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ABSTRACT 

A number  of time-shared systems have recently been analyzed in the literature with 
methods from queueing theory. The  quantity usually solved for is the average time 
spent in the system, conditioned on the total service time required (and also conditional 
on the priority class, if priority distinctions are considered). In this paper we consider 
a large class of time-shared systems and solve for the distribution of attained service 
for any member of this class, The  attained service for an incompletely serviced customer 
is the number  of seconds that he has so far spent in the service facility. The  results 
are simply expressed in terms of the average conditional waiting time mentioned 
above, Examples of the application of this general result are also given. 

I. INTRODUCTION 

The analytic treatment of time-shared facilities is just beginning to appear in the 
literature with some regularity [1--3]. The usual approach taken is to model existing 
or proposed time-shared service facilities (the application generally being to computer 
facilities) as queueing systems. In these models, a user typically joins some queue, 
works his way up to the front of the queue, obtains service in the facility for some 
small amount of time (called a quantum), and then joins the same or some new queue 
to wait for more quanta if needed. The methods of queueing theory" have been applied 
to a number of such models to obtain various measures of performance. 

In this paper, we consider a large class of such "feedback" queueing systems and 
obtain, for all of these systems, a result which describes the distribution of attained 
service in terms of the previously solved performance measures. 

The relationship derived herein between the usual measure of performance (i.e., 
average waiting time) and the distribution of attained service is extremely simple 

* Preparation of this paper was sponsored in part  by the Office of Naval Research, the U.S. 
Atomic Energy Commission, and the Advanced Research Project Agency. Reproduction in 
whole or in part is permitted for any purpose of the U.S. Government,  
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and quite general and therefore is interesting to pursue. Moreover, it provides one 
with an index of the composition of the system of queues. This index might find 
application in designing "optimum" time-shared systems when the criterion of 
optimality (or cost) is related to the expected number of customers in the queue 
with a given degree of completed service or with a given expectation of additional 
required service. 

If. THE CLASS OF FEEDBACK QUEUEINC SYSTEMS 

We include in our class any feedback queueing system with the following properties. 
Consider Fig. I. We assume that the population of new arrivals to the system 

are separated into P priority groups, this priority being determined by some external 
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FIG. 1. Feedback queueing systems. 

property 1 of the arrival (e.g., status in society, wealth, rank, size, memory space 
required); the assumption here is that the required time in the service facility (e.g., 
total computation time) is known only to within a probability distribution. Accordingly, 
let (forp = 1, 2 ..... P), 

;~ ----- average arrival rate of customers to the system from the pth priority 
group (customers/second) 

B2,(t) = Pr[customer from pth priority group requires a total processing 
time ~ t]. 

Upon arrival to the system, a new customer joins some queue in the system of queues. 
After some appropriate queueing discipline is followed, this customer will then be 
allowed into the service facility where, if he is from priority group p, he will be 
allotted a maximum of g~lQ seconds of service. If this quantum of time is greater 
than or equal to his total required service (t, say) he will then depart from the system 
as soon as he receives as much time as he needs; if t ~ g, lQ, he will be cycled back 
to the system of queues where he joins some appropriate queue and waits for another 
quantum of service. On this nth visit to the service facility, this customer will receive a 

1 Although this priority is assigned from external considerations, the internal structure of 
these time-shared systems introduces certain implicit priority orderings with respect to progress 
of computation, 
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maximum of g,,~Q seconds of service; thus if .-1 Q E,=tg~, < t ~< O E~=lg,, this 
customer departs from the system during his nth quantum of service. If  t > Q ~t~z g~i 
he then recycles and continues. 

Whenever the service facility ejects a customer (either for departure or re-cycling), 
some customer (if any are available) is taken into service. The particular customer 
chosen depends upon the specific discipline used in arranging customers within the 
system of queues. No customers are allowed to leave before they receive their total 
required service (i.e., no defecting). 

As can be seen, a large number of time-shariog systems can be modeled by 
queueing disciplines which fall in this class of feedback queueing systems. For 
example, the round-robin systems studied in [1] and [2] are members of this class. 
The round-robin system consists of a single queue; each time a customer enters the 
system of queues (only one in this case) he must join the tail of the queue (see Fig. 2). 

