Collecting Unused Processing Capacity:
An Analysis of Transient Distributed Systems

Leonard Kleinrock and Willard Korfhage*
Computer Science Department
University of California, Los Angeles

Abstract

Distributed systems frequently have large
numbers of idle computers and workstations.
If these could be harnessed, then consider-
able computing power would be available at
low cost. We analyze such systems using a
very simple model of a distributed program
(a fixed amount of work) to see how the use
of transient processors affects the program’s
service time.

1 Networks of Transient
Processors.

Networks of computers are fairly common in busi-
ness and research environments throughout the world.
Originally motivated by a desire to ease data and de-
vice sharing, many networks have grown in speed and
sophistication to the point that distributed processing
can be performed on them. These networks vary in size
from a handful of personal computers on a low-speed
network, to thousands of workstations and a variety of
larger machines on a high-speed, fiber-optic network.
A typical example is that of workstations on a high-
speed, local area network in a research laboratory. Not
only are there many machines, well connected by the
network, but the users are likely to demand more and
more computing power.

On these networks, we often have the situation that
many of the personal computers and workstations are
sitting idle, waiting for their users, and thus being
wasted. If we could recover this wasted time for useful
processing, then we would have considerable comput-
ing power available to us at low cost [6]. We refer to
these processors, which are sometimes busy and some-
times not, as transient processors.

This situation has analogies to time-sharing. In the
past, institutions had one large resource, a mainframe
computer, that was shared by many users. As net-
works of workstations develop, the largest computing
resource is no longer a single machine, but is instead

*This work was supported by the Defense Advanced
Research Projects Agency under contract MDA 903-82-
C0064, Advanced Teleprocessing Systems, and contract
MDA 903-87-C0663, Parallel Systems Laboratory.

CH2706-0/89/0000/0482$01.00 © 1989 IEEE

482

the aggregate computing power of the workstations. In
the same manner that it has been possible for many
people to share a single machine, by using the idle time
of one person to run the program of another, so it is
now possible to share a network of workstations for
large, distributed computations.

Whether this is technically feasible or not depends
on a variety of factors, such as the characteristics of
the communications medium, the characteristics of the
computers, and the statistical characteristics of the
user population. Mutka and Livny [13], and Nichols
[14] have shown that under at least some circum-
stances, this is very practical and useful.

From an analytical point of view, we would like to
have a queueing model of a network of transient pro-
cessors executing distributed programs. In this paper
we take a first step toward this end by analyzing the
service time for a very simple model of a distributed
program (a fixed amount of work) to see how the use
of transient processors affects what would otherwise
be a deterministic service process.

2 The Model.

Assume that we have a network of M identical proces-
sors, and we wish to run a program that will require
a total of W seconds of work. In general, a program
consists of multiple stages of work, each of which must
be completed before the start of the next. For this
paper we assume that the program has only one stage
of work, and furthermore, we assume that the work in
any stage is infinitely divisible, and therefore is always
spread evenly among the available processors.

Each processor has a capacity of one second of work
per second. A processor alternates between a non-
avatlable period, when someone is using it, and an
available period, when it is sitting idle. We assume
that the length of non-available periods is randomly
distributed with mean t, and variance o2, and that
the length of available periods is also randomly dis-
tributed from a (possibly different) distribution with
mean t, and variance 2. We wish to run our program
on the network of processors, using processors while
they are in their available periods. The finishing time
of the program is given by a random variable f, with
probability distribution f(¢) , average f, and Laplace
transform F™*(s). The purpose of this paper is to find

f(t) , or, in broader terms, to examine the potential
use of currently wasted cycles. To do so, we examine a
related function, w(u |t), the probability density func-
tion of the amount of work, u, completed by time ¢,
which has mean W; and variance Var[W;]. Then, for
a given W, f(t) is the distribution of the time for the
completed work to first reach W, a point also known
as the first passage time.

