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ABSTRACT. Time-shared processing systems (e.g. communication or computer systems) are 
studied by considering priority disciplines operating in a stochastic queueing environment. 
Results are obtained for the average time spent ia the system, conditioned on the length of 
required service (e.g. message length or number of computations). No charge is made for 
swap time, and the results hold only for Markov assumptions for the arrival and service pro- 
cesses. 

Two distinct feedback models with a single quantum-controlled service are considered. The 
first is a round-robin (RR) system in which the service facility processes each customer for a 
maximum of q sec. If the customer's service is completed during this quantum, he leaves the 
system; otherwise he returns to the end of the queue to await another quantum of service. 
The second is a feedback (FBN) system with N queues in which a new arrival joins the tail 
of the first queue. The server gives service to a customer from the nth queue only if all lower 
numbered queues are empty. When taken from the nth queue, a customer is given q sec of 
service. If this completes his processing requirement he leaves the system; otherwise he joins 
the tail of the (n q- 1)-st queue (n = 1, 2, . - .  , N - 1). The limiting case of N - +  :¢ is also 
treated. Both models are therefore quantum-controlled, and involve feedback to the tail of 
some queue, thus providing rapid service for customers with short service-time requirements. 
The interesting limiting case in which q --~ 0 (a "processor-shared" model) is also examined. 
Comparison is made with the first-come-first-served system and also the shortest-job-first 
discipline. Finally the FB= system is generalized to include (priority) inputs at each of tim 
queues in the system. 

KEY W O R D S  AND P H R A S E S :  time-sharing analysis, multiprogramming analysis, queueing sys- 
tem analysis, feedback queueing models, probabilistic computer models 

CR CATEGORIES: 4.32, 4.39 

1. Introduction 

The v a l u e  of t i m e - s h a r e d  p rocess ing  s y s t e m s  as a m e a n s  of p r o v i d i n g  a p rocessor  

to m a n y  users  c o n c u r r e n t l y  is wel l  es tab l i shed .  E x a m p l e s  inc lude  t h e  " s i m u l t a n e o u s "  

use of c o m m u n i c a t i o n  channe l s ,  and  c o m m u n i c a t i o n  n e t w o r k s  as we l l  as  c o m p u t e r s  

and c o m p u t e r  n e t w o r k s .  H o w e v e r ,  i t  also is c lear  t h a t  t h e  e f fec t iveness  of these  

systems d e p e n d s  in  l a rge  p a r t  on  t h e  eff ic iency w i t h  wh ich  t h e  resources  of t h e  

processor  are  a l l oca t ed  t o  t h e  i n d i v i d u a l  users.  T h u s ,  cons ide rab le  a t t e n t i o n  has  
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been focused on the time and space scheduling problems of time-shf~ring systems 
giving rise to the description of' sophisticated algorithms and, in those cases where 
it is possible, an analysis of more or less simplified queueing models of these al- 
gorithms. 

In this paper we are concerned with extending the analyses that  have been made 
for the so-called feedback queueing models of time-shared processor operations. 
In these models the service received by users (messages, programs, etc.) is made 
to depend, either implicitly or explicitly, on a user's service time (e. g. transmission 
time in a communication example or running time in a computer example). How- 
ever, it is assumed that  the service time is not know~ a priori. In the following we 
discuss informally the queueing models that  are subsequently given a precise defini- 
tion and analyzed under Markov assumptions applied to the service and arrival 
mechanisms. By Markov assumptions we mean tha t  the interarrival and service 
times are assumed to be exponential or geometric random variables depending on 
whether we are analyzing the model of interest in continuous or discrete time, 
respectively. 

The term "feedback" is a natural one when one considers that  in time-sharing 
disciplines, users are allocated limited time intervals for operation, and if the opera- 
tion time required exceeds these limits the user is interrupted and "fed back" to 
the end of the same or some other queue to await its next interval of service. The 
so-called round-robin algorithm represents what is perhaps the simplest of the 
feedback (FB) algorithms. With this procedure users are allocated fixed time in- 
tervals (quanta) of operation time; if the users terminate within this interval they 
leave the system and if not, they are placed at the end of the waiting line to await 
their next quantum of service. I t  is not difficult to see that users with shorter ser- 
vice requirements receive better treatment in this type of system. (We quantify 
this property below.) Indeed, this property characterizes time-sharing disciplines 
as a whole and is shown to apply to the other FB models we consider. 

The more complicated FB models that  we analyze involve multiple queues, 
each queue corresponding to a priority class of users based on the service require- 
ments of the users. The discipline for selecting which queue to service corresponds 
to that  of conventional priority queues; viz. users at the nth  level are not served 
unless all of the n -- 1 lower level (higher priority) queues are empty. However, 
in the FB priority queues the operation time is again allocated on a quantum basis; 
a user requiring more than the time allocated at a given queue level is moved up 
(following its quantum of service) to the end of the next higher level (lower priority) 
queue. Thus, in the multiple-level FB system the priority received by a user is 
made to depend in an explicit way on the amount of service he has already received. 
Although the dependence of the time-sharing service disciplines on service time is 
a posterior one, the general FB model to be studied also includes an initia.1 assign- 
ment of users to queue levels based on a priority scheme using a criterion other th~a 
service time (e. g. program size). In other words, we assume that  a new arrival may 
join any one of the multiple queues according to some fixed probability distribution. 

Our principal interest is in the analysis of these algorithms and a study of the 
results obtained. The basic results take the form of expressions for expected waiting 
times conditioned on the amount of service required and, in the most general model, 
the arrival priority (corresponding to the queue to which the arrival was originally 
assigned). We study these results by considering their variation with changes in 

Journal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968 



Feedbad: @eeueing MMds for Time-Sha,red SSems 551 

the value of such parameters as quantum size a~:~d loading factor, Of particular 
interest in this regard are the so-called pmc~~sor-shared models i~ which, dm quan- 
tum size is allowed to app~smch zero. As shown below, these models correspo~d to 
sys[ems which divide up their processing capacity ~m~ong all the usem requiring 
service 8i~'~e~mneou£y. 

e 

< 

i%1 

!,il)iiil) 

9, Time-Sharing Modeb 

A. Row'>I{oBix  MoDm~. As implied h~ Figure 1, units arrive to the system 
from an infinite source, The stochastic input process is described below by an inter- 
arrival time distribution which we denote by A (t), The units are assumed to take 
their place at the end of the queue immediately on arrival, if'he service requirements 
of arriving units are subject to a stationary probability distribution B(r). 

