
grows at a rate of a again, etc. At all times, the server 
serves all those with the highest value of priority. 
Thus we can define a slope for priority while a customer 
is queueing and another slope for priority while a cus-
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Figure 1—Behavior of the time-varying priority 

tomer is being served as 

queueing slope = a (1) 

serving slope = (3. (2) 

A variety of different kinds of scheduling algorithms 
follow from this model depending upon the relative 
values of a and @. For example, when both a and /3 are 
positive and when /3 > a then it is clear that customers 
in the queue can never catch up to the customer in 
service since he is escaping from the queueing customers 
at least as fast as they are catching up to him; only 
when the customer in service departs from service 
after his completion will another customer be taken 
into service. This new customer to be taken into the 
service facility is that one which has the highest value 
of priority. Thus we see that for the range 

0 < a < /3 (3) 

we have a pure^rs^ come first served (FCFS) scheduling 
algorithm. This is indicated in Figure 2 where we show 
the entire structure of the general model. 

Now consider the case in which 

0 < 0 < a. (4) 

This is the case depicted in Figure 1. Here we see that 
the group of customers being served (which act among 
themselves in a processor-shared round robin (RR) 
fashion) is attempting to escape from the group of 
customers in the queue; their attempt is futile, how
ever, and it is clear from this range of parameters that 
the queueing customers will eventually each catch up 
with the group being served. Thus the group being 
served is selfishly attempting to maintain the service 
capacity for themselves alone and for this reason we 
refer to this system as the selfish round robin (SRR). 

Figure 2—The structure of the general model 

What happens in this case is that entering customers 
spend a period of time in the queue and after catching 
up with the serving group proceed to be served in a 
round robin fashion. The duration of the time they 
spend in the queue depends upon the relative param
eters a and 0 as we shall see below. I t is clear however 
that for /3 = 0 we have the case that customers in 
service gain no priority at all. Thus any newly entering 
customer would have a value of priority exactly equal 
to that of the group in service and so will immediately 
pass into the service group. Since all serving customers 
share equally, we see that the limiting case, /3 = 0, is 
a processor-sharing round robin (RR) scheduling 
algorithm! It happens that SRR yields to analysis very 
nieely (whereas some of the other systems mentioned 
below are as yet unsolved) and the results of this 
analysis are given in the next section. 

Another interesting range to consider is that for 
which 

a < 0 < 0. (5) 

Here we have the situation in which queueing customers 
lose priority faster than serving customers do; in both 
cases however, priority decreases with time and so any 
newly entering customer will clearly have the highest 
priority and will take over the complete service facility 
for themselves. This most recent customer will continue 
to occupy the service facility until either he leaves due 
to a service completion or some new customer enters 
the system and ejects him. Clearly what we have here 
is a classical last come first served (LCFS) scheduling 
algorithm as is indicated in Figure 2. 
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Now consider the range 

a < 0 < /3. (6) 

In this case a waiting customer loses priority whereas a 
customer in service gains priority. When an arriving 
customer finds a customer in service who has a negative 
value for priority then this new customer preempts the 
old customer and begins service while at the same time 
his priority proceeds to increase at a rate /3; from here 
on no other customer can catch him and this customer 
will be served until completion. Upon his completion, 
service will then revert back to that customer with the 
largest value of priority. Since customers lose priority 
with queueing time, then all customers in the system 
when our lucky customer departed must have negative 
priority. One of these will be chosen and will begin to 
gain priority; if now he is lucky enough to achieve a 
positive priority during his service time, then he will 
seize the service facility and maintain possession until 
his completion. Thus we call this range LCFS with 
seizure (see Figure 2). 

In the special case 

a = 0 < 0 (7) 

we have the situation in which a newly emptied service 
facility will find a collection of customers who have 
been waiting for service and who have been kept at a 
zero value priority. Since all of these have equal priority 
they will all be taken into service simultaneously and 
then will begin to gain priority at a rate /3 > 0. Any 
customers arriving thereafter must now queue in bulk 
fashion since they cannot catch up with the current 
group in service. Only when that group finishes service 
completely will the newly waiting group be taken into 
service. We refer to this case as bulk service. 

The last case to consider is in the range 

0 < 0, 0 < a. (8) 

In this case a customer being served always loses 
priority whereas a queueing customer loses priority at 
a slower rate or may in fact gain priority. Consequently, 
serving customers will tend to "run into" queueing 
customers and pick them up into the service facility at 
which point the entire group continues to decrease in 
priority at rate 0. We refer to this region as LCFS with 
pickup (see Figure 2). 

