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CERTAIN ANALYTIC RESULTS FOR TIME-SHARED PROCESSORS*

LEONARD KLEINROCK
University of California at Los Angeles
Los Angeles, California, USA

A basic model for time-shared systems with M consoles is introduced and analyzed. Published meas-
urements of existing computer systems demonstrate the accuracy of the model in describing the behavior
of the normalized average response time. taken as the performance measure of these systems.

A definition for system saturation is given which is both intuitively pleasing and analytically signifi-
cant. The original system of M consoles with processor capacity C is compared to a class of compara-
tive systems. the Nth class consisting of N processors, each of capacity C/N serving M/N consoles
each (for N=2. 3. 4....). The priority problem is also considered for M = 2 and the effect of discrimi-

natory behavior is solved for and graphed.

1. INTRODUCTION

The concept of a computer utility is fast be-
coming a reality. Numerous services are now
available whereby one can purchase a user ter-
minal (console) and can then rent the use of a
remote computer on a time-shared basis. Time-
sharing has become big business [1]!

As the supply and demand for readily accessi-
ble, inexpensive computing power grows, so
grows the need for quantitative analysis of the
performance of time-shared systems. This need
is beginning to be met as may be evidenced by a
survey of the literature [2]. In this paper, we
present some recent results and interpretations
which we feel are significant in predicting the
performance of these systems.

2. ANALYSIS OF THE M-CONSOLE MODEL

The theoretical results divide into two classes:

infinite input population and finife input popula-

* This work was supported by the Advanced Research
Projects Agency (SD-184).
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Fig. 1. Feedback queueing systems.

tion. The first class is illustrated in fig. 1 in
which we see the basic structure wherein a new
arrival (from an infinite population of possible
customers) enters a system of queues, is treated
according to the imposed queueing discipline,
finally reaching the head of the queue, is allowed
entry into the service facility for a given number
of seconds (a quantum) and then either (a) departs
if the quantum was enough to satisfy his require-
ment or (b) cycles back to the system of queues
to wait for another turn in service. Results for

a number of these systems are available in the
literature [2].

Of interest to us in this paper are models for
the finite input population where we assume that
M consoles generate requests for use of the ser-
vice facility. These requests impinge upon the
system (whose internal structure is identical to
that of the infinite population models shown in
fig. 1); upon departure, these customers "return”
to their original console to generate new re-
quests as shown in fig. 2. We refer to the time
required for a console to generate a new request
as the "think time". The system response time
is the elapsed time from when a request is made
to when that request is satisfied completely;
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WITH QUEUES
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Fig. 2. Finite population model.
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during this interval, the console, from which
this request was made, is idle (nonthinking). The
request is for a given number of "operations" in
the service facility which can process at a rate
of C operations/sec.

Below, we assume both that the think time for
each console and that the size of each request
are exponentially distributed with an average
value of 1/y sec for thinking and 1/ operations
for each request, respectively. All quanta are
assumed to be infinitesimal, and swap-time (the
time lost in changing jobs) is assumed to be zero,
thus leading to a processor-shared model [3]. In
this case, then, when we find m consoles actively
competing for use of the computer, we see that
each console is being processed at a rate of C/m
operations per second. The exponential assump-
tions along with the infinitesimal quanta produce
a model for our time-shared system which is a
continuous-time Markov process [4]. We let 7
be the average response time and take this as
our performance measure.

This simple model has been carefully studied
by queueing theorists [5], and corresponds to the
finite-population single-server exponential
queueing system. Below, we give the (easily ob-
tained) results for the steady-state probability
(denoted p,,,) of finding m (< M) consoles actively
competing for use of the computer facility (these
consoles are said to be in the "system"). From
any standard reference (such as p. 121 of [5]) we
have that

M! M
. OB o Y .>l,, - /
Py =Po TR <HC-> m=0,1,2,...,M, (1)
where
M A
| M! Y \m
ays] 2 i (2P @
o | 2y M-m)! uc> 1.