The  service discipline is such that  milts are taken from the queue fi~xst-come- 
first-served and provided with a certain fixed amount of servbe which we denote 
by q (for quan.tur~0, If the unit being served completes within the time q then it is 
simply ejected from the system. If, on the other band, it. requires more time to 
complete, then it is removed h¢)m the service facility (processor) ~md put back to 
the end of the lisle. In due course, after the other units in line ahead of this unit; 
have received thei:r quantum of service, the interrupted unit is again served, con- 
tim:ring from the point, at, which the previous service was ir~terrupted; Le. we have 
a "preemptive resume" rule implying that ser'viee is not test because of interruption. 
The procedure as outlined is eo~dnued for all units i~ the queue, each unit making 
as many of the "loops" shown in Figure 1 as needed to complete its total service 
requirement. We assume [or all of the models described in this paper dmt no "over- 
head" or "swap" time is associated with the process of tmloading and loading uni[s 
f'rom tlhe processor. In this respect our results may be viewed as upper bounds on 
system performance. (See [2, 7] for results applying to similm- medals for which 
nonzero swap times and a finite source are assumed.) 

For the distributions A(t) arid B(r) we present result, s for ¢m following two sets 
of (Marker)  assumption,s. 

1. The input process has a discrete time parameter t = nq (n an integer) where 
the quantum size q is the basic time interval and n is distributed according to d~e 
geometric distributio~ (t.his describes the so -ca l l ed  Bernoulli arrival process). Thus, 
we have 

A(t) = A(r~q) = ~ a@), (:1.) 

~Ogg$~Oga 

~ ~ ]  

~r~ Fro. 2. Processor-shared model 
Fia.  1. Round-robin model with n units in the system 
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where 

a(k)= (1-~)~-~, k =  1 , 2 , 3 , . . . ;  0_<~<1.  (2) 

The mean interarrival period is given by 

q ~ ka(l~) - q }sec' 
k = l  1 - -  

from which the mean arrival rate is found to be (1 - })/q per sec. The above model 
was first analyzed by Kleinrock [4]. Second, the service time is assumed to be .~ 
discrete random variable with the same basic time unit of q sec. In particular, we 
assume the geometric distribution 

B(.r) = B(mq) = ~ b(k) (3) 
k = l  

with 

b(lO = (1 - ~)~_k-1, k = 1 , 2 , 3 , . . -  ; 0 <: ~" < 1. (4) 

The mean servicing time is thus q/( 1 - ~) sec. For the discrete model an assump- 
tion must be made regarding the order in which events take place at the end of a 
time interval. Consider two types of systems. The first system allows the unit in 
service to be ejected from the service facility (and then allows it to join the end of 
the queue, if more service is required for this unit),  and instantaneously thereafter 
a new unit arrives (with probability 1 - 4). This is referred to as a late-arrival 
system. The second system reverses the order in which these events are allowed to 
occur, giving rise to the early-arrival system. In both systems, a new unit is taken into 
service at the beginning of a time interval. We cite results for both models in the 
next section. 

2. The input process is the Poisson process so that  A (t) is given by the exponential 
distribution 

1 - -  e -~t  t > O, 
A(t) = 0, t < 0 ,  }' > 0. (5) 

The mean arrival rate is easily calculated to be ~ units/sec. The service time r is 
assumed to be exponentially distributed as follows: 

1 - ~  , r > _ 0 ,  
B(r) = 0, r < 0 ,  ~ > 0, (6) 

with a mean (service time) of 1/t~ sec. 

B, PROCESSoR-SttA.RED ~([ODELS. Since we assume swap time to be zero we may 
consider the case of a round-robin system in which q --~ 0. For the continuous (Mar- 
kov) model described above there is no difficulty in taking the limit of the results 
as q --~ 0. (See Appendix A.) However, in the discrete model we must be careful in 
taking this limit since the service and interarrival times also go to zero leaving us 
with a vacuous system. Thus, we must agree to keep the average service time and 
average arrival rate constant while letting q --~ 0. In both the discrete and con- 
tinuous Markov models the resultant model is the so-called processor-shared model 
(see [6]) of Figure 2 whose interarrival and service times are exponential. As showI~ 
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by Figure 2, in the processor-shared model all units in the system receive service 
concurrently and experience no waiting time in queue. However, the rate (e.g. 
operations/sec) at which the units sharing the processor receive service is inversely 
proportional to the nuraber of units in the system, which of course varies as new 
units arrive and old ones leave. Thus,  considering a computer program as an ex- 
ample, we see that  a program operates at (1/k)-th the speed it would run were it 
alone in the computer, if we assume there are k - 1 other programs in the machine 

at. the same time. 
The priority processor-shared model [6] is a generalization of the processor-shared 

system considered above. With reference to the continuous model we assume here 
that the input traffic is broken up into P separate priority groups, where the arrivals 
from the pth group constitute a Poisson process with an average rate of },p units/sec, 
and have an exponentially distributed service requirement whose mean is 1/t~p sec. 
For the q ~ 0 case, we give a member of the pth priority group g~,q sec of service 
each time he cycles around the queue. 

For q --~ 0 this model then reduces to a processor-shared model (see Figure 3) 
with a priority structure whereby a member from group p receives service at time t 
at a fractional rate fi,(1/~p), where 

f~ = g~ (7) 
gin~ 

i = l  

~md where n~ is the number of members from group i present in the system. The 
nonpriority processor-shared model considered earlier is the special case gp = 1 for 

all p. 

C. iV[ULTIPLE-LEVEL FB MODEL. This model, which we denote by FB~ where 
N is the number of levels, is shown in Figure 4. We make the assumptions of ex- 
ponential interarrival ~md service times (see eqs. (5) and (6)). As pointed out earlier 
a unit at the service point at any given queue level will not be serviced unless all 
lower level queues are empty. Thus, immediately after a unit has received service 
the next unit serviced will be the one at the service point of the lowest level, non- 
empty queue. This unit will be given a quantum (q) of service as in the round-robin 

PROCESSOR 
f~ 
f, 

~n, PRIORITY 

• l UNITS 
f~ 
f2 
fz 

n z PRIORITY 

I ~ .  2 UNITS 
k (AVERAGE ARRIVAL f2 

P RATE FOR PRIORITY 
p UNITS) 

fp 
fp 

, np PRIORITY 
R UNITS 

fp ( t /Fp )  IS FRACTIONAL RATE OF SERVICE FOR 

PRIORITY p UNITS 

Fro. 3. Priority processor-shared model 
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model. If more is needed then tile unit is subsequently placed at the end of the next 

h/gher level queue; otherwise it leaves the system. 
If N < ~ the question arises as to what happens at the highest level (the Nth 

level). We assume that  the Nthqevel  queue is a quantum-controlled, first-come- 
first-served (FCFS) queue. Specifically, units at the Nth  level are served a quaIltum 
at a time until completion (i.e. there is no round-robin in the Nth  queue but an 
arrival to a lower level during the servicing of an Nth  level unit will preempt this 
unR after it has completed the quantum-service in progress). Note that,  with these 
assumptions, FB~ denotes the conventional FCFS system. 

I t  is easy to see that  the tfBN service discipline shares that  property of the t~R 
service discipline according to which the units with shorter service requirements 
enjoy shorter waiting times at the expense of the waiting times of units with the 
longer service requirements, tIowever, this property is even more pronounced in the 
FB~ models, as demonstrated below. 