If the amount of work that we wish to do is small,
relative to t; and t,, then the finishing time is highly
dependent upon the states of the processors when the
program arrives. If, for example, we have a small
amount of work to do on a single processor, either
the processor is available with no delay, or the pro-
cessor is non-available, and we must wait, on average,
t, seconds (assuming exponentially distributed non-
available periods) before we can even start the work.
If t,, is not small relative to W, then state of the pro-
cessor when the program arrives strongly affects the
finishing time distribution. In this paper, we use two
techniques to mitigate the effect of this on the anal-
ysis. The single processor models make assumptions
about the time that the program arrives (either in an
available period or at the beginning of a non-available
period). The multiprocessor model assumes that W is
large relative to ¢, and t,, so the effect of initial condi-
tions is negligible. Work is underway for the situations
where W is not large.

Our analysis ultimately allows for arbitrary distri-
butions of the lengths of available and non-available
periods, but in our examples, we assume exponential
distributions. Using the average available and non-
available times measured by Mutka and Livny, the ex-
amples in this paper are generally based on the follow-
ing parameters: t, = 91 minutes, t, = 31.305 minutes,
W = 103 minutes for single processor examples, and
W = 10* minutes for multiprocessor (M = 100) ex-
amples. We choose W large relative to t; and t, for
the reasons mentioned in the previous paragraph.

We ignore communications overhead and task prece-
dence issues in this paper, and assume that our pro-
gram can use all available processors at any given time.
The results of this paper, then, provide upper (i.e. op-
timistic) bounds on the best performance achievable
in this situation.

In the remainder of this paper, we first discuss pre-
vious work by others, then analyze the problem for 1
processor. We find expressions for w(u | t) and f(t)
in the single processor case. We then use w(u |t) to
find f(t) for M processors and compare it to the single
processor case.

3 Previous Work.

A single transient processor can be modeled in a va-
riety of ways: as a priority queue, as a queue with
vacations, as an unreliable system, or as a cumula-
tive, alternating renewal process. Of these methods,

483

we choose that last because it provides the asymptotic
distribution of w(u |t) in a very simple form and for
arbitrary available and non-available period distribu-
tions. We now briefly discuss the other alternatives.

3.1 Preemptive Priority Queues.

We can model a transient processor using a preemptive
priority queueing system with two classes. The high
priority class represents non-available periods that in-
terrupts the service of distributed programs, repre-
sented by the jobs in the low priority class. Such sys-
tems do not completely model a transient processor
because high priority jobs continue to arrive while a
high priority job is in service, and this represents a
queueing of non-available periods. If we do not object
to this, and if we assume that both available and non-
available periods arrivals are from (different) Poisson
processes, then the Laplace transform of the “comple-
tion time” (our F*(s)) is known [8], and from that we
can get its mean and variance.

3.2 Queues with Vacation.

Another model of a transient processor is a queueing
system in which the server goes on vacations. In par-
ticular, we require that the vacations occur randomly
and preempt any customer in service. If the available
periods are exponentially distributed, Gaver [2] pro-
vides an analysis. For non-exponential available pe-
riods, Federgruen and Green [5] have analyzed such
queues.

3.3 Unreliable Systems.

Reliability analysis concerns itself with the availability
of a system over time, and some work has been done to
find the distribution of cumulative availability (the cu-
mulative amount that a system is available over time).
This corresponds exactly to accumulation of work in
a network of transient processors. For a system with
two states (available and non-available) Donatiello and
Iyer [4] find the transform of the cumulative availabil-
ity, and they derive a closed-form expression when the
time in each state is exponentially distributed. Using
their results, we can find the moments of the amount
of work done in a given amount of time for any spe-
cific available and non-available period distributions.
However, we were unable to derive general results in
terms of the distributions’ moments, and therefore we
turned to the cumulative, alternating renewal analysis
described later in this paner. Although, their results
do not directly provide the distribution of the first pas-
sage time, the transform of this may be obtained using
techniques from the cumulative, alternating renewal
analysis.

