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Collecting Unused Processing Capacity: 
An Analysis of Transient Distributed Systems 

Leonard Kleinrock, Fellow, IEEE, and Willard Korfhage, Member, IEEE 

Abstract-Distributed systems frequently have large numbers 
of idle computers and workstations. If we could make use of 
these, then considerable computing power could be harnessed at 
low cost. We analyze such systems using Brownian motion with 
drift to model the execution of a program distributed over the idle 
computers in a network of idle and busy processors, determining 
how the use of these “transient” processors affects a program’s 
execution time. We find the probability density of a programs 
finishing time on both single and multiple transient processors, 
explore these results for qualitative insight, and suggest some 
approximations for the finishing time probability density that 
may be useful. 

Index Terms- Brownian motion, distributed processing, idle 
processors, performance analysis, transient processors. 

I .  INTRODUCTION 
ISTRIBUTED systems frequently have large numbers of D idle computers and workstations. If we could use these, 

then considerable computing power could be harnessed at low 
cost. In this paper, we model program execution on a network 
of workstations, some idle and some not. Because we use 
only the idle time on the processors, they are not always 
available for use. Hence, we call these machines “transient” 
processors. Using a direct analysis and a cumulative alternating 
renewal process analysis both provide simple expressions 
for the probability density of the program finishing time 
on a single transient processor. We extend the cumulative 
alternating renewal process into a Brownian motion with drift 
model of the finishing time density on multiple processors. We 
then examine the properties of the finishing time probability 
density to achieve some qualitative insight into the results. 
Finally, we suggest several approximations for the finishing 
time probability density, and discuss under what conditions 
they can be used. 

A. Background 

Networks of computers are common in business and 
research environments throughout the world. Local area 
networks, which were originally introduced to ease data and 
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device sharing, have grown in speed, sophistication, and size to 
the point that effective distributed processing can be performed 
on them. These networks vary in size from a handful of 
personal computers on a low-speed network, to networks 
consisting of thousands of workstations and a variety of larger 
machines on a high-speed, fiber-optic network. As a typical 
example, consider a network of workstations on a high-speed 
network in a research laboratory. Not only are there many 
machines, well connected by the network, but the users are 
likely to demand more and more computing power as the 
applications grow. 

Networks of workstations have grown in spite of theoretical 
considerations that would discourage them. It is well known in 
queueing theory [2] that a single server of large capacity shared 
by many users provides better response time than many smaller 
servers with the same total capacity. Thus we might expect 
that a mainframe will provide faster service to its users than a 
network of workstations. Of course, one may argue that for the 
same amount of money one can buy much more workstation 
capacity than mainframe capacity, but even then we would like 
to make the best use possible of our computing resources. This 
implies that a network of workstations would have improved 
performance (overall) if the workstations were considered 
part of one processor pool, available for the execution of all 
programs. Some systems, such as Amoeba [3] provide a pool 
of processors strictly as compute servers. We, however, would 
like to retain the usual use of workstations on the network in 
addition to considering them part of the processor pool. 

The solution to this is idle time. On these networks, we 
often have the situation that many of the personal computers 
and workstations are sitting idle, waiting for their users, and 
thus being wasted ([4], [5]). If we could recover this wasted 
time for useful processing, then we would have considerable 
computing power available to us at low cost. We refer to these 
processors, which are sometimes busy and sometimes not, as 
transient processors. 

Whether this is technically feasible or not depends on a 
variety of factors, such as the properties of the communications 
medium, the properties of the computers, and the statistical 
characteristics of the user population.’ In all systems of this 
type, one concern is that the “owner” of a machine should not 
see any degradation in performance because of the background 
programs. Any background computation should be aborted 

There are also other important but nontechnological factors, such as 
people’s resistance to the use of ‘‘their’’ machine, that would determine if 
and how a distributed system would be implemented. This paper does not 
examine such matters. 
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when user activity is detected, and not restarted until the 
system is sure that the machine is idle. 

There has been much research on systems that make use 
of idle workstations through load balancing and process mi- 
gration; we mention here a few such systems. Most of these 
provide remote program execution facilities (e.g., run a com- 
piler at another machine rather than on the local workstation), 
rather than specifically supporting distributed computations. 
We make note of those systems that have been designed 
specifically for distributed computations. 

Alonso and Cova [6] discuss a load balancing system for 
workstations in which a workstation tries to execute a job 
remotely if the local processor load is greater than some “High 
Mark,” and accepts jobs from other workstations if the local 
processor load is less than some “Low Mark.” This allows for 
a continuum of migration policies. 

At U.C.L.A., the Benevolent Bandit Laboratory (BBL) [7] 
runs distributed computations under MS-DOS on a network 
of IBM PC-AT’S. A special shell runs on each machine, 
and when a machine is at the operating system prompt 
level (as opposed to running a program), it is available for 
use. If someone starts to use a machine currently part of a 
background, distributed computation, the system can select and 
start a replacement machine from the pool of idle processors. 
Because the system was also intended for the investigation 
of distributed algorithms, special features, such as the ability 
to mimic any connection topology, and some distributed 
debugging facilities, have been built in. 

Lyle and Lu [SI describe a simple remote program execution 
facility that operates at the shell level, like BBL, rather than 
the kernel level. This has the advantage of being simple to 
implement, yet still uses idle workstations. 