As pointed out earlier the limiting case in which q goes to zero is of interest. For 
finite N the FB~ system reduces to an FCFS system. This can be seen by observing 
that  the first N - 1 levels of the FB~ system provide an infinitesimal amount of 
service when q becomes very small, and consequently do not significantly delay the 
service at the Nth  level. Tha t  is, arrivals can be viewed as being immediately 
switched to the Nth-level queue in the limit q = 0. At the Nth  level the units are 
served to completion in the order of their arrival, receiving an infinite number of 
infinitesimal quanta, where in the limit we have an I?CFS system. This result is veri- 
fied analytically in the next section. 

Of greater interest is the limiting ease q = 0 when we assume N = oo. By argu- 
ments based on very small q sizes it can be seen that  the resulting system can be 
viewed as corresponding to a system in which arrivals always preempt the unit, if 
any, in service and are allowed service until their service time exceeds that  having 
been reeeived by some other unit in the queue. In short, we have a preemptive- 
resume queueing discipline in which the unit in service is preempted whenever 
there exists another unit in the system whose time in the service facility has been 
less. I t  is clear that  when there exist at least two units having received the same 
amount of serviee time, then the processor begins switching between them infinitely 
often. Thus, under these circumstances, we have the processor-sharing ease as de- 
scribed earlier for the RR model. The two units together then proceed to share tile 
proeessor until their received service time reaches that  received by some other unit, 
if any, in the queue. At this time the two units are joined by the third one and all 
three share the processor. This sort, of process continues until units complete (thus 

X ~  

2 PROCESSOR )'2 

C 
~,q 

FIo. 4. FB~ model FIG. 5. Priority FB~ model 
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reducing the number sharing the processor), or until a new arriwtl occurs, at which 
time it receives tile whole processor and the procedure above begins once again. 

D. ~,IULTIPLE-LEvEL FB ~IOi)~:L WiTH }h{IO~ITmS. There exist mauy ways to 
hterease the number of degrees of freedom for rnaniput,~ting waiting times in the 
multiple-level queueing model defined above. In the FB,v model we note two degrees 
of freedom: the quantum size q and the number of levels iV. What is perhaps the 
most obvious way to further control the distribution of waiting times is to assign 
external priorities to the arriving units. 

Figure 5 illustrates this type of extension to the FB~v model for the special ease 
N = ~ .  In particular, we assume an infinite number of levels (queues) aad an in- 
dependent, Poisson input to each level with average arrival rate X~/see, We define 

X = ~ Xp (8) 
p= l  

and require that  X < oo. The service times for arrivals at every queue or priority 
level are assumed to be independent, exponential random variables distributed ac- 
cording to eq. (6). As in the FBN model the lowest level, nonempty queue is chosen 
for service, and service is allocated q see at a time with units requiring more moving 
up level-by-level as described earlier. 

Our description is completed by specifying that the service discipline at each 
queue level is highest priority first. By highest priority we mean the lowest level 
queue of arrival to the system. That  is, in a given queue, the unit to be served next 
must have entered the system originally at a queue level that is equal to o1' less that~ 
the queue levels of arrival for the remainder of the units in the given queue. Within 
a priority group in a given queue the discipline will be FCFS. 

Further generalizations to the multiple-level model that may be considered are 
those of different quantum sizes for different levels and different mean service times 
for different priority-level units. To extend the results to include these generali- 
zations is a simple matter  conceptually, but introduces more awkward symbology. 
Although we do not carry out a complete analysis for these additional degrees of 
freedom, the basic changes that  would be necessary are indicated in [2]. 

Once again, it is of interest to investigate the ease when q goes to zero. For this, 
we proceed in the same manner Phipps [9] employed to extend Cobham's [1] analysis 
of conventional priority queues to a continuous number of priorities. In our model, 
as q goes to zero we pass from a countable number of priorities to a continuous 
number of priorities. Following Phipps we introduce X, as the arrival rate for the 
continuous time-priority r such that  

f X = X, dr. 

The present degenerate model differs from the preemptive processor-shared model 
discussed earlier in only one respect. Arrivals of priority r are not given their first 
service unless and until all units of priorities ( < r have been given at least r - 
see of service. When this situation eventually does obtain we have the processor 
sharing and ascension of levels described for the preemptive processor-shared model. 
Of course, if the above condition exists when the priority r unit arrives, then pre- 
emption of the unit(s) in service occurs immediately. 
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3. Results for the Time-Sharing Models 

In the order of the descriptions in the last section the mean waiting times, condi- 
tioned on the amount of service required, are presented below for the FB models. 
The results are presented in the form of theorems. Some of the results presented are 
taken from the literature and are referenced accordingly; proofs of the remaining 
theorems are supplied in Appendices A and B. 

First, we consider the discrete RR (round-robin) model. Equations (2) and (4) 
describe the geometric distributions to be assumed for the intcrarrival and service 
times. We have the following theorem. 

THEOREM 1 (Kleinrock [4]). (a) In  the late-arrival system the mean waiting time 
in system ~ for a unit requiring kq sec of service is given by 

kq ( 1 -  } ) q [ l +  ( i -  ~ a ) ( 1 -  ~-1)-] 
W~ - i  -- p 1 P L -(~ - - ~ - ~ i - -  ~- ] '  (9) 

where 

1 - ~ ( i0)  

(b) In  the early-arrival system the mean waiting time in system for a unit requiring k 
quanta of service is given by 

kq Pq (1 -- ~)pq [1 + (1 -- ~a)(1 ~ a_~l)] 
Wk' -- 1 -- p Z 5_~ ( t  -- t)~(1 -- p) 3" ( l l )  

We now consider the continuous RR model in which the exponential distributions 
defined by cqs. (5) and (6) are assumed for the interarrival and service times. 

THEOREM 2. Let the "quantum-service" distribution be defined as followsS: 

t~ 
, r < O, 

Fl(r) - "  (12) = - -~  , 0 < r < q ,  

(1, ~->_q. 

Then the mean waiting time in the continuous RR system of a unit requiring t sec of 
service is 

(X/2)E~(r2) 
w ( t ) = t +  + T - ~  [ 1 - p # ~ - ~ l  

(i3) 
1 [ p: i pq ][l_#k]H_ >,qe-"q l [ l _ f l k -~ ] ,  

+Y-~-p 1 p~ i - #  i ~  
where 

p = x/~,  (14) 

# = p + ( i  - A c %  (15) 

1 This will be the sum of the  time spent  in the queue and the  time spe n t  in the service f~cility. 
s This is s imply the d is t r ibut ion of the amoun t  of t ime taken by ~ un i t  to which q seconds of 
service is allocated. 
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k is the smallest integer such that kq > t, and El('c ~) is the second moment of the quan- 
tum-service distribution in eq. (12). Specifically, 

fo ~ 2 ~--~ 2 El(r2) = r2dF~(r) = it2 g,2 [# q A- 2•q 4- 2]. (16) 

PROOF. The proof appears in Appendix A. 
For the limiting case q --+ 0 we have the following result for the processor-shared 

model. 
THEOREM 3 (Kleinrock [6]). The expected value of the total time spent in the proces- 

sor-shared system for a unit requiring t sec of service is 

W(t )  - t (17) 
1 - p '  

where p is defined by eq. (14). 
Although Kleinrock obtains eq. (17) by taking the limit q --~ 0 for the discrete 

(either the late- or early-arrival) system, we produce the same result in Appendix A 
as a limit of the continuous system (eq. (13)). As verified by Kleim'oek, the geo- 
metric interarrival and service times of the discrete models in the limit q --+ 0 be~ 
come exponentially distributed if ~ --~ I appropriately. 