De Souza e Silva and Gail [3] discuss the calcula-
tion of cumulative availability in systems which can be
modeled as homogeneous Markov chains. They find a
general method for calculating cumulative availability,

and further find good techniques for numerical evalua-
tion of their method. The SAVE (System Availability
Estimator) program [7] implements their method. For
numerical, not approximate analytic, results, this is an
excellent approach.

4 Results for One Processor.

We use two methods for deriving for the finishing time
of a program on one processor. The first analysis pro-
vides the distribution of the first passage time with
some restrictions on the distributions of the available
and non-available periods (see section 4.1); however, it
does not yield the distribution of the amount of work
done over time. The second analysis, using a cumu-
lative, alternating renewal process, provides us with
the distribution of w(u |t) for arbitrary available and
non-available period distributions, but only with the
transform of the first passage time distribution. Given
w(u|t) from the second analysis, we can then develop
a model for M processors. e g

We may easily derive the averages W; and f. In a
long period of time, the processor spends, on average,
a fraction t4/(ts + t,) of its time in available periods.
Thus in ¢ seconds, the average amount of work com-
pleted is ¢ times this fraction, or

la

L 1
ta+1in)
Because the processor completes, on average, t,/(t4 +
t,) seconds of work per second, the reciprocal of this is
the number of seconds it takes to complete one second

of work. Multiplying this by W we find the average
first passage time,

t —

f=ta+t,,

+ @

If we wish to account for multiple processors, the aver-
age amount of work done per time period is increased
by a factor of M, the number of processors, and the
first passage time is likewise decreased by a factor of
M, giving us:

w.

2

= Mt. 3

T tatts ®)
and s
TFeiicta n

As we will find, this simple analysis accurately charac-
terizes the system when our program takes a long time
relative to the average length of the available and non-
available periods.

4.1 Direct Analysis.

Assume, for the moment, that we have only one proces-
sor (M = 1). If our program starts when the processor
is available, as shown in Figure 1, it will finish at time
W + w, where W is the additional (wasted) time the

484

27 NN7 NN NN

Available
Period

Program
Begins Service

Time

Non-available
Period

Program
Completes

Figure 1: Time for one processor to finish W seconds
of work.

program spends in the system because the processor
is sometimes in non-available periods.

Because the non-available periods are independent
and identically distributed random variables with ex-
ponential distributions, Py (t), the probability distri-
bution function of the additional time in non-available
periods, given that we have ¢ such periods, is an Erlang
distribution; that is

dPy (t]7) _ (1/tn)(t/tn) "} e=t/tn (5)

dt (i—1)
The number of non-available periods that “arrive” dur-
ing W seconds has a Poisson distribution with rate

1/ts. Thus, unconditioning on this number, we get
that the density of w is

dPy(t) _

(6)

ift=0
ofn (lte) o5& ifr > 0

L
e=W/te UO(t)
0o (1/ta)(t/ta)'"?
i=1 G-D)!
where ug(t) is a unit impulse at ¢ = 0. For ¢t > 0, this
may be further reduced to

dPSH) 1 I 5k e, W
dt - e Nl Ly O

where I;(z) is the modified Bessel function of the first
kind of order 1. Figure 2 shows the distribution of the
first passage time using ¢, = 91 and ¢, = 31.305, and
W = 103.

To find the mean and variance of this distribution,
it simplifies the analysis to model the sequence of
non-available periods using a series-parallel queueing
server, shown in Figure 3, and then use known results
for such servers. In this model, each of the infinite
number of sub-servers (the numbered circles in the fig-
ure) has the same distribution as a single non-available
period, and, in fact, represents a non-available period.
We adjust the transition probabilities p; so that the
number of sub-servers a program passes through has
the same distribution as the number of non-available
periods arriving in W seconds. Upon entering the
series-parallel server, the job immediately leaves the
server with probability po , or the job enters sub-server

(9

ly= 91 min.
t, = 31.305 min.
0.0025 | M=1
W= 1000 min.
0.002 I
|
0.0015 |
|
0.001 |
|
0.0005 |
mean = 1344 min.
" l . .
1000 1200 1400 1600 1800

Time to Finish (minutes)

Figure 2: First Passage Time Density for Direct Anal-
ysis.