Condor ([9], [lo], [4]) is a very successful remote program 
execution facility running on workstations at the University of 
Wisconsin. The developers of the system have made a number 
of useful measurements of workstation behavior in [lo]. 

The Butler system [ l l ] ,  running on Andrew workstations 
at Carnegie-Mellon also provides remote program execution 
facilities. The system uses this to run gypsy servers, which are 
network servers that run on idle workstations instead of on a 
fixed machine. 

Stumm [12] discusses a remote program execution and task 
migration facility for the V kernel. His paper discusses various 
issues, such as the migration policy, and offers thoughts on 
using the system for distributed computations. 

The Worm program [13] was developed at Xerox PARC 
as an experiment in distributed processing. Worms prowled 
the network, collecting idle workstations and using them 
to perform some action, typically displaying a message or 
running a diagnostic program. 

There have also been ad-hoc attempts to use the idle time 
on processors. Dr. Tim Shimeall [14], during his dissertation 
research, wrote a program “polite” that ran a software analysis 
program on workstations when no one was logged in and 
suspended the program when the workstation was being used. 
He reports that he finished nearly 10 CPU years of work 
in about 6 months on 20 workstations using this program. 
But again, this was very much a simple remote job exe- 

cution facility, put together out of need, and it was never 
analyzed. 

B. Outline 

Section I1 discusses our model of the network. Section 111 
gives a simple analysis of the average time for a program to 
finish. Sections IV and V then develop three models of the 
network and analyze them to find the distribution of time to 
finish a fixed amount of work. 

The first model, in Section IV-B, is a single processor model 
with general available and nonavailable times. We examine 
the number of nonavailable periods interrupting a program, 
and from this we find the Laplace transform of the distribution 
of the time to finish a program (response time), and then the 
mean and variance of the response time. 

The second model, in Section IV-C, is also a single pro- 
cessor model, but it is analyzed as a cumulative, alternating 
renewal process. We find that the asymptotic distribution of the 
accumulated work (over a long period of time) is Gaussian, 
with simple expressions for the mean and variance. 

The third model, in Section V-A, handles multiple pro- 
cessors and views the amount of work done over time as 
Brownian motion with drift. We scale the asymptotic mean 
and variance of the accumulated work from the second, single 
processor model to the case of M processors, and use this 
as the mean and variance of the Brownian motion with drift. 
From this we get the probability density of the time to finish 
a fixed amount of work on M processors. The mean and the 
variance agree very closely, for M = 1, with the first model. 

Finally, Section VI contains the conclusions. These three 
models offer an approach to predicting performance of dis- 
tributed programs on transient processors. By relaxing some of 
our assumptions, more sophisticated models could be derived 
from those described here. 

11. THE MODEL OF THE NETWORK AND THE WORKLOAD 

A. The Network 

Assume that we have a network of M identical processors, 
each of which has a capacity to complete one minute of work 
per minute. A processor alternates between a nonavailable 
state (signified by n or nu), when the owner is using it (e.g., 
typing at the keyboard), and an available state (signified by 
a or av), when it is sitting idle. The lengths of nonavailable 
periods are independent and identically distributed (i.i.d.) ran- 
dom variables from distribution N ( t ) ,  with mean t,, variance 
o:, and corresponding density n( t ) ;  we allow any general 
distribution for N ( t ) ,  unless otherwise specified. Likewise, 
available periods are i.i.d. random variables from a general 
distribution A ( t )  with mean t,, variance 02, and density 
a ( t ) .  The available and nonavailable periods are mutually 
independent. 

B. The Distributed Program Workload 

We model a program as consisting of multiple stages of 
work, each of which must be completed before the start of 
the next, and each of which represents a deterministic amount 
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In the process of finding these, we will need another 
function, namely, the pdf of the amount of work accumulated 
(i.e., completed) by a processor or network of processors 
over time. We denote this by y(u 1 t ) ,  the probability density 
that after t minutes of time have elapsed, the processor (or 
processors) under consideration has accumulated U minutes 
of work. This function has mean E[y(u I t ) ]  and variance 
Var[y(u I t ) ] .  

D. Notation 

We use the abbreviations “PDF” to stand for “probability 
distribution function.” Typically we use capital letters for a 
PDF and the corresponding lower case letters for a pdf. If 
F ( z )  is a PDF, then its pdf is f(x) = ( a / a z ) F ( z ) .  

Fig. 1. Execution time profile of an algorithm 

of work (Fig. 1). The time to finish a program is the sum 
of the times to complete the individual stages. We assume 
that the time to finish a stage depends only on the amount 
of work in that stage, and is independent of the other stages. 
This means that the probability distribution of the total time 
to finish a program is the convolution of the distributions 
of the individual stage finishing times. Assuming that the 
network characteristics do not change during the execution 
of the program, then from the analysis of the time to finish 
a single stage requiring W minutes of work we can find the 
finishing time probability density function of all other stages, 
and from there, the finishing time probability density function 
of the program as a whole. 