In the conventional FCFS system (i.e. the FB• system with q = ~ ), the waiting 
time in the queue is independent of t, and the waiting time in system is easily found 
to be (see [12], for example) 

W(t)  -- p(1/g) + t. (18) 
1 - - p  

Comparing eqs. (17) and (18) we note immediately that units requiring more than 
the average amount of service ( 1/t~ sec) have longer waiting times in the processor- 
shared system than for the FCFS system, whereas the opposite is true for units 
requiring less than the average amount of service. 

For the priority processor-shared system in which there are P priority groups each 
receiving a fractional capacity of the machine determined by eq. (7), we have the 
following result: 

THEOREM 4 (Kleinrock [6]). For the priority processor-shared system the mean 
waiting time in system of a p-th priority unit requiring t sec of service is 

W~(t) = t [ 1 A -  ~ g~pi ] (19) 
~=1g~(1 -- p) ' 

where 

~p 
p~ = - - ,  (20) 

P 

p = p , ,  ( 2 1 )  
~=1 

andg~ > O; p - -  1 , 2 , 3 , . . .  ,P.  

Turning now to the FB~ model, let the interarrival and service times be inde- 
pendently and exponentially distributed as before. We have the following result. 
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T H E O R E M  5. 

waiting time in the system of 

W ( t )  = (X/2)[Ek(r~) + ~kE~(r~)] 
[1 - p ( 1  - ~-~,)1 [1 - K 1  - ~-~(~-~)~)] 

p(1 - K "(k-1)~) 
+ I - p(l - e-,,(k-~)q~ ( k  - i) q + t, 

w(t) = p ( l / A  
(1  - -  p ) [1  - -  p ( 1  - -  e- .(N-~)q)] 

+ p(1 - e-~(~-')q) (/~ - 1)q + t, 
1 - p(1 - e -~(lv-l)q) 

A unit requiring t sec of service in the FB~ system has an expected 

1_<~  _ < N - t ,  

(22a) 

k > _ N ,  

(22b) 

where 1~ is the smallest integer such that kq > t, where we define Ek(r =) as the second 
moment of the distribution 

r < 0 ,  

0 _ r < kq, 

r > kq, 

(23) 

with 

Fk( r) -~" 

I1, 

E,6-) = 1 [1 - #~% (24) 
tt 

-- [(~kq) 2 + 2~kq + 21, (25) #3 ~2 

and where 

--,ukq 
e (26) 

~k = 1 -  e-~--------~ " 

PROOF. The proof appears in Appendix B. 
As indicated earlier, Schrage [ii] has provided a general analysis of this model in 

the case N = oo. In particular, the Laplace transform of the waiting time distribu- 
tion is found under the assumptions of arbitrary quantum sizes for each level. 
(See also [2] for the generalizations to the priority FB~ model.) The methods used 
in Appendix B are similar to those used by Schrage with a straightforward extension 
to take care of the boundary condition arising because of a finite N. 

For the limiting case in which q -~ 0 discussed earlier we have the following. 
COROLLARY 1. 

f l _  ! ,  

lira W( t )  -= ~1 - p p 

,-.0 (k/2) x 2 dF(x)  

N < :¢, (27) 

+ t N = ~ ,  (28) 
1 - p(1 - ~-, ,) ,  
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where 

I~ 
, x < O, 

F(x)  -~" = - -~  , O < _ x < t ,  (29) 

[1, x>_t. 
As explained in Section 2, eq. (27) corresponds to the FCFS system while eq. 

(28) corresponds to a "preemptive" processor-shared system. The result of eq. (28) 
is easily shown by observing that, from the definition of k, holding t fixed implies 

lira kq = t. 
q~0 

Thus, setting kq = t and noting also that (k - 1)q --~ kq as q -+ 0 and 

• E 2 llmwk I(T) = 0, 
q~0 

eq. (22) reduces to eq. (28). 

Generalizing t,o different priority level inputs, we now present an expression for 
the eonditiomfl waiting times of the priority FB~ model. 

THEOREM (), Let Ek( r) and Ek('r 2) be defined as in eqs. (24) and (25) and let 

Pv = h~E~(~-) (30) 

denote the utilizati(.)n factor for the p-th level. I f  we let Wv(t) be the expected waiting 
time of a p-th priority unit (i.e. one entering the system at the p-th level) requiring t sec 
of service, and let lc be the highest numbered level (according to p and t) to which the 
unit must ascend, then we have 

Wo 
Wv(t) = (1 -pv~:)[1 - pve -4- pve -"(k-p)q] 

(al) 
P~k - -  Ppe -u (k -~ )q  

"~- 1 - -  Ppk ~ -  Ppe - ' ( k - p ) q  ( k  - -  p)q 4- t, 

where pv~ is the high-priority utilization factor (of an equivalent 2-level model) and is 
given by 

r ~ p + l  
pvk = (32) 

X~E~_~+~(r), k = p or p -{- 1, 

and where Wo is the expected time to complete the unit in service at arrival and is given by 
k--1 

~.2Av~,(v2) ~_ 1 ~ ~rEk_r+l(v~) -b ½ ~ X~E~-~(r~), k > p + 1, 
r~ l  r~p-{-1 

Wo = (33) 
io 

½A~kE~(~ ~) + ½ ~ ~,~E~_~+~(r~), k = p or p + 1, 

with 

A~k = ~ k , (  "(~-r)q + Aj (34) 
r ~ p + I  ~=k-]-I 
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and 

i 
As = ~ x, ~-'(s-% (35) 

PRoof. The proof appears in Appendix C. 
In the limiting case when q = 0, described in the last section, we have the follow- 

ing result. 
COUOLLAn¥ 2. Let • be the continuous lime-priority replacing the discrete priority 

index p when q --* O, and let X~ denote the average arrival rate of priority T units. Then 
the average waiting lime "in system W~( t) of a unit entering at priority level ~ and re- 
quiring t sec of service is given by 