\ & y

Figure 3: Series-parallel model of extra time needed
to complete W seconds of work.

1 with probability 1 — pg. Then each time a job leaves
a sub-server i, a similar choice is made between leav-
ing the series-parallel server (with probability p;) or
continuing on to the next sub-server (with probabil-
ity 1 — p;). For our purposes, we adjust the prob-
abilities p; so that the number of sub-servers passed
through has a Poisson distribution. To compute these
pi, we note first that po = e~tW . For notational con-
venience, let P(i) = 3re~*, the i term of a Pois-
son distribution with parameter A. Next, we see that
(1 - po)p1 = Pwyt, (1), and we immediately have that

g Pwita(1)
1 - Pwy:,(0)
It may be proved by induction that
= Pw 1, (3)
1= Pwe ()
Using these p;’s, and the expression in Kleinrock [10]

for W*(s), the Laplace transform of the density of the
time required to pass through a series-parallel server,
we get

W*(s) =po+ i ﬁv_v.éﬁe—(w/t.) (1/tn)' 9)
$=1

s+1/t,

(8)

pi

which, after some manipulation, becomes

1/tn

W*(s) = P/, (?+—1/t:) (10)

485

where P} (z) = e**~1) is the z-transform of a Poisson
distribution with parameter A.

We multiply this by e~"* to account for the W
seconds that we are required to work, and finally find
the transform for the distribution of time to finish W
seconds of work, i.e.,

F*(s) — e-W’e(W/tﬁ)((]‘/tﬂ)/(’-"l/t”)—1)' (11)
Taking derivatives, we find that the mean time re-
quired to finish W seconds of work is

ts H2a
)

b Wer

(12)

and the variance of this time is

2
17474 (13)
la

Note that Equation 12 agrees with Equation 2. This
mean and variance may also be derived by viewing the
distribution as a constant plus a random (Poisson—
distributed) sum of Erlang random variables, and us-
ing the well-known formulas for the mean and variance
of a random sum of random variables [10].

We can modify this analysis for non-exponential
non-available time distributions, but it still requires
exponential available times so that the number of non-
available periods in W seconds has a Poisson distribu-
tion. If we wish to allow arbitrary available period
distributions as well, then we need a more sophisti-
cated method of counting non-available periods, and
this leads to analyzing the situation as a renewal pro-
cess.

2 _

0f—2

4.2 Analysis as a Cumulative,
Alternating Renewal Process

To allow arbitrary distributions for the available and
non-available periods, we follow the presentation of
Cox [1] in his treatment of cumulative, alternating re-
newal processes. As before, the single processor has
a capacity of one second of work per second, and we
wish to find the distribution of the time required for
this processor to finish W seconds of work. Let X; be
the duration of the i*" non-available period, and X’
be the duration of the i*P available period, as shown
in Figure 4. Let the renewal points for our alternating
renewal process be the beginning of the non-available
periods, shown as heavy dots in the figure; the time be-
tween renewal points is then X; = X + X;’. This has
mean E[X] = t4 +1n and variance Var[X] = o2 + o2
We assume that ¢ = 0 occurs at the beginning of a
renewal period.

To form a cumulative process from this, define W;
to be the amount of work completed in each renewal
period: W; = X/, with mean ¢, and variance o2. Let
Z,; be the sum of all the available time up to time ¢,
excepting that in the current available period, if the

b x e xe-w | EX1-e | EXeu |

| SR
“——Xl—_'l

Not Available

Figure 4: Cumulative Renewal Process

process is in such a period at time t.