Let us now solve for 7' (average response
time). Since the system is assumed to be in the
steady state, we may use the fact that the rate
at which customers enter the "system” (i.e., the
dashed box in fig. 2) equals the rate at which
they depart from the system. The fraction of
time that a console is not in the system (i.e., he
is in the "thinking" state) is merely the ratio of
the average time, 1/y, that he spends thinking
to the average time T+1/y, which he spends in
making a complete round trip. Each of M con-
soles generates requests (leaves the thinking
state) at a rate y per second, providing such a
customer is in the thinking state (the probability
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that he is thinking is the fraction described
above). Thus, the input rate of customers to the
system is

Vy
(1/y)+T

My

When m customers are in the system (probability
[)m) then the rate at which each customer is be-
ing ejected is ¥ uC/m. Since there are m such,
the average output rate of customers is

M
2 (wC/mm p,, =uC-p,) .

m=1

Equating the input and output rates, we find that

o e M == o 2o (3)

This result was first used by Scherr [6] for time-
shared systems. Scherr also tested the worth of
this model in the MIT time-sharing system. His
principal finding is shown in fig. 3 where he has
compared the results of measurement (shown as
dotted data points and the least-squares fit, B-B,
to these points) with the results of model analysis
given by eq. (3) above (curve A-A). As can be

I The quantity 1/4C is the ratio of average number of
operations per customer (1/u) to the number of oper-
ations per second (C). giving the average number of
seconds of service per customer (when he is pro-
vided with a capacity of size C). The inverse. UC.
is the rate at which he is completed. When provided
with a capacity of C/m. his output rate is uC/m.
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Fig. 3. Comparison of measured and predicted per-
formance.
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seen, the normalized f response time, uC7, is
accurately predicted by our model in spite of the
fact that the MIT time-sharing system does not
operate according to the assumptions of the
model.

Due to the finite value of M, one questions
whether it is possible to saturate the system.
Indeed. if we define saturation as that point
where the system goes unstable in some sense,
such as average response time growing to infi-
nity. then we see immediately that our system
is never saturated (for y/uC < ). (Such unstable
behavior is possible in the infinite population
case). Nevertheless there does exist an appro-
priate definition of saturation here as follows.

If we replace each service time by its average
(1/1C). and if we schedule the arrivals to occur
uniformly in time, each spending exactly 1/y
seconds thinking. then we see that the system
can handle at most a number of consoles, M*
given by

M* = l/uC+1/7: uC +y

4
1/uC Y e

without any mutual interference. For example,
if each customer requires 35 sec for thinking
and 1 sec for computation, then 36 such custo-
mers can be handled. This provides the basis
on which we define M* as the saturation point
for our M-console system T. We plot eq. (3)
again in fig. 4 where M* =41 (1/uC = 0.88,

1/y =35.2). We see that uCT begins to increase
sharply in the vicinity M =~ M*. For M <. M*,
we see that uCT grows very slowly since cus-
tomers tend to request computation during other
customers' think-time; indeed. it can be shown
that in this region, the results from infinite pop-
ulation queueing theory hold, giving (see below
also)

1
T < M*. 5
ECT = (M- 1)y for M -« M (5)
[LC
If we define
%= Y/BC (6)

I If provided the full capacity. a customer will spend
an average of 1/LC seconds in the system. We
choose to normalize T with respect to this giving
[LCT which represents the factor by which a custom-
er is delayed (due to his sharing the system) in rela-
tion to his time in system without sharing.

T This is similar to a definition given by Scherr [6].
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Fig. 4. Performance and saturation,

then

M*:l;". M

For M = M*, we see from eqs. (2) and (3) that

for M > L L (8)
X

uCT:M—%=M-M*+1

since p,— 0. This asymptote is shown dashed in
fig. 4. and we observe that it intersects the line
KLCT =1 at M = M*, since
M* - d o 1.