We make the simplifying assumption that the work in 
any stage is infinitely divisible-it can always be divided 
evenly among all available processors. Note, however, that this 
assumption does not always obscure program behavior. Some 
programs, such as the simulators used for the models of this 
paper, are, in fact, composed of very many independent tasks, 
and work is always available for any idle processor. In such 
cases, this assumption captures the program behavior and is 
not a simplification at all. In addition, in a system with multiple 
users on many machines, the aggregation of independent jobs, 
each with a number of tasks, from many users will yield an 
overall workload that tends to look like many independent 
tasks (or, at least, enough tasks to keep idle machines busy), 
and this would fit well with our assumption. We will explore 
this more in future work. 

Another simplifying assumption we make is to ignore 
overhead that occurs in a real system (e.g., communication 
delays, processing delays), and thus our model provides an 
optimistic bound on system performance. Some techniques for 
removing this assumption are mentioned in [I]. 

C. What We Seek 

The purpose of this paper is to find f ( t ) ,  the probability 
density function (pdf) of a program’s finishing time (i.e., 
response time). Also of interest are its mean, f ,  and its 
variance, 0;. 

E. Example Parameters 

Mutka and Livny, [lo], made actual measurements of a 
network of transient processors, and they developed models 
for the available and nonavailable period densities to fit these 
measurements. From their results, we derive two examples 
that we use throughout this paper. 

The model they used for the available time PDF was a 
3-stage hyperexponential distribution: 

A( t )  = P [length of an  availablt period 5 t]  
= 0.33( 1 - p - ( t / 3 ) )  + 0 . q  1 - 

+ 0.27( 1 - e--(t /300)) t 2 0 (1) 

which has mean t ,  = 91 min and variance 0,” = 40225 min2. 
For the nonavailable time distribution, N ( t )  = P[length 

of a nonavailable period 5 t] ,  they used a shifted 2-stage 
hyperexponential distribution: 

0.7( 1 - e - ( t / 7 ) )  + 0.3( 1 - if t 2 7 
i f 0 < t < 7  

(2) 

which has mean t ,  = 31.305 min and variance 02 = 
2131.83 min2. The 7 min shift in the distribution arises 
because a processor was not declared idle until 7 idle minutes 
had elapsed. 

We use Mutka and Livny ’s distributions wherever possible 
in our examples, but frequently we assume exponentially 
distributed available and nonavailable periods; at such times, 
we take the means of these exponential distributions to be 
the numbers given above. The use of exponential distributions 
instead of hyperexponential distributions will not affect any 
means that we derive, but any variances that we find will be 
lower than if we had used Mutka and Livny’s distributions. 

Regardless of which distributions we use, we take W = 
1000 min and A4 = 1 for single processor examples, and, 
IY = 10000 min (almost 7 days) and M = 100 for most 
multiple processor examples. The reason for the large values 
of W is explained below. 

F. Related Work 
One approach to analyzing a single processor system is to 

use queueing with vacation as a model. In such a system, the 
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queueing server is subject to randomly occurring stoppages 
lasting for random amounts of time. There are many varieties 
of such systems depending upon what restrictions we put on 
the vacations (see [15] for a survey). For our model, we require 
vacations to occur preemptively and at any time (as opposed 
to vacations that occur only when the processor is busy). The 
earliest analysis of such systems is in [16], and later in [17], 
but Gaver ([18]) derives the Laplace transform for the finishing 
time by assuming exponentially distributed available periods 
and generally distributed nonavailable periods. Federgruen 
and Green ([19]) extend the analysis to generally distributed 
available periods, but they find only the first two moments of 
the finishing time, and not its distribution. 

For both single and multiple processor systems, performabil- 
ity analysis offers an alternative approach to ours. Performabil- 
ity analysis ([20], [21], [22]) combines dependability analysis 
with performance measures. A system is modeled as a Markov 
or semi-Markov process in which each state of the process 
represents a possible configuration of the system with respect 
to failed and working components. In a multiprocessor, for 
example, the state could be the number of working processors. 
This state represents the reliability aspect of performability 
analysis. Associated with each state is a reward representing 
either the performance measure of interest, or a quantity that 
may be used to calculate the performance measure. Applied to 
the models of this paper, the state of the system represents the 
number of available processors, and the reward for each state 
is the amount of available computing power (in operations 
per time unit) in that state. Our goal would be to find 
the distribution of time it takes for the accumulated reward 
(accumulated work) to reach a threshold representing the 
amount of work a program requires. 

A number of researchers have examined the problem of 
finding the distribution of accumulated reward (also known 
as the performability distribution). Nonrepairable systems, in 
which a nonavailable processor cannot become available (“be 
repaired”), are easiest to analyze, but are not applicable to our 
problem. For repairable systems, some researchers have found 
methods to get the moments of the performability distribution 
([23], [24], [25]), and other researchers have expressed the 
performability distribution as a double Laplace transform 
([24], [26], [23], [27], [28], [29]). In the latter, typically 
the transform can be inverted analytically on one variable, 
then inverted numerically on the other variable, although 
[24] perform the inversion entirely numerically. In [30], de 
Souza e Silva and Gail apply randomization techniques to 
numerically find the distribution of performability over a finite 
time interval. 