Zy

N,
YW (N=12,..) (14)

where N, is the number of renewals in (0,t]. Asymp-
totically, Z; has the same properties as w(u | t), the
process that accumulates the true total available time
up to time t; however, Z:’s analysis is more tractable
than that of w(u|t).

Cox’s analysis allows the available and non-available
periods to have arbitrary distributions. For t large, Z;
is the sum of many independent random variables, and
it is asymptotically normal with mean

ta
ta+in

E[Zi] = t (15)

and variance
(4D, g
(ta+1tn)?

Using exponentially distributed available and non-
available periods, these become:

Var [Zt] =

E[Z:] = tat-: -t (17)
Var[Zi] = (%(ff—;‘j—)g : (18)

As noted before, the asymptotic properties of 7, are
identical to the asymptotic properties of w(u|t).

Comparing this to the result of the direct analysis,
we note that for ¢t equal to the mean first passage time
(Eqn. 12), we have done, on average, W seconds of
work, as we expected.

In his derivation, Cox, assuming that W; is inde-
pendent of X/ for all i, derives a double transform for
f(t) . Unfortunately, this transform is very difficult to
invert, but the asymptotic distribution of Z; is really
what we need so we can use it in the next analysis.

5 Results for M Processors

Because the amount of work done by one transient
processor is the sum of a (possibly large) number of
available periods, the total work done in time t is
asymptotically normal with mean and variance given
in Equations 17 and 18, respectively. If t, <K W and

486

f(t)

te =91 min.
27 TN t, = 31.305 min.
0.0025 ¢ “ M=1
’ (N W= 1000 min.
0.002 e £ A
" I \‘ = = Brownian
0.0015 /] I = Direct
d I
0.001 |
|
0.0005 | .
’o mean = 1344 min.
oL |
1000 1200 1400 1600 1800

Time to Finish (minutes)

Figure 5: First Passage Time Distributions for Direct
and Brownian Motion Analyses.

f(t,=0

A t, = 91 minutes
0.1 t, = various
t,,-somln. M=100
0.08 W= 10000 min.
0.06 :l
0.04 | 1 :“In= 75 min.
[= .
0.02 Iy ¢ \ ,_in 150 min t,= 300 min.
0 Jak St N
0 100 200 300 400 500 600

Time to Finish (minutes)

Figure 6: First Passage Time Densities for Brownian
Motion Model for Various ty.

t, < W, thenitis reasonable to use Brownian motion
as a model of an M processor system. All M proces-
sors are assumed to be independent, so the amount of
work done by time t is the sum of M independent, (ap-
proximately) normally distributed random variables,
with mean

ta
ta+1in

bt = Mt = pa Mt (19)

and variance

2(02t2 + o2t2)
24 — bl ORI VA, £ A 20
Op (ta o tn)a ()

For exponential available and non-available distribu-
tions, Eqn. 20 becomes:

_ 2tatn)” pp, _ 22a(1—pa)ME
(ta +1ta)° tn
where pg = ta/(ta +tn)-

With these as the parameters for our Brownian mo-
tion, the density of the time, ¢, that it takes for M

(21)

f(t)

tg = 91 min.
t, = 31.305 min.
o | M =100
| W = 10000 min.
0.06 |
|
0.04 |
|
|
0.02 |
| .
| mean = 134.4 min.
%20 125 130 135 140 145 150

Time to Finish (minutes)

Figure 7: First Passage Time Density for Brownian
Motion Analysis.

processors to finish W seconds of work is well-known
(e.g. see Karlin and Taylor [9]) and is given by:

w (W — bt)?
fit)= JoreT® exp [— 50Tt (22)
This has mean
= W _W(tat+tn)

and variance o

o} = =% (24)
b3

and for exponential distributions, the latter becomes

2W t2

255

o5 = —mi (25)

Equation 22 is the main result of this paper. Note that
it makes no assumptions about the distributions of the
available and non-available periods, except that their
variances are finite, and only the distributions’ means
and variances appear in the first passage time.