Cycled orrivois 

orrivO]s ~ ' - I  queue ~ -  , .~ Deporfures 

FIG. 2. The round-robin system. 

The foreground-background system (also referred to as "feedback to lower priority 
queues" system [3]) is another example of a member of our class. In this system, 
a new arrival joins the first queue, obtains a quantum of service, and then, if more 
service is required, joins a second queue, etc., joining the nth queue on his nth visit 
to the system of queues. The server always gives service to the lowest numbered queue 
first and proceeds to the nth queue only if the n -- 1st, n -- 2rid,..., 2nd, 1st queues 
are all empty (see Fig. 3). 

The single most significant performance measure of any queueing system is the 
average time that a customer spends waiting in queues as he passes through the 
system. For our feedback queueing systems, we are interested in this average waiting 
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FIO. 3. The foreground-background system. 
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time, conditioned on a customer's priority group, p, and on his total required service 
time, t. Thus we define 

W~(t) = expected wait in queues for a customer from priority group p 
whose total required service time is t seconds. 

This quantity W~(t) is especially interesting since it represents, for the models 
considered, the extra time that a customer must spend in the time-shared system 
due to the fact that other customers are sharing the system with him. 2 I t  is clear 
why we choose to condition the average wait with respect to p, the externally 
determined priority group. The reason for further conditioning this wait on t, the 
service time, is that in most time-shared systems, it is desired that customers whose 
service time is small should have waiting (queueing) times which are correspondingly 
short. In order to observe this feature we therefore condition our results on service 
time also. 

The set of quanta {g~Q) is an arbitrary set of numbers which may be chosen to 
model many feedback queueing systems of interest. For example, in [1] a round-robin 
system is studied in which P = 1 (all customers have the same priority) and g~n = I 
(all quanta are equal). In [2], a generalized round-robin system is considered in 
which g ~  = g~ (the quanta for all visits to service are the same for a given priority 
group). In the foreground-background model studied in [3], g~n = gn (no priority 
structure, but different returns to service may have different quanta of service). 

Note that unless B~(t) == 1 for all t ~ T (for some T < oo) then ~ng~n must 
diverge. Otherwise, customers whose service time exceeds Q ~ g ~  could not possibly 
ever be completely served. We also require that g ~  < oo for all p and n. 

In any attempt to represent real world systems with mathematical models, one is 
usually forced to compromise precise representation for mathematical tractability; 
this study is no exception. Consequently, results obtained are precise only relative 
to the representation and give an indication rather than a prediction as to how the 
real world systems behave. 

I I I .  RESULTS FOR ATTAINED SERVICE TIME DISTRIBUTION 

The function which we are interested in, the distribution of attained service time, 
is defined as follows: 

N~(r) = expectation of the number of customers in the system of queues 
from priority group p who have so far received exactly r seconds 

of service. 

2 The average total time T~(t) in system for customers from priority group p whose total 
service time is t seconds is, of course, T~(t) = W~(t) + t. 
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This quantity, N~(r), gives one a description of the composition of the various 
queues, and a measure of the relative state of partial service received by those 
customers still in the system. 

We begin by considering feedback queueing systems for which Q > 0. In  such 
systems, it is clear that all customers from priority group p who have visited the 
service facility exactly n times must  have so far been given exactly ~ l g ~ i Q  seconds 

0 of service. Since the times ~i=1 g~~  are the only possible lengths of attained service 
for those customers in queues, we choose to define 

q~ 

rn = s g~iQ. (1) 

Note that % is also a function of the priority group p; however, we choose to suppress 
this in the notation, since % will usually appear as an argument of  a function which 
already expresses its dependence upon p. The distribution of the expected number 
of people having received r,~ seconds of service is given in Theorem t. 