However, we do not want this distribution of accumulated 
reward itself, but we would like to find the distribution of time 
for the accumulated reward to reach a threshold. Because our 
reward represents accumulated work, this latter distribution 
is equivalent to the distribution of time to complete a job. 
In one of the early papers on performability, Beaudry [20] 
defines this quantity, but never derives it for systems of 
interest to us. Kulkami, Nicola, Smith, and Trivedi [27] find 
a double transform of the job completion time distribution in 
terms of a system of equations, and provide an algorithm for 

numerical inversion of the transform. The difference between 
this previous work and the work contained in this paper is that 
our model takes a different view of the problem and involves 
simple, approximate analytical expressions, with no numerical 
techniques being necessary. 

Finally, much of the work on performability concerns itself 
with transient analysis, because in a well-designed, fault- 
tolerant system, faults will be quite infrequent, and steady 
state analysis can be misleading. Our situation is the opposite, 
with “faults” (processor nonavailability) occurring frequently, 
and we expect many “faults” to occur before a program 
finishes execution. Iyer et al. [26] note that asymptotically, 
after a long enough time that every state of the system has 
been entered many times, the performability distribution is 
normally distributed, and the mean and standard deviation 
of this distribution can be found by solving sets of linear 
equations. In this paper, we come to the same conclusion about 
the normality of the asymptotic distribution by starting from 
the analysis of a single processor, as discussed in Sections IV- 
C and V-A, and in doing so we find simple expressions for 
the mean and variance of this distribution [(18) and (19)]. 

One appealing aspect of performability models is that by 
setting the rewards appropriately for each system state, the 
model could capture some of the inefficiencies that occur as a 
program executes on varying numbers of processors, examples 
of which are the additional communication overhead involved, 
or the program’s inability to use all available processors. These 
rewards, however, would be specific to that particular program. 
Ammar and Islam [24] have done this using Generalized 
Stochastic Petri Nets to generate the reliability model for a 
specific architecture, and then trace-driven simulations of a 
specific algorithm to determine the reward for every state 
of the reliability model. The reward is the inverse of the 
total execution time of the computation, given the system 
is in a particular state. Because there may be many states 
in the reliability model, and hence many simulation runs 
required, their model is potentially quite time consuming. 
We are investigating methods by which we can capture the 
interaction of the algorithm with the architecture within our 
Brownian motion model. 

111. TIME TO FINISH A PROGRAM: QUICK MEANS 

With simple reasoning, we can find the mean cumulative 
work over time, E[y(u 1 t )] ,  and the mean finishing time for a 
program, f. Over a long period of time, a processor is available 
a fraction of the time p a  = ta / ( t ,  + t,), and nonavailable the 
remaining fraction of the time, p ,  = tn/ ( ta  + t n ) .  Over a 
period of t seconds, the amount of work a processor does is 
equal to the fraction of time it is available (assuming that there 
is a large amount of work to do, and that the processor never 
goes idle), and thus we have the equilibrium approximation 

(3) 

Similarly, it takes (t ,  + tn) / ta  seconds to accumulate one 
second of work, so the average finishing time for a program 
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on a single processor is 

(4) 
- f=- t ,  + t ,  W. 

t, 
In an M processor network, we accumulate work M times 

faster and thus finish in (l/M)th of the time. Therefore: 

We will use these as a check on the other analyses. 

Iv .  THE DISTRIBUTION OF 
FINISHING TIME FOR ONE PROCESSOR 

A. Introduction 

We would now like to find the pdf of the finishing time for 
any particular algorithm or program. This is also known as 
the first passage time, the first time at which the accumulated 
work is greater than some particular amount (W minutes 
in our case). In this section, we analyze the behavior of a 
program on a single, transient processor using two methods. 
The direct method, in Section IV-B, yields f ( t )  for general 
distributions, but unfortunately, it does not extend to multiple 
processors because the analysis depends upon the system being 
either fully available or fully nonavailable. In a multipro- 
cessor system, we usually have partial availability: some of 
the machines are available and some are not. We do not 
derive the pdf of accumulated work, y(u I t ) ,  using the direct 
analysis. However, by analyzing the problem as a cumulative, 
alternating, renewal process (Section IV-C), we do find the 
asymptotic probability density of the accumulated work as 
t + 00, and we use this in the Brownian motion analysis 
of the next section. 

B. Direct Analysis of a Single Processor 

We make a direct analysis of the single-processor problem 
by counting the number of nonavailable periods that interrupt 
our program before it completes. If our program starts at the 
beginning of an available period, as shown in the middle of 
Fig. 2, it will finish at time W+Ta, where T, is the additional 
time the program spends in the system because of interrupting 
nonavailable periods. 

Because we must finish the program in an available period, 
and because we assume work starts at the beginning of an 
available period, then none of the nonavailable periods are 
truncated, and it is relatively easy to analyze the total length 
of the nonavailable periods during the time Ta + W .  By 
examining the arrival process for nonavailable periods, we find 
that the Laplace transform of the finishing time density is 

03 

k=O 

= e-w"P(N*(s)) (7) 

where P(z) = Cr=op(k I W ) z k  is the z-transform of p ( k  I 
W ) ,  the probability that IC zero-length nonavailable periods 

Fig. 2. Time for one node to finish W units of work. 

arrive in a W minute period starting at the beginning of an 
available period, and N*(s) is the Laplace transform of the 
length of a nonavailable period. Note that we can also get the 
finishing time density directly using the same technique, but 
this usually results in an open expression; details are available 
in [l]. From the Laplace transform, we can derive the finishing 
time's mean: 

- t ,  + t ,  
f=W---, 

ta 
and variance: 

Is! = a;p + tin; (9) 

where p and a: are the mean and variance of p (k 1 W ) .  
The central limit theorem assures us that when we sum 

many independent random variables, the resulting distribution 
tends toward a normal distribution. We may note an important 
consequence of this: asymptotically, for large W compared to 
t ,  and t,, the finishing time density is normal with mean and 
variance given in (8) and (9). 