X
Since the slope of this asymptote is 1, it shows
that each additional user "completely" interferes
with all the other users, adding one more unit
of normalized delay to pCT. The fact that the
asymptote crosses uCT =1 at precisely M*
shows, for M - M*, that the system has "ab-
sorbed" M* users and converted them into one
user, and is now experiencing complete inter-
ference among the other M - M* users (i.e.. the
additional delay added to the response time for
each user is M - M*, since, from eq. (8), uCT ~
1+ M-M*).

Let us now consider the function

f=1/uCT (9)

which represents the fraction of the processor
which each user effectively sees as his own per-
sonal processor, for if a user spends pCT sec-
onds in the system rather than 1 (normalized)
second, it appears that he has been given 1/uCT
of the processor. From eq. (3) we get
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x(l - Pp) M
M
_ . 10 w8
f =M= hy) S mZ:;i(M' m)zJ"
= . (13)
This function is plotted in fig. 5. Let us examine M ;
the asymptotic behavior. For M > M*, we have > [%:'mxm
(from eq. (8)) st ) (M - m)!
. :
s e S L% For M << M* (which implies x(M - 1) = 1) we get
fui speren, M MF. (11)
LH(M-1)x
> f T20-1)x - 1+(M-1)x - 2(M-1)x 1+(M-1)x]+. ..
0.8 thus
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Fig. 5. Fractional machine availability.

This asymptote has a pole at M =M* - 1; however,
the fraction f goes to 1 at M =M*. Thus the sys-
tem behaves as if the number of completely in-
terfering users was M - M* +1 instead of M (thus
indicating that the system had transformed the

first M* users into one user). For M < M*, we
have from eq. (5) that
f=1-M-1)x M <<M*. (12)

Let us derive this last equation from first prin-
‘ciples. From eq.(2) we have

From this last and eq. (10) we get

o E[ MM:n)'} "
f=
“* mzjf;o[@%]xm m%[(MM!m)’] o
thus

f~1-(M-1)x

establishing eq. (12).

Eq. (12) shows that the slope of fas M — 1 is
merely -x. Thus, the tangent to fat M = 1
(shown as a dashed line in fig. 5) must intersect
the horizontal axis at precisely M = M*, the satu-
ration load again!

The expected number E of active consoles is
easily obtained from Little's result [7] which
says, for any ergodic system, that the average
number of people in that system is equal to the
product of their average arrival rate to that sys-
tem and their average time in that system. In
our case, we know that the average arrival rate
is 1 C(1-pg) and so from eq. (3) we find that

1
E=M- l— (14)
% ;

3. COMPARATIVE SYSTEMS

It is interesting to observe the degradation in
performance when we split the system of M con-
soles and a processor of capacity C referred to
as an (M, C) system into two (M/2, C/2) systems
(see fig. 6). More generally, we consider

...........

Fig. 6. Comparative systems (N~-1, 2).
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N(M/N, C/N) systems (N a positive integer). The
behavior of this class is shown in fig. 7 where we
plot uCTy as a function of M/N (where T) is the
behavior of an (M/N, C/N) system).
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Fig. 7. Performance of comparative systems.

From eq. (3) we have

N(M/N) 1
MWCTp = TT(N) Trigitt (15)
where
M/N  (m/N) YN
-1 _ dnchidastie e wiftil 65
(6,1 = 2 [(M/N) - m]! (/J.C (16)

m=0
From these last we see that for M/N =1,

N

1
s iSSPy
" 1+Nx
or
uCTy =N for M/N =1.

For such systems, the analogous saturation load,
M}:’ is defined as

x _N/uC+1/y _
N ——W—Wx+l)/Nx.

For M/N > My, po(N) — 0 and so eq. (15) gives

it A_/I *
MCT)y = N(M/N) - % =N[N - MN s 1]
%
for M > My, . 17

This asymptote (shown dashed in fig. 7) inter-
sects the line uCT) =N at precisely M/N=1V5V.

Hardwavre

The inverse, fj=1/UCT)y is again the frac-
tion of the original machine (capacity C) seen by
a user in an (M/N, C/N) system and this is
plotted in fig. 8.
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Fig. 8. Fractional use of comparative systems.