THEOREM 1. For any feedback queueing system in the class defined above, the 
distribution of attained service (for Q > O) is given by 

N~,(r~) = A~[1 - -  B~('/'n)][HT~9('rn+l) - -  H/'~('r,a) 1, (2) 

Proof. We begin by observing that for all t lying in the interval %-1 < t ~ % 
we must have H~(t) .... W~(%), since a customer who requires a total service time 
of t seconds in this range must join the queue exactly n times. The only distinction 
among customers with such service times is that they spend different amounts of 
time in their final visit to the service facility (but spend the same average time in 
queues). Moreover, as members from the pth priority group enter the system of 
queues for the nth time, they are indistinguishable to the queue organizer [recall 
that the only remaining feature truly distinct among these customers is their total 
service time, and we assume that this is known only to within the distribution By(t)]. 
Consequently, the average queueing time on this nth visit to the queue will be identical 
for all customers from the pth priority group. 3 As a result, 1~(%) may also be 
interpreted as the average time spent waiting on queues, prior to the nth visit to 

z Observe that we have provided a means for giving different grades of service to the various 
priority groups by introducing the set of quanta {g~Q}. Within our class of feedback queueing 
systems, some systems will provide for no further distinctive treatment among the priority 
groups; for these systems, the average queueing time on the nth visit to the queue will be identical 
for all priority groups, However, in some systems, further preferential treatment may be provided 
to the higher priority groups by allowing them tO join the queue (on their nth visit to the system 
of queues) in front of lower priority groups ; in this case different groups will experience different 
average queueing times. 
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the service facility, for all p-type customers whose service time requirements exceed 
r,_ x seconds. This also demonstrates the simple fact that the average time spent on 
the nth queue is merely the difference in expected total queueing time for customers 
who must join the system of queues n times and those who must join it n -- 1 times, 
i .e . .  w # . ) -  w , ( 7 . _ , ) .  

We now make use of Little's result [4], which states that, for any ergodie queueing 
structure, the expected number of units in the structure is equal to the product 
of the average arrival rate of units to that structure and the expected time such units 
spend in that structure. We apply this result by focusing attention on those customers 
(from priority group p) who are currently in their n + 1st pass through the system 
of queues (i.e., those who have made exactly n visits to the service facility). Since 

h~ -- average arrival rate of pth priority units to the system, 

and since 

1 -  B~(~-.)= Pr[a pth priority unit will visit the service facility more 
than n timcs], 

we conclude that 

A~(n) ~ A~[1 -- B~(*n)] = arrival rate of pth priority units to the n + 1st 
pass through the system of queues. 

As discussed above, the average time spent in making the n + 1st pass through the 
system of queues is W~(zn. t ) -  W~(%,). Thus, by Little's result, the product of 
these last two gives the expected number ofp th  priority units making their n + 1st 
pass through the system of queues, viz., 

w#.)]. 

But each of these customers has so far received r,~ seconds of service, and so 

N,(T,) = A,(n)[W(rn+I) -- W,(1-,)] 

= - - W # . ) ] .  (3) 

which completes the proof of Theorem 1. 
We now consider the case in which Q - ~  0. This corresponds to time-shared 

systems in which each customer cycles through the system of queues infinitely fast 
for an infinite number of cycles and spends an infinitesimally small amount of time 
in the service facility each time he visits it. The service facility in such a case is 
constantly cycling among different customers in a continuous way. In a real sense, 
then, all customers present in the system are using a fraction of the service facility's 
capacity on a full-time basis. Indeed, the fraction of the machine being used by a 
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customer from the p th  priori ty group at some t ime T who has an attained service in the 
p ~ 

interval (r, "c + dr) is merely g~(r)/~= 1 fn n~(s) g~(s) ds, where g~(r) = hmo~og~,(o) 
[see Eq. (6) for n(Q)] and n~(r) dr is the fiumber of  such customers at t ime T. Such 
an operat ing procedure may be referred to as a "processor-shared"  system, and a 
discussion of its behavior may be found in [2]. The  usefulness of this l imit  of  
processor-sharing lies in its representation of an idealized sharing operation in which 

"swap- t ime ''4 is assumed to be zero. Th is  assumption of zero swap-t ime is an 
impor tant  simplification in these models; the results thus obtained are idealized in 

the sense that  nonzero swap-t ime can only degrade the performance of such system. 

Models  with nonzero swap-t ime have been considered in the literature, e.g., see [5]. 

For  this case, we have the natural  analogue of Theorem 1, 

THEOm~M 2. For any processor-sharing system (Q -+ O) h~ the class defined above, 
the density 5 of attained service is given by 

d W # )  
Ng(~-) = A~[1 - -  B~(z)] d~- (4) 

Proof. For  Q > 0, we have from Theorem 1, 

m # . )  = a [l - -  B # . ) ] [ W # . §  - w # . ) ] .  