I )  Example: Exponential Distributions: If available and 
nonavailable periods are exponentially distributed, then the 
finishing time density is 

(10) 

This was derived using a direct analysis detailed in [l]. Fig. 
3 illustrates this density using Mutka and Livny 's parameters 
to select the means t ,  = 91 min and t ,  = 31.305 min of the 
exponential distributions. The mean finishing time is 

and its variance is 

The finishing time density looks similar to a normal density, 
but it is asymmetrical. For t less than the mean first passage 
time, it rises sharply to a peak before the mean, then drops 
into a stretched-out tail for large t. This asymmetry is more 
apparent for small W ,  and as W grows, the density becomes 
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Fig. 3. Probability density of finishing time for direct analysis. 

more similar to a normal density, as one would expect from 
the central limit theorem. 

Unfortunately, the analysis of this section will not extend to 
multiple processors because it depends upon the system being 
fully available or fully nonavailable. With multiple processors 
the system is usually partially available. However, it is possible 
to get an approximation to the finishing time density for the 
case of multiple processors by studying a different process, 
namely the accumulated work. Thus, in the next section we 
use a cumulative, alternating renewal process to analyze the 
accumulated work on a single processor, then in Section V-A 
we apply this analysis to the multiple processor case. 

C. Cumulative, Alternating Renewal Theoretic Analysis 

Here we reexamine a single processor using a cumulative, 
alternating renewal process. Cox, in his book on renewal 
processes [31], discusses this type of process, and we make 
use of his analysis. 

We can form a renewal process from the alternating states 
of a transient processor by letting a renewal period be a 
nonavailable period followed by an available period. In Fig. 
4 the heavy dots indicate the beginning of each renewal 
period. The durations of the available periods are i i d .  random 
variables from a general distribution, as are the the durations of 
the nonavailable periods, and the lengths of the available and 
nonavailable periods are mutually independent. Using Cox's 
results, we find that the distribution of accumulated available 
time has mean and variance: 

Cox derives these by ignoring the available time accumulated 
in the current available period if one is in progress at time t .  
However, as time goes to infinity, the asymptotic distribution 
of this approximation has the same properties as the true 
accumulated available time. Note that the approximation for 
E[y(u 1 t ) ]  leads to a mean which corresponds exactly to the 
equilbrium approximation of (3) in Section 111. 

Fig. 4. Cumulative renewal process for a processor. 

For exponentially distributed available and nonavailable 
periods, the mean remains the same and the variance may 
be rewritten as 

(15) 
atgtg 

var[Y(u I t)l = ( tu  + t,)3t. 

We could use this approach to get a (possibly very complex) 
expression for the distribution of accumulated available time; 
this was also done in [ l ]  based on the techniques of the 
previous section. Of more interest to us is the fact that the 
asymptotic pdf of the accumulated available time (for large 
t )  is normal with mean and variance given by (13) and (14). 
This distribution is based on a sum of random variables (the 
available periods), and the Central-Limit Theorem [32] tells us 
that as the number of random variables in the sum approaches 
infinity, this pdf converges to a normal pdf. Thus the pdf of the 
accumulated work, y(u I t ) ,  is well approximated by a normal 
pdf if many renewal periods have occurred, or equivalently, 
if t >> tu + t,. This normal pdf will be the basis of the 
Brownian motion model in the next section, which will lead 
us to an approximation for the distribution of finishing time 
with multiple processors. 

v. THE DISTRIBUTION OF FINISHING 
TIME FOR M PROCESSORS 

A. Brownian Motion Approximation 

Brownian motion concerns the random movement of a 
particle through space. A stochastic process, Q ( t ) ,  that de- 
scribes Brownian motion has two basic properties. The first 
is that Q ( t )  has independent increments: Q(t1) - Q(t0) and 
Q ( t 3 )  - Q ( t 2 )  are independent for 0 5 to < tl < t2 < t3 < 
CO. Movement of the particle in one interval is independent 
of its movement in another interval. The second property is 
that each increment in the process, Q(t;+l) - &(ti)  for all 
i 2 0, is normally distributed with a mean and variance 
proportional to t;+l - ti. If the normal distribution has mean 
0 and variance equal to t;+l - ti, then the process describes 
standard Brownian motion, which is also known as a Wiener 
process. Brownian motion with a nonzero mean is known as 
Brownian motion with drift. 