From eq. (15) we have
%(1-py(N)
fN = .
NM/N)x - (1 -PO(N))

(18)

For M/N > 11/5:; we haveg from eq. (17) that

1 *
R S>M s 19
fN N(A—/I-M*+1) for M/N - (19)
N N
This shows that Ml* users are absorbed into one
user. In a fashion similar to the derivation of

eq. (13) we have that

M/N  (M/N)!
T R
ey [(M/N) - m]!
Nfy = = " (20)
MIN — (m/m)i
L T/ - ]t ™

For M/N < My (which implies that Nx{(M/N) - 1]
<« 1) we get

1+ (—M- 1) Nx
N
Nfy = .

M
— - 1)Nx
1+2(N )
Thus

M M *
Nfy=1- (]V_ 1) Nx forﬁ<< MN. (21)

Eq. (21) shows that the slope of Nf)y as M — N
is -x. Thus the tangent to fyy at M=N (shown as
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dashed lines in £ig. 8) intersects the horizontal
axis at M=N My, again showing the significance
of the saturation load.

Let us consider this degradation, as N in-
creases, by plotting Ay = (T - Tl)/Tl versus
M. This is the normalized increase in response
time due to splitting the system. Fig. 9 shows
this for N=2. We see that the degradation is
large for M < M*. Note for M > M*, that
Ag — 0; this says in the heavily saturated case
that the (M, C) and (M/2, C/2) systems both be-
have the same from the user's viewpoint. The
inflection point in Ag is seen to occur in the vi-
cinity M =~ M*, indicating that an increase in M
here is most effective in reducing the compara-
tive degradation. Fig. 10 shows Ap for N =
2,3,4,5, and 10; all of the comments for N =2
apply to this last also.

8

8
L

EY
(o]
I

PERCENTAGE DEGRADATION
8 3
e

M
1 I Ui 1[ | L A L |
0 20 30 40 50 60 70 80 90 100
NUMBER OF CONSOLES, ™

<
o

Fig. 9. Percentage degradation of comparative sys-
tems (N = 2),

For the N =2 case, we consider splitting the
system into one (¢ M, ¢ C) system and one
(BM, BC) system where o +3 = 1. For such a
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Fig. 10. Percentage degradation of comparative sys-
tems (N = 2, 3, 4, 5, 10).
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split, the appropriate comparison is

Ty fy +8T1/8-T1

D(a) =

Ty
or
D(a) =aa(a) +BA(B) , (22)
where
T1/a-Ty
Ala) = ——— =
Ty

This function, D(«), is plotted in fig. 11. Clear-
ly it.is a symmetrical function, i.e., D(a) =

= D(1-a). We see that the worst degradation
takes place for @ = 8 = . Note also the relative-
ly flat peak to the degradation, indicating the in-
sensitivity of D(a) near a = 3. Thus we begin to
effect an improvement only when o changes be-
yond the middle third of its range. As « de-
creases, this improvement is due to the

(aM, aC) system moving to a less saturated
point while the (8 M, BC) system moves to a more
saturated point. We show D(«) only for

(1/M) < a < (M-1)/M since it is undefined be-
yond this range. It is easy to show that D(1/M)
= 1/uCTy and this approximation improves as
M approaches infinity.
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Fig. 11. Normalized degradation for the systems
(@M, @ C) and (M, BC).

4. THE PRIORITY CASE FOR M = 2

Let us consider an M =2 system with priori-
ties. We operate the priority by assuming that a
fraction g1/(g1+&9) = Gy of the capacity is given
to console 1 and that a fraction Gg =1 - Gy is
given to console 2 whenever both are competing
for service (gl, gz):?- 0). Otherwise, the system
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operates in a manner identical to the non-prior-
" ity system. We define the steady-state probabi-
ity for i, 7720, 1

pij = P[¢ customers from console 1 and

Jj customers from console 2 in system] .
Clearly
boo =Po, bPoy+tPyo=P1, P11=Pg, (23)

where p,, is as defined in section 2. Let

E; = expected number of customers from console
7 in system.