Note that for the case M = 1, this mean and vari-
ance agree with our single processor analysis of section
4.1. The first passage time densities for both the sin-
gle processor analysis and the multiprocessor analysis
with M = 1 are shown in Figure 5.

Figure 6 shows the distribution of first passage time
for various t, with t = 91, M = 100, and W = 10*.
Using the t, = 91 and t, = 31.305, our job of 10*
minutes would take about a week to run on a single,
dedicated processor. When run on a network of 100
transient processors, it would take 134.06 minutes, or
about 2.25 hours. The distribution of this first passage
time is shown in Figure 7. Note that although W > t,
and W > t,,, we have that W/M, the finishing time if
the processors were fully dedicated to the program, is

487

or/f W = 10000
0.25
0.20

0.15

t /W =0.15

t,/W =0.075

t,/IW =0.03

0.10

0.05 tn/W =0.003

4000 6000 8000

t, (minutes)

2000

Figure 8: o /f with various ¢, and 5.

close to the average length of an available period, and
it is remarkable that the curve is still so symmetrical.

It is useful to examine the ratio of oy to 7, namely:

A4S
VoW
to see what happens to the distribution as the pa-
rameters change. For exponential distributions this

9 _
2 (26)

becomes
0‘] 2tn tn/ta
B e 27
7 W 1+tafts (27)

and it is this equation that we examine in more detail.
Figure 8 plots Eqn. 27 for fixed ¢, and W, and varying
ts. Note that in this figure, t, = 30 minutes is the
lowest line and t,, = 1500 minutes is the uppermost
line.

Because we assumed ¢, < W, this ratio tends to
be less than 1, reaching a peak when t, = t,. If we
fix t,/W and let t,/ts go to infinity (which implies
t, — 0), the ratio goes to 0. We explain this by noting
that for small t,, it takes very many available-non-
available cycles before the work is finished. The law
of large numbers insures that the first passage time
distribution, which is the sum of these many periods,
will then be tight about its mean.

If, on the other hand, we let t — o0, the ratio
of the standard deviation to the mean goes to zero
once again. When t, is large relative to t,, the non-
available periods become negligible, as if the processors
are always available. Again, the first passage time dis-
tribution becomes very tight about its mean because
non-available time periods add little variability to the
finishing time.

Given that the first passage time distribution is tight
about its mean, (i.e. t; > tn, or tg K tn, or W > tn),
it may be accurate enough to consider the distribu-
tion as an impulse at the mean finishing time (in the

spirit of the law of large numbers). Using the previous
example again, we find ¢ = 21.53, and approximat-
ing f(t) as a normal distribution (discussed below),
we find that 90% of the time, programs requiring 10*
minutes of work will finish within 7.6 minutes of the
134.4 minute mean finishing time.

The central-limit theorem says that f(t) will tend
toward a normal distribution when many available—
non-available periods occur before the program com-
pletes (ie. W > t, and W > t,,). To approximate
the first passage time, we use a normal distribution
with the same mean and variance as the first passage
time distribution:

f(t) = —m e~=TP/2eD)

2
27l'df

(28)

When the mode of the first passage time distribution
is close to its mean, a normal distribution well approx-
imates the first passage time. The mode is:

1 [9(c2)? 4W? 302
g

Comparing this to the mean, we find that the per-
centage difference between the two is approximately
30/2bW, which, as we would expect, shrinks as W
Zrows.