In our model, we let the stochastic process Q ( t )  represent 
the amount of work accumulated by a network of M transient 
processors up to time t. In Section IV-C, we found that over a 
long period of time (much longer than t ,  + t,), the amount of 
work done by one transient processor is asymptotically normal 
with mean and variance given in (13) and (14), respectively. 
If we have a network of M such processors, and all the 
processors are assumed to be independent and identical, then, 
asymptotically, the amount of work done by time t is the 
sum of M independent, (approximately) normally distributed 
random variables, and this is itself (approximately) normally 
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distributed. The mean amount of work done by time t is 

p = -  ta M t  = p,Mt (16) 
t a  + tn  

and the variance of the amount of work done by time t is 

Thus, Brownian motion with drift is a natural model of our 
system. From p and a2 above, we define 6 and g;  (6 signifies 
Brownian), the mean and variance of the amount of work 
accumulated per unit time: 

We use b and later in this analysis. Note that 6 agrees with 
the average accumulated work that we found in Section 111. 

We must still assure ourselves that our stochastic process 
indeed has independent increments. On a short term scale, 
this is clearly not true. Two consecutive one-minute intervals 
are likely to have the same, or at least similar, numbers 
of available processors in both intervals, and hence similar 
amounts of work accumulated in those intervals. However, 
in two one-minute intervals separated by several hours, the 
number of available processors is quite unrelated (unless the 
network has some very unusual statistical properties), and the 
work accumulated in one interval is quite independent of the 
work accumulated in the other interval. Thus we conclude that 
the Brownian motion model is reasonable only over a long 
span of time, and we insure this by specifying that t ,  << W 
and tn << W .  Note, too, that we are using the asymptotic 
results of Section IV-C, and these are valid only for a long 
span of time, which also requires a large W relative to t ,  
and t,. 

The Brownian motion model does allow some behavior that 
seemingly cannot occur in a real network. For example, the 
process is allowed to move in the negative direction, implying 
that we can lose work that we have already done. This is an 
artifact of the model, and it is particularly apparent at small t ,  
but it is negligible for the conditions under which the Brownian 
motion model is useful. Given 8, at ,  and t ,  and using the fact 
that cumulative work is normally distributed, we can compute 
the probability of negative cumulative work as 

where @(x)  is the cumulative density function for a standard 
normal distribution. For t near 0, @(-6t/m) 0.5, 
meaning that for very small t ,  our model says that almost 
50% of the time the program has accumulated a negative 
amount of work. Clearly, Brownian motion is a poor model 
of networks of transient processors for very small t. If we 
manipulate the expression -bt/@ we find it is equal to 
- J( Mt,/2( 1 - p, ) ) t ,  and the coefficient of t under the 
radical is greater than 1 for any reasonable values of M ,  

t,, and t,. Thus as time passes and t moves away from 
0 and becomes large, - J (Mt , /2 (1  - p,))t  becomes quite 
negative and @ ( ( - b t / m )  shrinks to near 0. In fact, for 
t = 3 a / 6 ,  the 3a point, the probability that we have 
negative work is approximately 0.0023 and drops rapidly 
thereafter to negligible amounts as t grows. This is just further 
confirmation that our model is valid only for relatively large 
W that requires more than a short time to complete. 

Using 6 and 0; as the parameters for our Brownian motion, 
and using results in Karlin and Taylor [33], we find the 
probability density of the time, t ,  that it takes for M processors 
to finish W minutes of work is 

This has mean 

and variance 

Note that for the case M = 1, the mean and variance agree 
with the direct analysis of Section IV-B. Of course the mean 
is consistent with that of Section 111 for all M .  

B. Example: Exponential Distributions 

If we assume that both available and nonavailable periods 
are exponentially distributed, then the mean and variance of 
the accumulated work per unit time are: 

Applying this to (22) and (23) yields the mean of the finishing 
time 

and variance 

Fig. 5 shows the finishing time density for both the direct 
and the Brownian motion analyses with t ,  = 3600,t, = 
300, M = 1, and W = lo5. We note the good concordance 
between the two analyses. 

When we have M = 100 processors, Fig. 6 shows the pdf of 
finishing time for various tn with t ,  = 91 min and W = lo4 
min. Using t ,  = 91 min and t ,  = 31.305 min (the standard 
multiprocessor example), we have b = 74.45 and a; = 887.25, 
which leads to 7 = 0.0134W and a; = 0.00215W. Our 
example job of lo4 min would take about a week to run on 
a single, dedicated processor. When run on a network of 100 
transient processors, it would take 134.06 min, or about 2.25 h. 
This particular finishing time pdf is in Fig. 7, which shows the 
density both enlarged and plotted on a full time axis (starting 
at 0). 
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Fig. 7. Finishing time density for Brownian motion analysis. 

C. Example: Mutka and Livny ’s Distributions 

Let us use the distributions measured by Mutka and Livny. 
We have t, = 91 min, cr; = 40225 min2, t, = 31.305 min, 
and cr: = 2131.83 min2. Plugging these into (18) and (19), 
we find 

- 
b = 74.4t 

LT; = 6239t. 

This leads to a finishing time mean and variance of 
- 
f = 0.0134W (30) 

cr; = 0.0151W. (31) 

We note that the finishing time variance using Mutka and 
Livny ’s distributions is almost an order of magnitude more 
than for exponential distributions. 

D. The Ratio crf/7 

the finishing time, namely the ratio of of to 7: 
It is instructive to examine the coefficient of variation of 

We note immediately that this ratio goes to zero as W 
increases. Consequently, for sufficiently large W ,  it may be 
accurate enough to consider the finishing time distribution as 
an impulse (i.e., the Dirac delta function) at the mean finishing 
time (in the spirit of the law of large numbers). 