Thus Figure 2 summarizes the range of scheduling 
algorithms which this two-parameter priority function 
can provide for us. We have described a number of 
regions of interest for this class of algorithms. The 
FCFS, LCFS, and RR systems, of course, are well 
known and solved. The three regions given by Equa
tions 4, 6, and 8 are as yet unsolved. As mentioned 

before, the SRR system yields very nicely to analysis 
and that analysis is given in this paper. This system 
has the interesting property that we may vary its 
parameters and pass smoothly from the FCFS system 
through the SRR class to the familiar RR system. The 
others (LCFS with seizure and LCFS with pickup) 
are as yet unsolved and appear to be more difficult to 
solve than the SRR. Of course other generalizations 
to this scheme are possible, but these too are yet to 
be studied. Among these generalizations, for example, 
is the case where each customer need not have the 
same a and 0; also one might consider the case where 
growth (or decay) of priority is a non-linear function 
of time. Of all these cases we repeat again that the 
SRR, has been the simplest to study and its analysis 
follows in the next section. 

THE SELFISH ROUND ROBIN (SRR) 
SCHEDULING ALGORITHM 

We consider the system for which customers in 
service gain priority at a rate less than or equal to the 
rate at which they gained priority while queueing (see 
Equation (4)); in both cases the rate of gain is positive. 
We assume that the arrival process is Poisson at an 
average rate of X customers per second 

P [inter-arrival time < Q = 1 — e~u t > 0 (9) 

and that the service times are exponentially distributed 

P [service time < x~] = 1 — e~»x x > 0 (10) 

Thus the two additional parameters of our system are 

average arrival rate = X (11) 

average service time = 1/ju (12) 

As usual, we define the utilization factor 

P ^ X//x (13) 

For the range of a, 0 under consideration it is clear 
that once a customer enters the service facility he will 
not leave until his service is complete. Consequently, 
we may consider the system as broken into two parts: 
first, a collection of queued customers; and second, a 
collection of customers in service. Figure 3 depicts this 
situation where we define* 

Tw = i£[time spent in queue box] (14) 

Ts = E[time spent in service box] (15) 

Nw = ^/[number in queue box] (16) 

Ng = J£[number in service box] (17) 

* The notation E[x] reads as "the expectation of x." 
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Figure 3—Decomposition of the SRR system 

We further define 

T = Tw + Ts = E[time in system] (18) 

N = Nw + Ns = ^[number in system] (19) 

Due to the memoryless property of the exponential 
service time distribution, it is clear that the average 
number in system and average time in system are 
independent of the order of service of customers; this 
follows both from intuition and from the conservation 
law given in Reference 5. Thus we have immediately 

T = 1/M 

1 - P 

N = 
1 - p 

(20) 

(21) 

For our purposes we are interested in solving for 
the average response time for a customer requiring t 
seconds of service; that is for a customer requiring t 
seconds of complete attention by the server or 2t seconds 
of service from the server when he is shared between 
two customers, etc. Recall that more than one customer 
may simultaneously be sharing the attention of the 
service facility and this is just another class of processor-
sharing systems.4-Thus our goal is to solve for 

T(t) — ^[response time for customer requiring 

t seconds of service] (22) 

where by response time we mean total time spent in 
the system. The average of this conditional response 
time without regard to service time requirement is 
given by Equation 20. Due to our decomposition we 
can write immediately 

T(t) = Tw(t) + r.(o (23) 

where Tw(t) is the expected time spent in the queue 
box for customers requiring t seconds of service and 
Ts(t) is the expected time spent in the service box 
for customers requiring t seconds of service. Since the 

system is unaware of the customer's service time until 
he departs from the system, it is clear that the time he 
spends in the queue box must be independent of this 
service time and therefore 

J- w \J>) — J- u (24) 

Let us now solve for Ts(t). We make this calculation 
by following a customer, whom we shall refer to as the 
i "tagged" customer, through the system given that this 
customer requires t seconds of service. His time in the 
queue box will be given by Equation 24. We now 
assume that this tagged customer has just entered the 
service box and we wish to calculate the expected time 
he spends there. This calculation may be made by 
appealing to an earlier result. In Reference 4, we 
studied the case of the processor-shared round robin 
system (both with and without priorities). Theorem 4 
of that paper gives the expected response time con
ditioned on service time and we may use that result 
here since the system we are considering, the service 
box, appears like a round robin system. However, the 
arrival rate of customers to the service box conditioned 
on the presence of a tagged customer in that box is no 
longer X, but rather some new average arrival rate X'. 
In order to calculate X' we refer the reader to Figure 4. 
In this figure we show that two successive customers 
arrive at times t\ and k where the average time between 
these arrivals is clearly 1/X. The service group moves 
away from the new arrivals at a rate @ and the new 
arrivals chase the service group at a rate a; as shown 
in Figure 4, these two adjacent arrivals catch up with 
the service group where the time between their arrival 
to the service box is given by 1/X'. Recall that the 
calculation we are making is conditioned on the fact 
that our tagged customer remains in the service box 
during the interval of interest; therefore the service 
box is guaranteed not to empty over the period of our 

TIME 

Figure 4—Calculation of the conditional arrival rate to the 
service box 
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calculations. X' is easily calculated by recognizing that 
the vertical offset y may be written in the following 
two ways 

y 

and so we may solve for X' as follows 

- ' ( -3 (25) 

(recall that for the SRR system £ < a). For con
venience we now define 

p' = X'/M (26) 