^ ~  t+~-~ d~ 
W~(t) = t+~ 2 @ [ r ] 2 1 -- ~ + , _ ~  d~ 

~0 

where 

I ft+r I ' k ~ ( I )  1 -- ~t+~-~ d~ 
~0 

(36) 

f 
t + r - ~  

~(") - ux% -"~ dx. (37) - /~ ' t+ r - - r ;  ~ "JO 

4. Shortest-Job-First Model 

The preceding FB models can be characterized by the fact that  the type of service 
received by a unit is made to depend on the total amount required, but with the 
constraint that  this amount is not known a priori. I t  is desirable to investigate the 
potential improvement in performance that might exist if this information were 
available for each unit at arrival time. For this, we shall look at a shortest-job-first 
(SJF) system which is described as follows. We assume a Poisson input of units 
with average arrival rate of X/sec. I t  is assumed that  the service time required by a 
unit is known at the time of arrival, and that  it is an exponentially distributed 
random variable with a mean of 1/u sec. Now when the service facility completes 
the service of a unit it inspects the queue and determines the unit with the shortest 
service time requirement. I t  then proceeds to service this unit to completion; that is, 
there is no preemption by a new arrival with shorter service requirements. The 
service facility commences immediately the service of a unit that  arrives when the 
facility is idle. Phipps [9] has analyzed this model and derived the following expres- 
sion for the mean waiting time in queue of a unit whose service requirement is t see: 

W(t)  = p(1/~) (38) 
1 - x /~ [1  - ~ - . , ( :  + ~ t ) ] ' "  

5. Examples and Discussion 

The service disciplines discussed in the previous sections offer a variety of techniques 
by which the waiting times of different classes of units (programs, messages, etc.) 
can be manipulated or adjusted to meet a set of operational requirements. Of course, 
for these disciplines to have value it is assumed implicit in ~he operational require- 
ments of the system that  the servicing of certain classes of units is to be favored (in 
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a priority sense) over tile servicing of others, based on the service requirements of 
these classes. An additional, external priority assignment, independent of service 
times, was also assumed for the generalized multiple-level model and for the priority 
processor-shared model. In this section we display, for tile FB disciplines of interest, 
the comparative waiting time performances, how one may manipulate the waiting 
times by adjusting the basic structural unit of quantum size, and the effects on 
performance of variations in loading. 

First, let us briefly review the basic nature of the three service disciplines of 
interest in this section: the RR, FB~, SJF, and FCFS disciplines. It is clear that 
each of the RR, FBN, and SJF disciplines have the common objective of favoring 
units with short service times. The extent to which this favoritism is shown in each 
case will be the subject of the following examples. The SJF discipline is distinguished 
from the FB~ and RR disciplines in that the SJF discipline assumes a priori informa- 
tion on the service time required by new arrivals. Thus, we have: 

(a) the SJF discipline discriminating on the basis of a known "future" service 
requirement, 

(b) the FB~ discipline discriminating explicitly on the basis of past service, 
(c) the RR discipline making an implicit discrimination on the basis of past 

service, 
(d) and the FCFS system making no discrimination at all based on service re- 

quirements. 
For our first examples we consider the variation of conditional waiting times for 

the RR and FB~ models with changes in loading. It is more convenient for the FB 
models in which q ~ 0 to display the waiting time in  queue. This is quite simply 
obtained from the expressions for waiting time in the system by subtracting out the 
time t in the service facility. Thus we display 

Wk = W ( t )  - t, (k  - 1)q < t < kq, (39) 

where W ( t )  is given by eq. (13) and eq. (22) for the RR and FB~ systems, respec- 
tively. Note that a broader class of service requirements are now included in eq. 
(39). Specifically, W~ now represents the waiting time in queue for all units whose 
service requirements are such that (k - 1)q < t < kq. Clearly, this is because all 
units in this class make the same number of "passes" in the RR system or ascend 
the same number of levels in the FB~ system. 

Figure 6 presents curves for various values of k; i.e. the number of RR passes or 
the number of FBN levels a unit whose service time is between (k - 1)q and kq sec 
must experience. The curves come from eq. (39) into which has been substituted 
eqs. (13) and (22) for the RR and FB~ systems, respectively, with the values 

= 1.0/see, q = 0.5 see, and N = ~.  The h)ading p is varied by allowing X to vary 
from 0 to 1.0. Also included is the curve for the FCFS model whose waiting time in 
queue is obtained from eq. (18) by subtracting t. 

The curves clearly show how units with shorter service requirements enjoy shorter 
average waits in both the RR and FB,~ systems than in the FCFS system. This 
effect is demonstrated further below. Note also the comparison of the RR and FB~ 
disciplines that is inherent in Figure 6. The fact that the shorter service time units 
in the FB~ model do not have to wait behind the longer ones in the higher queues 
accounts for the better service they receive in the FB~ model. However, it is clear 
from the figure that this improvement is at the expense of the waiting times for the 
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FIG. 6. 
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Comparison of ~-level FB and RR conditional waiting times 

longer service time units. Thus, the RR system gives better service to the units 
with longer service requirements. Another way to view this comparison is to observe 
that the "variance" of the two sets of curves about their crossover point (k = 4) is 
larger for the FB~ model than for the RR model. 

We now investigate the variation of conditional waiting times (in queue) with 
quantum sizes in the RR and FB• models. For this, we have Figures 7 and 8 from 
which several interesting observations can be made. The two figures refer to the same 
two equations mentioned above with the parameter values X = 0.5/sec, ~ = 1.0/see. 
(Figure 7 refers to the RR system and Figure 8 refers to the FB~ system.) In both 
figures we have plotted curves corresponding to units with service times of 0.5 and 
2.0 sec. 

First of all, the jumps or discontinuities, occurring at the same points in both 
figures, are due to the decrease (looking from left to right) in the number of passes 
made in the RR system, and to a decrease in the number of levels required in the 
FB~ model. Take, for example, the points in Figures 7 and 8 corresponding to a 
unit requiring 2.0 sec of service when the quantum size is 2.0 -F e where e is very 
small. We see that the unit makes only one pass in the RR system and waits only 
in the first level of the FB~ system. However, the above remark changes to two 

passes and two levels when the quantum size is made to be 2.0 - e. Since the waiting 
times are substantially different for one and two passes in the RR system and one 
and two levels in the FB~ system, we have the discontinuity in the limit as e goes 
to zero. Of course, the above remarks apply to all submultiples of 2.0 and 0.5 see; 
i.e. to all q for which there is an integer n such that n q  = 2.0 for the upper curves 
of Figures 7 and 8 and n q  = 0.5 for the lower curves. As q goes to infinity the round- 
robin reduces to one pass, the FB~ system reduces to one level, and both reduce to 
the FCFS system. Observe that all units, regardless of their service requirements, 
have the same mean wait if they require but one pass in the RR system (or one 
level in the FB~ system) ; i.e. in the region where q :> t in Figures 7 and 8. 