Assume that the available and nonavailable periods have 
exponential distributions. Then the ratio becomes 

(33) 

Because we assumed t, << W, this ratio tends to be less than 
1. If we fix t,/W and let t,/t, go to infinity (which implies 
t, + 0), the ratio goes to 0. We explain this by noting that 
for small t,, it takes very many available-nonavailable cycles 
before the work is finished. The law of large numbers insures 
that the finishing time density, which is the sum of these many 
periods, will then be tight about its mean. 

If, on the other hand, we let t ,  + CO, the ratio of the 
standard deviation to the mean goes to zero once again. When 
t, is large relative to t,, the nonavailable periods become 
negligible, as if the processors are always available. Again, 
the finishing time density becomes very tight about its mean 
because nonavailable time periods add little variability to the 
finishing time, and under some circumstances we may consider 
the finishing time density as an impulse located at t = W / M .  
Using the standard multiprocessor example again ( M  = 100) 
with exponential distributions, we find cr; = 21.53, and 
approximating f ( t )  as a normal density (discussed below), we 
find that 90% of the time, programs requiring lo4 min of work 
will finish within 7.6 min of the 134.4 min mean finishing time, 
which is an interval 3% on either side of the mean. This is 
very narrow indeed. If we use Mutka and Livny’s distributions, 
then 90% of the time programs finish in an interval 10 min on 
either side of the mean, which is still quite narrow. 

We find the peak of (33) by taking the derivative with 
respect to t,: 

(34) 
8 af - t,(ta + tn) - 2t,t, 

a t ,  7 m ( t ,  + t,)2 * 

- _ _  

Setting this equal to 0 yields t ,  = t, as the peak of the ratio, 
at which point it takes on the value uf/7 = d m .  The 
ratio’s value at the peak is small because of our assumption 
that t, << W .  Note that if we assume t, = t,, but not 
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Fig. 9. Two views of the Brownian motion finishing time densities with 
varying t o .  

t ,  << W ,  then we can make the ratio as large as we want, 
simply by increasing t,. If, for example, tu = t ,  = 1 year, 
then either the system is available immediately to do all our 
work, or else we will have to wait a very long time before 
it even starts. In such a case, the finishing time still has a 
reasonable mean but an enormous variance. Another fact to 
note is that M ,  the number of processors, does not affect the 
ratio of/?. Even if we have an infinite number of processors, 
we can still have great variance relative to the mean. Of course, 
both the mean and the standard deviation go to zero as M 
grows, but their ratio remains constant. 

In Fig. 8 we plot o f / T  versus t ,  for W = lo4 ,  with t,/W 
fixed for each curve. Fig. 9 shows finishing time densities 
for t ,  = 31.305 min and various t,. The x-axis (labeled 
"Time, Relative to Mean") is centered about the mean and 
plots the distance relative to the mean (varying from 0.9 times 
the mean to 1.1 times the mean). We note that the density 
is flattest and has the greatest spread for t u  = t,; at this 
point of /T  = 0.035, which is quite small. For comparison, 
if we use Mutka and Livny's distributions at the same point, 
the ratio is 0.092, which is still small. The narrowing of the 
density is also illustrated in Fig. 10. The parameters for both 
plots are: exponential distributions with varying t ,  but fixed 

543 

I ta =various I f ( f )  

.. ta = 150 min. 

" 

Fig. 10. Finishing time density narrowing as t ,  grows (top figure) and as 
to  shrinks (bottom figure). 

t ,  = 31.305 min, M = 100, and W = lo4 min. In the top 
plot, the density narrows as t ,  = 31.305, 150, 300, and 800 
min. In the bottom plot, we have t, = 31.305, 10, 3, and 1 
min as the density narrows. 

E. Normal Approximation to the Finishing Time 
The usual form of the central limit theorem states that the 

sum of n independent random variables tends to have a normal 
distribution as n gets large. Given this, we would expect the 
limiting distribution of f ( t )  to be normal with mean T-and 
variance 0;. Let us denote this normal approximation by f ( t ) :  

(35) 

Substituting t = 7 shows that the finishing time and its normal 
approximation coincide at the mean: 

= f(7,. 

Observation shows that f ( t )  and f^(t) also coincide at two 
more points, but analytically these are not easily found because 
they are the solutions to a transcendental equation. Numer- 
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Fig. 11. Brownian motion finishing time pdf and its normal approximation. 

ically, we find that these points appear to be separated by 
12a2, and the distance from the lower point (smaller t )  to I L  

the mean is very slightly less than half of the total distance 
between the two points (varying, but in the range of 49.5% 
of the total separation). 

We need to know when f ( t )  is a good approximation for 
f ( t ) .  Observation (see Fig. 11) shows that the approximation 
is good when the mode of the finishing time is close to (within 
a few percent of) its mean. We find the mode by taking the 
derivative of f ( t )  with respect to t ,  setting it equal to 0, and 
solving for t. We end up with a quadratic equation that has 
a negative and a positive root. The positive root is the mode, 
namely 

By using the fact that 
mode is always less than or equal to the mean: 

5 &+ fi, we show that the 

Furthermore, if we observe that 9 ( ~ ? ) ~ / b '  is usually much less 
than 4W2/62, and we use the approximation % 1 + f 
for 0 5 E << 1, then 

(37) 

Under almost all circumstances, we may drop the negative 
term in the parenthesis, because when the Brownian motion 

125. 1 3 .  135. 140. 145. 