Dividing both sides by r~+ 1 - -  ~ n ( :  Qg~.,+t) we have 

= - -  B # . ) ]  - -  W # . )  (5) 
rn+ ~ - -  ~-~ rn+l ~ % 

We must  concentrate our attention on a part icular value of attained service, say ~'. 
_ _  n I f  we choose some rn with fixed n, then as Q --~ 0, we have rn - -  Q ~ t = l  g ~  -+  0; 

that  is, rn goes to zero as Q goes to zero. Therefore,  in order to remain at a fixed , ,  
we must  let n increase as Q decreases. Thus  lett ing n = n(Q) we define n(O) for any 
value of  Q such that  

,r,~(o ) ~ .r < ~',~(o)+~- (6) 

Also, since g ~  is bounded,  the difference rn(o)+I- r,~(o ) = Qg~,.,(o)+~ must go to 
zero as Q goes to zero, and so we can make rn(o) as close to r as we like. Indeed,  

l~m ~ rn(o) = 'r. 

4 Swap-time is the time used in removing one customer from the service facility and bringing 
a second customer into the facility. 

5 N~(,) is now a density (whose units are customers]second). Thus frr~ N~(r)d* gives the 
expected number of customers from the pth priority group in the system of queues who have 
so far received between 7"1 and Tz seconds of service. 

57x1#3-6 



294 KLEINROCK AND COFFMAN 

Choosing n = n(Q) in Eq. (5) and letting Q -+ 0, we get (using the usual definition 
of derivative), 

dW~(7) 
lim N'(7"(~ = Ap[l -- B~,(7)] d7 (7) 
O-*0 7n(O)+l  - -  7n(O) 

The left-hand side of Eq. (7) is the ratio of two quantities, both of which are 
approaching zero. Viewed in terms of a discrete bar graph, the left-hand side is 
taking the contribution at n(Q) and distributing it uniformly over the vanishing 
interval 7.<0) ~< 7 < 7.(o)+a. The limit, then, must be a density (customers per 
second) which we define as 

N~(7) = lim N~(7"(~ 
O-*O 7.(O)+X - -  7 . (O)  

The substitution of this last equation into Eq. (7) completes the proof of Theorem 2. 

I V .  DISCUSSION AND EXAMPLES 

As mentioned in the introduction, the main results of this paper express, for any 
time-shared system included in the large class considered, the distribution of attained 
service in terms of known quantities [A~ and B~(t)] and in terms of the major perform- 
ance measure of such systems, namely, the average conditional waiting time W~(t). 
Indeed, an especially simple expression is developed which involves the difference, 
Eq. (2), or differential, Eq. (4), of W~(t). 

We comment here that in order to get the distribution of attained service for 
customers in the total system (queue plus service facility), we need merely replace 
W~(t) by T~(t), the average conditional time spent in the total system. 

As examples of the determination of N~(7), we consider two feedback queueing 
systems studied in the literature, both of the processor-sharing type (i.e., Q --~ 0). 
The first is the priority processor-shared system studied in [2]. As stated above, 
for that system there exists only one queue (see Fig. 2). The {g~,) are chosen such 
that g~, =gm independent of n, the number of returns to the service facility. The 
input process is considered to be Poisson, and B~(t) = 1 -- e - ~  (exponential service 
time distribution). The result for Wo(7) in that case has been shown to be 

P 

W~(7)=TV g~P' g, g , ( 1 -  o1' (81 
where 

p, = ~./~,, 
and 

P 

P :  EP~" 
o=l 
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In this case, the computation of N~(r) from Eqs. (4) and (8) is trivial and yields 

P 
'V g~P* 

N~,(T) = a~,e-~'~; i_~ gvO : P)" (9) 

Thus the distribution of attained service is exponentially distributed with ~'. An 
example is shown in Fig. 4 in which g~ = p2, p = 5, A~ = 0.15, t% = 1 (thus giving 
p~ = 0.15, p = .75). 