We now discuss in an informal way the reasons why the u p p e r  envelopes in Figure 
7 (for the RR system) increase as q increases. First consider the processor-shared 
case; i.e. the limit as q goes to zero; we have, subtracting t from eq. (17), 
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_ pt 
W ~ ( t )  1 - p 

We want to compare this waiting time "in queue" with that of a FCFS system, viz.: 

Wq(t) - p(1/~) 
1 - p  

As noted earlier units requiring greater than average service (t > 1/~) do worse 
by sharing the processor than in the FCFS system, whereas for units requiring less 
than average service the opposite relationship exists. In the processor-shared case 
new arrivals immediately gain access to the processor and begin service, thus "slow- 
ing down" units already in the system. Now in this respect we observe two effects 
on the waiting time for a finite, nonzero quantum size. First, a given unit does not 
have to wait, for (or be "slowed down" by) new arrivals on the given (tagged) unit's 
last round-robin pass. This effect causes the tagged unit's waiting time to decrease. 
Second, the units in the system at arrival of the tagged unit (which now become 
ahead of the tagged unit in the round-robin cycling) are potentially being allocated 
more service up to the tagged unit's last pass. For shorter than average service 
requirements (the 0.5-sec example in Figure 7) we see that, on the average, the units 
ahead of the tagged unit will take greater advantage of this additional time than for 
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units larger than average (the 2.0-see example). As can be observed in the figure the 
net effect, when considered along with the fact that  the last pass leads to essentially 
zero service, produces an upward slope of upper envelopes which is less pronounced 
for the longer service time units. 

Now consider the reason for the increasing slopes (as q increases) of tile envelopes 
in Figure 8 for the F B ,  system. For  this, consider the example of a 2.0-sec unit that 
requires just over one quantum in some model A and just over two quanta in some 
model B. Tha t  is, model A has a quantum just less than 2.0 sec and model B has a 
quantum just less than 1.0 see. The 2.0-see unit must ascend two levels in model A 
and three in model B. Now the basic reason why the mean wait is shorter in model B 
than in model A, even though the number of levels has increased, is because the 
units ahead of the 2.0-see unit in model A are being allocated two quanta of 2.0 sec 
each (4 sec total) ,  while in model B they are being allocated three quanta of 1.0 see 
each (3 sec total).  Thus, the units (ahead of the 2.0-sec unit) requiring greater than 
3 sec are holding up the 2.0-see unit more in model A than in model B. As for the 
effects on new arrivals in models A and B, we note from the second term of eq. (22) 
tha t  since (k - 1)q -- t is constant on each point of the upper envelopes, the new 
arrival processing time is the same in both systems. Thus, the net effect is an increase 
in Wk. Of course, the fact that the average unit requires but 1.0 sec of service ex- 
plains why the effect is not more marked than it is. 

Now consider for both Figures 7 and 8 the downward slope of the lower envelopes. 
A little reflection shows that  the reason for the decrease in the waiting times stems 
from the necessity of processing new arrivals during the service time of the unit 
being considered. In other words, if a unit requires n passes (levels) in a given 
system, then the arrivals during the first (n - 1) quanta of its service must be 
processed. Taking the 2.0-sec unit as an example, we see that as n increases and q 
decreases such that  nq = 2.0 sec (looking at the points on the lower envelope of the 
t = 2.0-see curve), the product (n - 1)q increases. Thus, the increased arrival 
period implies an increase in the mean number of arrivals, which implies an increase 
in the minimum, mean waiting times as the number of levels increases (quantum 
decreases). 

Finally, we look at the increase in waiting times as the quantum size varies be- 
tween the discontinuities; i.e. as the quantum size varies without a change in the 
number of passes (levels). Although the curves in Figures 7 and 8 are drawn linear, 
the data showed a very slight downward convexity (dip). When the quantum 
increases but  the priority (number of passes or levels necessary) does not, then it is 
clear that  more time is being allotted to units ahead of the given unit whereas this 
unit does not need the additional time. Thus, its waiting time clearly increases. 

In Figure 9 we have displayed the effect of a finite number of levels in the FB~ 
system. Specifically, we have plotted versus quantum size the waiting time of a 
unit requiring 2.0 sec in a 4-level system (FB~) with 1/~ = 1.0 sec and p = 0.5. 
Clearly, the 2.0-sec unit becomes a "background" (4th-level) unit just as soon as 
the quantum size reduces below ~ sec. To the right of the line q = ] sec, the curve of 
Figure 9 is identical to the upper curve of Figure 8. To the left of this line we observe 
the effect of gradually putting all units into the background as the quantum size 
decreases. The serrations are explained as before, and as we explained in Theorem 5 
the system becomes a conventional FCFS system in the limit as q goes to zero. It is 
interesting to observe from Figures 7-9 that  there is an optimum RR and FB., 
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FIG. 9. Four-level FB conditional waiting times versus quantum size. o = 0.5; /~ = 1.0/sec. 

system for every unit with a given service requirement. Clearly, the optimum system 
is one with a quantum size just over the running time of the given unit. A reduction 
in  this optimum causes an increase in the number of passes or levels, and an increase 
in  this optimum implies giving more service to the units ahead of the unit for which 
the  quantum size is optimum. 

We now look at a comparison of the mean waiting times for the processor-shared 
system (the RR system with q = 0), the preemptive processor-shared system (the 
FB= system with q = 0), and the shortest-job-first (SJF) system. In particular, the 
expressions for the waiting times given in eqs. (17), (28), and (38) will be plotted 
versus loading and versus the service time required. Recall that  in the RR ° (proces- 
sor-shared) system we may view the current units in the system as sharing the 
processor. If there are n units in the system, then each is serviced at the same time 
but at ( 1/n)-th the speed they would if they had the processor to themselves. In the 
FB ° (preemptive processor-shared) system this sharing occurs only between units 
having the same (highest) priority (i.e. the same amount of past service). 

We have plotted the waiting times for all three disciplines versus loading (p) in 
Figure 10, and versus the service requirement t in Figure 11. The numbers in paren- 
theses following the system designations on the curves represent the corresponding 
service times. Note in Figure 10 that  the RR ° formula reduces to the FCFS formula 
(oil - p) for t = 1.0 sec. We observe in Figure 10 that  the variance of the curves 
about the FCFS (or RR °, t = 1.0 sec) line is greater for the FB ° system than for 
the RR ° system. Of particular interest in Figure 11 -~re the crossover points for small 
values of t which give those regions where one discipline improves over another. 
Note that  eq. (17) is linear with respect to t and that  eqs. (28) and (38) become 
linear for large t. 

We comment here that  all of the queueing models considered obey the Conserva- 
tion Law [5], which states that 

, ,( ,)  W~(t) d t= constant, (40) 
p = l  ~0 

where we have broken the input population into P priority groups and where pp(t) dt 
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service times 

is the fraction of time that  the full processor s spends servicing units from priority 
group p whose total service time requirement lies between t and t 4- dt. Equation 
( 4 0) indic ares, regardless o f the queueing discipline (under some very weak assump- 
tions), that  the superior t reatment  given certain units must result in inferior treat- 
ment to some other units. This effect is noticed in Figures 6, 10, and 11. 