Clearly
E{+Ey=E,

where E is given by eq. (14) for M = 2.

There are many ways to solve for p;;, and all
of them are trivial for this case M = 2.” Indeed,
from eq. (23) only P10 is unknown. We obtain it
by writing the equilibrium equation (see [5] for
this method)

P10(KC + ) =vpy + ¥CG1by

giving
- 24
Plozm(Po+P1G2)- (24)
Since
Ey =Py +P3
we find
Go-Gq po.
% E 2 Y1 D
El=1+x(1+1}1Gz‘:§+ 1+x (2) (25)
Also
Eg =001 * P2
and so
G,-Gy p
x o ial. 2752
By =7y DApe Py (5) - @8
Let

T; = Average response time for console 7 .

Using Little's [7] results again, and noting that
the input rate for console ¢ is ¥(1 'Ei)’ we obtain

Havdware
B
O I 20
i=501- 5, L
Thus,
1 1+11G2
and
1 1+p1Gq
e 9
T2 = e 17,6 )

In figs. 12 and 13 we plot LCT; for g1 = 8g3,

81 = 289, respectively, also showing uCT for
&1 = 89- We see the discrimination possible with
such priority systems. Note that as x — o,
uCT; — 1/1-Gj (i # ).

2.75 ASYMPTOTIC TO
4CT,=9
2.50
¥
F2.25 4CT,
g 200} ASYMPTOTIC TO
¥ uCT=2
T
175} e
% 1.50
ASYMPTOTIC TO
.25} /—'pCT| ey
1 1 1 I J
"°°o | 2 3 4 5

Xuy/uC

|-

Fig. 12. Normalized response time for G1 = %, G2 =

L

N

o
1

ASYMPTOTIC TO
WCT, =3

n

@

o
T

n

~n

3
T

ASYMPTOTIC TO
uCT=2

:

5
»n
1

ASYMPTOTIC TO
KCT,=3/2

8

NORMALIZED RESPONSE TIME

1.25

X=y/uC

Fig. 13. Normalized response time for G; = ;—, 62 = %



Computer Systems

The case for M > 2 is more difficult. It is
possible to obtain the following bounds on E; in
the general case,

X X

P 2 et

1+x By T x4G

but these bounds are not especially tight.

5. CONCLUSION

We feel that the simple processor-sharing
model herein described gives an accurate de-
scription of the behavior of the normalized aver-
age response time for finite population time-
shared systems. The saturation load, M*-
(think time plus service time)/(service time) is
a meaningful definition for saturation, which is
both intuitively pleasing and analytically signifi-
cant.

Plots of the normalized average response
time and of the fraction of the machine available
to each user on a personal basis served to show
the sensitivity of the system performance to the
number of consoles in use. Investigation of split-
ting the original processor into a number of
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smaller machines, each with proportionally fewer
consoles showed for M < M* that the degradation
was large, whereas for M * M¥*, the degradation
was almost unnoticable (the heavily saturated
case). The priority case showed the effective
discrimination possible between consoles for

M = 2.
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DISCUSSION

Question by O.Rechard

From the standpoint of a user I would be much
more interested in the probability of a very long
delay rather than the average delay. Have you
studied this?

Answer

This question has been considered and solved.
The difficulty is that when you solve far too many
details you'must ask how accurate is the model?
Incidentally, it is more difficult to obtain distri-
butions for systems with swap time.

Question by P. M. Melliar-Smith

The negative exponential distribution for pro-
cessor service time is well known to be inaccu-
rate. Can we hope to get a better approximation?

Answer
Yes, and in fact this may be found in the liter-
ature.

Question by M.Jones

It appears that this work is very similar to
that of Scheer, of MIT. Have you any results for
the dependence of think time on processor time?

Answey

No. Queuing Theory falls down when you no
longer have independent distributions for service
and arrival time. The point of departure for my
work is the work of Scheer, as I indicated; the
extensions include: a good interpretation and
understanding of saturation; an investigation of
partitioned systems and their comparison to the
original systems; and a study of the two-priority
system and its performance.