5.0 

4,0 

3,0  

Np (-c) 

2,0 

1,0 ~ ~,,(//,r5 

t,0 2,0 3.0 40  50 

Fie .  4. Dis t r ibu t ion  o f  a t ta ined service for the  priori ty  processor -shared  sys tem.  P = 5, 
~ = 0.15, tz~ = 1.0, g~ = p~, p = 0.75. 

We note further that the expected total number of customers, N~, from priority 
group p (without regard to attained service) is, by definition, 

By Eq. (9) we get 
f 

~ 

N~ = N~(~)dv. (10) 
o 

P QO 

P 
_ O, ~ giP~, (12) 

g~(1 -- p) ~=1 

which checks with the result obtained for N~ in [2]2 

6 In  {2} an expectat ion Ev is solved for which  is related to N~ by N~ = E~ - -  p~. 
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Also of interest is the expectation Ca, of the attained service for a customer from 
priority group p. We obtain this as follows 

From Eqs. (4) and (12) we get 

Thus 

oo ~" = J'o N~,(T) d7 (131 

/~a9 P ao P - 1  

e~' = (g~,(i '--p)~1 g'P' fo re- ' , , 'dr)( -g~(~ p)~=gip,) 

F = tz~ "re-~*d'r. 
0 

~ = 1/~,.  (14) 

Equation (14) states for the priority processor-shared system, the interesting result 
that the average attained service for customers from priority group p is merely the 
average of the total service required. Thus, given that a customer is still in the system 
of queues, he needs on the average as much more service as he needed when he 
first entered the system. 

The second example worth considering is the foreground-background processor- 
sharing systems (Q --+ 0) treated in [5, 6]. Here, there is an infinity of queues arranged 
in a hierarchy as shown in Fig. 3. When a customer is waiting for his nth visit to 
the service facility, he waits on the nth queue. Here again the arrivals are Poisson, 
the service is exponential, and g ~  = 1 (i.e., no priorities and equal quanta for each 
visit to the service facility). When the service facility can accept a new customer, 
it takes one from the lowest numbered nonempty queue. The solution obtained for 
W~(r) [which in this no-priority case may be denoted by W(r)] is (see [6]) 

[1 - -  p ( 1  - -  e-~'*)]  2 + 

p(1 -- e-~0r 
1 - -  p ( 1  - -  e - ~ ' ~ ' )  " 

(15) 

Thus N(r) from Eq. (4) is 

~pe-~,~(1 --  e-~, 0 2p~e-~[p(1 --  e-~ ~) +/z(1 --  p)r] + (16) 
n ( r )  = [1 -- p(1 -- e-~*)]' 1 -- p + pe -~'~ 

In Fig. 5 we plot N(r) as a function of z, with 2t ----- .75, b~ = 1, and thus p = A//, = 0.75). 
Forming the expected number of customers in the system of queues (without 

regard to attained service) we get, after some computation, from Eq. (16), 

f 
~ p~ 

N = N(r) dr = - - .  (17) 
o 1 - - p  
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N(r) 

1.0 

0.8 

0,6 

0.4. 

~ 
o 1 2 3 4 5 

FIo. 5. Distribution of attained service for infinite level foreground-background processor- 
shared system. A = 0.75,/z = 1.0, p = 0.75. 

This last result is especially simple and pleasing since it corresponds to the well-known 
result for any priority discipline with Poisson arrivals and exponential service. The 
calculation of the average attained service -~ as defined by Eq. (13) without the 
subscript p is extremely difficult and is not given here. 

V. CONCLUSION 

The results of this paper give general expressions for the distribution of attained 
service for any member of a wide class of time-shared systems, including those with 
priority inputs. The answers are good for finite service qnanta (the feedback queueing 
systems) as well as for service quanta approaching zero (the processor-shared 
systems). The results are given simply in terms of known functions and in terms 
of the average conditional waiting time in queue (this last being a useful performance 
measure for time-shared systems). 

The usefulness of obtaining the distribution of attained service lies in the fact 
that it provides one with an index of the composition of the system of queues. This 
index may prove useful in choosing time-shared algorithms to minimize cost functions 
which involve the attained service or the additional required service for customers 
in the system of queues. The examples included give representative curves for the 
attained service. 

571/I/3"6" 
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