I Time (minutes) I 
Fig. 12. Density of finishing time and its lognormal approximation. 
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Amt of Time 

s i b a b i l i t y  ,- 
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WorkCompleted 
by t 

Fig. 13. Density of finishing time. 

approximation is valid we also know that W >> ab/$, and in 
general, w >> f f b .  These would render the term 3uz/4wb 
negligible. Only under very unusual circumstances would 
W $ a;, and in such cases we could not drop the term. 
Excepting such circumstances, (37) is quite accurate for all 
conditions in which our Brownian motion model is operative. 
Using (37), we find that the percent difference between the 
mean and mode is approximately 3q/2bW.  

F. Lognormal Approximation to Finishing Time 

A lognormal density provides a remarkably good approxi- 
mation to (21). A lognormal distribution has two parameters, 
111 and $. If we equate the mean and variance of the finishing 
time pdf from the Brownian motion model to that of a 
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Fig. 14. Simulation results. 

lognormal pdf, then we find that these parameters must be 

1 
pi = h ( f )  - -01” 2 

01” = ln( 0; / f 2  + 1). (39) 

The lognormal pdf fit to (21) then becomes 

As shown in Fig. 12, when both the Brownian motion finishing 
time pdf and the lognormal approximation are plotted, the 
densities are extremely close, and the plotted curves appear 
to lie on top of each other. When the two do differ, it is under 
circumstances where the assumptions of the Brownian motion 
model do not hold (e.g. W small relative to all of M ,  t,, and 
tn). 

G. The Finishing Time Density and its 
Derivation from a Normal pdf 

We can rewrite the Brownian motion finishing time density, 
(21), in a form using a normal pdf. Let 4 w , g 2 ( x )  be the 
probability density that a random variable, normally distributed 
with mean p and variance c2, takes on the value n:. Using 
this, (21) becomes 

W 
f ( t )  = 

The normal pdf term derives from the underlying Brownian 
motion; it is the probability that a total of W units of work 
have been accumulated by time t .  As for the weighting factor 
of W/t ,  no intuitive explanation has yet been found for this. 
Fig. 13 illustrates the relationship between (21) and (41). In 
this figure, the normal pdf of the amount of work done by 
time z, & t , 0 2 t ( ~ ) ,  is plotted with thin lines for various t .  
The shaded &ane in the figure picks out those points on the 
normal pdf where n: = W ;  the line arcing down (top left to 
lower right in the bottom view) within this plane represents 

W/t.  The other line within the shaded plane is the finishing 
time density, i.e., the product of these last two curves. The 
curves have been scaled differently to make them fit into one 
plot, so relative heights, except within the group of normal 
curves, are meaningless. 

H. Simulation Results 

We ran simulations for the case of exponentially distributed 
available and nonavailable periods. Some results comparing 
the simulation to the Brownian motion model are shown in 
Fig. 14. The Brownian motion model and the simulation agree 
very well for large W ,  as we would expect, and they deviate 
as W becomes small. 

VI. CONCLUSION 

In this paper, we analyzed the distribution of the time to 
finish a distributed program running in a network of transient 
processors. We first made two analyses of a program running 
on a single transient processor. These results were then used 
as the basis for a Brownian motion, multiprocessor model, 
and from this we found four finishing time distributions: the 
actual Brownian motion finishing time distribution, and its 
normal, lognormal, and impulse approximations. The models 
in this paper offer an approach to predicting performance of 
distributed programs on transient processors. By relaxing some 
of our assumptions, as discussed below, more sophisticated 
models could be derived from those that have been described. 

The first assumption that we would like to relax concerns 
the asymptotic nature of the results. The results we have 
given are valid only over a long period of time. If we have 
a relatively small amount of work to do (say, several hours), 
then our finishing time distributions are not valid. Their means 
are acceptable, but the variance is quite incorrect, and the 
distributions (except for the impulse approximation) show 
noticeable probability that the program will finish in less 
than the minimal time required (W/M). Judging from the 
simulation results, there may well be some simple way to 
heuristically modify the variance expression in our models so 
they provide acceptable results for small W .  
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A second assumption we would like to relax concerns our 
model of a program. Modeling an algorithm as sequential, 
independent stages is very simplistic. Many programs do not 
have clear stages, but instead have a more complex internal 
precedence structure among the tasks of the program which 
cause additional delays. The independent-stages model may 
provide a useful simplification, but testing this, and developing 
more complicated program models, remains for future work. 

A third assumption of great importance is that our network 
model does not account for the realities of communications. 
Communication entails delay, and our model does not address 
this issue. Solutions to this are currently under investigation, 
and some possibilities are mentioned in [l]. 

The models in this paper do have many assumptions, yet 
their very simplicity makes them appealing. An alternative 
to our models is performability analysis, yet the complexities 
of performability models yield only numeric results or a 
Laplace transform, and not a direct analytic expression for 
the distribution of program completion time. Furthermore, the 
basic parameters of our models can be modified to remove 
some of the assumptions, and, at least for large W ,  the models 
already do capture the basic behavior of transient, distributed 
systems. 
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