(29)

6 Conclusion

We have analyzed a network of transient processors,
and determined the probability density of the length
of time it takes to finish a fixed amount of work.
The main result for an M processor network is given
in Equation 22, and it is valid for general available
and non-available period distributions. Simulations
confirm that Brownian-motion-with-drift is an accu-
rate model of system performance under the assump-
tions given above. With large programs that run for
a long time relative to the length of available and
non-available periods, the central limit-theorem ap-
plies, and the Brownian-motion-with-drift model re-
mains good regardless of the distributions of the avail-
able and the non-available periods. Under these as-
sumptions, the distribution of finishing time will be
very tight about its mean, and is well approximated
by a normal distribution.

It does remain to account for communication over-
head and precedence relationships, but it is likely that
these can be accommodated, or at least approximated,
within the model.

The analysis in this paper has not examined the ef-
fect of multiple programs in the network. We may
now use the first passage time distribution (Eqn. 22),
as the service time in a queueing system that repre-
sents the network. If each job gets the whole network
and they must queue, then a G/G/1 queue is a good
model. If all the programs in the network share the

488

processors equally, then we could model the network
as an M/G/1 processor-sharing system. The analysis
of such systems remains for a future paper.

It is well known that, for a given total processing ca-
pacity, the average response time is shortest if we use
one large processor rather than many small processors
[11]. From this perspective, the trend toward individ-
ual workstations is a curious one. However, this result
assumes that each program executes on only one pro-
cessor. If we distribute the program over all the small
processors, then we may recover, at least partially, the
response time advantages of a large, central system,
while retaining the advantages of individual worksta-
tions.

References

[1] D. R. Cox. Renewal Theory. Methuen and Co.,
Ltd., London, science paperbacks edition, 1962.

[2] Jr. D. P. Gaver. A waiting line with interrupted
service, including priorities. Journal of the Royal
Statistical Society, B24:73, 1962.

Edmundo de Souza e Silva and H. Richard Gail.
Calculating Availability and Performability Mea-
sures of Repairable Computer Systems Using
Randomization. Journal of the ACM, 36(1):171-
193, January 1989.

Lorenzo Donatiello and Balakrishna R. Iyer.
Closed-Form Solution for System Availability Dis-
tribution. IEEE Transactions on Reliability, R-
36(1):45-47, April 1987.

A. Federgruen and L. Green. Queueing Systems
with Service Interruptions. Research Working Pa-
per 84-5, Columbia University, 1984.

Robert Felderman, Eve Schooler, and Leonard
Kleinrock. The Benevolent Bandit Laboratory:
A Testbed for Distributed Algorithms. IEEE
Journal on Selected Areas in Communications,

7(2):303-311, February 1989.

Ambuj Goyal. System Availability Estimator
(SAVE) User’s Manual Version 2.0 (External).
Technical Report RC 12517 (No. 56267), IBM
Watson Research Center, February 1987.

Daniel P. Heyman and Matthew J. Sobel.
Stochastic Models in Operations Research, Vol-
ume 1: Stochastic Processes and Operating Char-
acteristics. Series in Quantitative Methods for
Management. McGraw Hill, 1982.

Samuel Karlin and Howard M. Taylor. A First
Course in Stochastic Processes. Academic Press,
second edition, 1975.

Leonard Kleinrock. Queueing Systems, Volume
1: Theory. John Wiley and Sons, 1975.

Leonard Kleinrock. Distributed Systems. Com-
munications of the ACM, 28(11):1200-1213,
November 1985.

(3]

4]

[5]

[6]

[7]

(8]

[

(10]

(11]

[12] Willard Korfhage. Distributed Systems and Tran-
sient Processors. PhD dissertation, University of
California, Los Angeles, 1989.

[13] Matt W. Mutka and Miron Livny. Profiling
Workstation’s Available Capacity for Remote Ex-
ecution. Computer Sciences Technical Report
697, CS Dept., Univ. of Wisconsin, May 1987.

[14] David A. Nichols. Using Idle Workstations in a
Shared Computing Environment. In Proceedings
of the Eleventh ACM Symposium on Operating
System Principles, pages 5-12. ACM, November
1987.

489