6. Summary 

In  this paper we have studied the behavior of the average waiting time (conditioned 
on required service time and on priority) in a number of feedback queueing models 
of time-shared systems. The purpose of this study was to analyze certain specific 
models in order to better understand the way in which they manipulate the various 
customers' waits in system. All the models considered were quantum controlled, and 
the analysis was carried out for arbitrary quantum sizes. Art especially interesting 
effect occurs when the quantum approaches zero, and these results were elaborated 
upon. 

The basic assumptions made were that  the arrival and service processes were 
Markovian and that  swap time was zero. The effect of tile swap-time assumption is 
to yield results which are ideal in the sense that  the waiting times increase in all 
systems for nonzero swap time. 

This study has been one of analysis--not one of synthesis. Indeed, the general 
problem of finding optimum algorithms for operating time-shared systems has yet to 
be formulated, much less solved. We feel, however, tha t  the various models studied 
here provide the system designer with a number of degrees of freedom with which to 

3 Alternatively, we may think of pp(t)dt as the fraction of time that the partial processor 
spends on such units, weighted by the portion of the full processor which is giving service to 
such units. 
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synthesize ~t satisf~tctory (albeit nonoptimum, in some appropriately defined sense) 
time-shared processing system. 

APPENDIX A. Proof of Theorem 2 

We consider a unit (which we e~dl the "tagged" unit) arriving at the RR system in 
equilibrium and assume a service requirement of t sec. Defining k as the smallest 
integer such that t < l(:q, we address the problem of finding tile tagged unit's average 
waiting in queue. To find the mean wait in system we simply add t to the waiting 
time in queue. 

Assume that on arriwd of the tagged unit there is one or no unit in service and n 
in the queue. We decompose the waiting time in queue into two parts, T~ and T2. 
T~ corresponds to the time required to finish the unit, if any, in service (taking into 
account the possibility of its returning for more) plus the time required to process 
(not necessarily to completion) all arrivals during this time. T~ corresponds to the 
time required to properly service the n units in the queue at arrival. Of course, both 
T~ and T2 must take into consideration the processing of all arrivals that occur in 
T~ and T2. Evidently, the mean waiting time in queue is 

Wk = E(T~) + E(T2). (A.1) 

The resequencing of events implicit in our definitions will clearly not affect the 
determination of Wk so long as all events are taken into account. This often-used 
"resequencing" approach is justified by the fact that the input process is time- 
homogeneous and statistically independent of the state of the system. 

Now for E(T2) we use expected value arguments essentially the same as those 
used by Kleinrock [4] for the discrete system. Let y~ denote the time spent in queue 
on the ith pass by the tagged unit. Since the tagged unit must make k passes we 
may write 

E(T2) = E y, = ~ E(y,).  (A.2) 
i=1 i ~ l  

Correspondingly, we define N~ as the mean number of units ahead of the tagged unit 
at the beginning of the ith pass. We now develop a general expression for N~. For 
i > 1, Ni will be composed of the mean number of those units of Ni_~ whose 
service requirements exceed q sec (we call these returning units), and the mean 
number of new arrivals that occur during the time interval yi-~ q- q. (The q see is 
included because of the tagged unit's service following y~_~.) 

From the memoryless property [3] of the exponential distribution we may observe 
that the probability ~ with which a unit returns (requires more than q sec of service) 
is independent of i and given by 

8 = ~ - ~ "  d~ = ~-"q. ( A . 3 )  

Thus, we have 

N, = ~N,_~ "Jr" X[E(y~_,) + q]. (A.4) 

But 

E(y,_~) = N,_,E~( r), 
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so upon substitution in eq. (A.4) we obtain 

N~ = N~_~[~ + XEI(r)] + ~q. 

For convenience we define 

so that  

(A.5) 

fl = ~ + ~E,(r) ,  (A.6) 

N~ = BN~_x + ~q. (A.7) 

Now solving this equation for N with the condition N~ = ~ = E(n) yields 
i--2 

N~ = t3~-~ + Xq ~ ~J, i > 1. (A.8) 
i=0  

Using induction eq. (A.8) is easily established. From eq. (A.2) we may now write 
k 

E(T2) = E,(r) ~ N~, (A.9) 
i = l  

whereupon substitution of eq. (A.8) into eq. (A.9) yields, after carrying out the 
summations 

E(T2) - ~-- 

where, by evaluating eq. (A.6), we have 

= p + (1 - p)~-"L 

Now in the RR and FBN models we have assumed that  no losses or "overhead" 
times exist in system operation, and in both models no advantage is taken of any '~ 
priori information concerning the nature of the new arrivals. Thus, it is not difficult 
to see that  the average number of units in the queue for both the RR and FBs 
systems is precisely the same as for the exponential FCFS (Erlang's) system. Thus, 
we may solve for fi by using the corresponding result for the FCFS system which is 
given by [12] 

2 
g _  P 

1 - p  

(1/t~)[1 - ~-~q] from eq. (12), we may render eq, (in queue). Now using El(r)  = 
(A.10) as 

E(T~) (1/~) [Xkq + (1 p~ -1-pL ;-lx_q )(1 ek)]. (A.11) 

Turning now to E(T1), let W0 be the mean amount of time required to complete 
the quantum-service in progress at the time of arrival. Then E(TI) is equal to W0 
plus the expected time to process the mean number of arrivals in W0 plus the time 
it takes to process the unit in service if it returns for more service. Here again, the 
processing referred to includes the processing of subsequent arrivals as for E(T~). 
The mean number of arrivals in W0 is given by XWo. If we call a the probability 
that  the unit in service at arrival returns for more service we have 

_f n = a + XW0 (A.12) 
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as the mean number of units (excluding ~) to service following W0. The time to 
process the ~' units can be calculated as for E(T~). We note, however, that  these 
units are all "behind" the tagged unit and therefore will be provided with a maxi- 
mum of only (~ - 1) quanta of service before the tagged unit receives its last 
quantum. Thus, we can proceed as before and form the sum 

N~E~(r) -t- [~N~ q- ~N~E~( ~)]EI( r) q- . . .  -b [SNk_2 -k ?~Nk_2E~( r) ]E~( :'), 
_!  

from which it is easy to establish by induction and by using N~ = n ,  

k-1 1 - ~k-1 
- n'. ( A . 1 3 )  ~ N i  1 - 3 

Finally, therefore, we have 

E(T1) = W0 -k [~ + ~W0] I 1 i ~ - 3  l E~(r). (A.14) 

Using E~(r) = (1//~)[1 - ¢-~q] from eq. (12), this may be put into the form 

E(r ) - 1w°- p I1 - + I 1 -  (a .15)  