We may now apply Theorem 4 of Reference 4 and 
obtain the quantity we are seeking, namely, 

T.(t) = 
t 

1 - P ' 
(27) 

The only difference between Equation 27 and the 
referenced theorem is that here we use p' instead of p 
since in all cases we must use the appropriate utilization 
factor for the system under consideration. That theorem 
also gives us immediately that 

Ns = 
1 - P ' 

(28) 

This last equation could be derived from Equation 27 
and the application of Little's result6 which states that 

and where 

Ts 

\'TS = Ns 

C Ts(t)ne-»t 

(29) 

dt 

Tx = 
l/V 

1 - p ' 
(30) 

We may now substitute Equation 27 into Equation 
23 to give 

T(t) = Tw + 
t 

1 - P ' 
(31) 

In order to evaluate Tw we form the average with 
respect to t over both sides of Equation 31 to obtain 

/ T(t)ne~>tdt= Tw+ / ^e-^dt 
Jo Jo 1 — P 

and so 

T = Tw + 1/tf 
1 - P ' 

Using Equation 20 we have the result 

VM 1/M 
T = 

1 - P 

(32) 

(33) 

Upon substituting Equation 33 into Equation 31 we 
obtain our final result as 

T{t) 
l//x * - ! / / » 

1 - p 1 - p ' 
(34) 

Another convenient form in which to express this result 
is to consider the average time wasted in this SRR 
system where wasted time is any extra time a customer 
spends in the system due to the fact that he is sharing 
the system with other customers. Thus, by definition, 
we have 

W(t) = T(t) - t (35) 

and this results in 

W{t) = 
p/ju , (t - 1/M)p' 

1 - P + 1 
(36) 

In both Equations 34 and 36 we observe for the case 
of a customer whose service time is equal to the average 
service time (l/V) that his average response time and 
average wasted time are the same that he would en
counter for any SRR system; thus his performance is 
the same that he would receive, for example, in a 
FCFS system. We had observed that correspondence 
between the RR system and the FCFS system in the 
past; here we show that it holds for the entire class of 
SRR systems. In Figure 5 below we plot the perform
ance of the class of SRR systems by showing the de
pendence of the wasted time for a customer whose 
service time is t seconds as a function of his service 
time. We show this for the case p = % and n = 1. 
The truly significant part regarding the behavior of the 
SRR system is that the dependence of the conditional 
response time upon the service time is linear. Once 
observed, this result is intuitively pleasing if we refer 
back to Figure 3. Clearly, the time spent in the queue 
box is some constant independent of service time. 
However, the time spent in the service box is time 
spent in a round robin system since all customers in 
that box share equally the capability of the server; we 
know that the response time for the round robin system 
is directly proportional to service time required (in 
fact, as shown in Reference 8, this statement is true 
even for arbitrary service time). Thus the total time 
spent in the SRR system must be equal to some con-
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Figure 5—Performance of the SRR system 

stant plus a second term proportional to service time 
as in fact our result in Equation 34 indicates. Again 
we emphasize the fact that customers whose service 
time requirements are greater than the average service 
time requirement are discriminated against in the SRR 
system as compared to a FCFS system; conversely, 
customers whose service time requirement is less than 
the average are treated preferentially in the SRR sys
tem and compared to the FCFS system. The degree 
of this preferential treatment is controlled by the 
parameters a and P giving the performance shown in 
Figure 5. 

CONCLUSION 

In this paper we have defined a continuum of scheduling 
algorithms for time-shared systems by the introduction 
of two new parameters, a and 0. The class so defined 
is rather broad and its range is shown in Figure 2. 
We have presented the analysis for the range of pa
rameters that is given in Equation 4 and refer to this 
new system as the selfish round robin (SRR) scheduling 
algorithm. Equation 34 gives our result for the average 
response time conditioned on the required service time 
and we observed that this result took the especially 
simple form of a constant plus a term linearly de
pendent upon the service time. Moreover, we observe 
that the parameters a and j8 appear in the solution 
only as the ratio 0/a. This last is not overly surprising 
since a similar observation was made in the paper3 

which was our point of departure for the model de
scribed herein; namely, there too the slope parameters 

appeared only as ratios. Thus in effect we have intro
duced one additional parameter, the ratio fi/a, and it 
is through the use of this parameter that the designer 
of a time-sharing scheduling algorithm is provided a 
degree of freedom for adjusting the extent of discrimi
nation based upon service time requirements which he 
wishes to introduce into his algorithm; the implemen
tation of this degree of freedom is especially simple. 
The range of the algorithm is from the case where there 
is zero discrimination baser on service time, namely 
the FCFS system, to a case where there is a strong 
degree of discrimination, namely the RR system. 

The mathematical simplicity of the SRR algorithm 
is especially appealing. Nevertheless, the unsolved sys
tems referred to in this paper should be analyzed since 
they provide behavior distinct from the SRR. In any 
event, this continuum of algorithms is simply imple
mented in terms of the linear parameters a and /?, 
and the scheduling algorithm can easily choose the 
desired behavior by adjusting a and (3 appropriately. 
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