It remains to derive expressions for W0 and ~. To find Wo we follow Cobham [1] 
and observe the following. Given that  a quantum-service of duration t is in progress 
at the time of the tagged unit's arrival, then from the point of view of the unit being 
served the expected time of arrival is simply (t/2). We must now determine the 
probability dC(t) of arriving when a quantum-service of duration t is in progress. 
For this Cobham writes 

dC(t) = Xqt dF,(t), (A.16) 

where F~(t) is the quantum-service distribution given by eq. (12) and hq represents 
the average arrival rate of quantum services. Now eq. (A.16) is based on a Poisson 
arrival mechanism of quantum-services; in our case unit arrivals are Poisson which 
gives rise to Poisson "bulk"  arrivals of quantum-services. However, eq. (A.16) still 
applies since for our purposes only the randomness or Poisson nature of the arrival 
times is necessary for eq. (A.16). Since a unit requires a kth pass (quantum-service) 
with probability l! - t t ( k -1 )q  w e  see that  

Xq = X S e -"(k-1)q - X (A .17 )  
k=l 1 -- e--~q 

Therefore, we obtain with Cobham 

fo~ t ~/2 El(t2). (A.18) Wo = dC(t) = 1 - ~-~q 

To determine a we find the probability that  the tagged unit arrives and finds a 
program which will return for more service following the current quantum. Equiv- 
alently, we want the probability of an arrival during a quantum-service of ex- 
actly q sec in length. From eq. (A.16) and eq. (12) for dFl(t) we find 

= ~qqdF~(q) = ~qqe-'q. (A.19) 
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Now from eq. (A.17) we get the following result: 

Xq~-~q (A.20) 
= 1 - -  E - # q  " 

Inserting eqs. (A.18) and (A.20) into eq. (A.15), we get 

= hqe-"q [1 - #k-I] . 1 (A.21) E(T,) [(~/2)/(1 - ("q)]El(r  2) [1 - -  p#k-1] ..j[_ ~ 
1 - p  

where 

fl = p + (1 - p)e -'q. (A.22) 

Substituting eqs. (A.21) and (A.11) into eq. (A.1) now yields 

(h/2)E~(r2) [1 -- m3k-ll W(t) - lP~p -f- T ---~ 
(A.23) [ ] hqe-~ql -4---~--~-_pl l---P2 pit1 l pq_ # [1 -- t3 k] + ~ ~ [1 -- #k-,], 

which constitutes the result of Theorem 2 when the service time t is added. Q.E.D. 
We may now produce the result for the processor-shared model of Theorem 3 by 

taking the limit of eq. (A.23) as q goes to zero. Since the waiting time is conditioned 
on the service required, we want to hold kq constant while allowing q to go to zero 
in eq. (A.23). Calling kq = t, let us first calculate 

lim #k = lim [p H- (1 - p)~]k, ~ = e-~q. 
q~0 q~0 

With rearrangement we have 

# k : ~ ( ~ )  2 1 ) p 2 ( 1 - - ~ ) ~ k - 2 " "  

Now kq = t implies ~k = e-st and approximating (1 - e-"q) by #q for 0 < q << 1 
we have 

[ (Pgt)2 ] e-~t(i-p) lim#k = -~t i H- pgt-l- T - F  . . . . .  
q~O 

With the same approximation it is easy to establish 

lira h_q - p, l imEl(r2)  - O, 
q-~o 1 ~ q~0 1 - 

so that  on substitution of the above limits into eq. (A.23) we get 

lim W(t) = 1 f _ p _ _~(~_p)] p_ _ } =  pt ~ o  1 p pt [1 + [i ~-~(~-~)] # # l - p  

which establishes Theorem 3 after adding the service requirement (t). 

APPENDIX B. Proof of Theorem 5 
For the proof of Theorem 5 we again resequence the events that  must occur during 
the waiting time of an arriving unit so as to simplify the arguments necessary in 
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X(AVERAGE 
ARRIVAL 
RATE OF 
UNITS) 

NEW LOW PRIORITY QUEUE 
ARRIVAL (SERVICE <_ q SECS) 

, - ~ - - , r  T...-:-rr-TTq--i q -q  __,, F - ~  
-..q J ~ _ L Z : ' I J  J o I 

± j  ~ L 1 ~ - L _ _ . J  

~j C~Xv,PC~7'k\ '~ S E~C~, UE 

Fro. 12. Equivalent two-level model without feedback 

determining this waiting time. We consider a unit (the tagged unit) arriving at 
the FB~ system in equilibrium, assume that its service requirement is t sec, and de- 
fine/~ as the smallest integer such that kq > t. We break up the waiting time in 
queue into two parts so that we may write 

Wk = E(TI) + E(T2), (B.1) 

where T1 is the time to complete the unit in service plus the time required to process 
the units which were in the first k queues at the time of arrival, and T~ is the time 
to process all new arrivals that occur during the tagged unit's waiting time. 

We approach the problem of determining Wk for k < N by looking at a special 
two4evel model which is equivalent in the sense of the waiting time we seek. Figure 
12 shows this equivalent two-level model. Note from the figure that arrivals requir- 
ingj quanta of service are (artificially) separated into j corresponding parts. The 
first k parts (or j  parts if k :> j)  are combined into a single arrival unit to the high- 
priority (lower level) queue. The remaining parts, if any, each constitute a unit 
arrival to the low-priority queue. In this special model "feedback" is no longer 
explicit. Indeed, the quantum-at-a-time processing is no longer carried out by the 
server, but is implicit in the arrival processing mechanism instead. However, for the 
waiting times of high-priority arrivals (requiring kq sec or less) for which feedback 
does not exist anyway, it is clear that this artificial arrival mechanism has not 
changed anything. As can be observed, arrivals to the high-priority queue are 
Poisson while arrivals to the low-priority queue are Poisson in "bulk." 

From the above remarks we now make the simplifying observation that the time 
(T1) to process the first k queues in the FB~ model (N > k) and the unit in service 
at arrival is the same as the waiting time in the high-priority queue of the special 
two-level model in Figure 12. In both cases the tagged unit must wait through the 
processing of units being allocated kq sec of service. It remains, therefore, to deter- 
mine the high-priority waiting time of the special two-level model. But for this 
statistic we may identify our special two-level model with the corresponding single- 
channel, head-of-the-line (two-level) priority model of Cobham [1]. The only 
difference we make between these two two-level models is that in the latter the 
arrival process to the low-priority queue is assumed to be Poisson instead of Poisson 
in bulk. But for the average waiting time in the high-priority queue it is unimportant 
whether or not the arrival process to the low-priority queue is Poisson. Indeed, it 
can be shown that the high-priority waiting-time distribution depends on the low- 
priority arrival process only through its average rate (see [8], for example). Thus, 
using Cobham's result for the high-priority average waiting time we have 
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W0 (]~.2) 
E(  T1) = 1 - pl' 

where pl is the utilization factor for the high-priority queue and W0 is the average 
amount of time required to finish the unit being served at the time of arrival. Ir~ 
o u r  c a s e  

1 -- p~ = 1 -- hE , ( r )  = 1 - 0(1 - e-"kq), (B.3) 

where E~(r)  is given by eq. (24), and 

[ f0 
where Xk, X~ and Fk(~-), F~(r)  represent, respectively, the average arrival rates and 
service time distributions for the high-priority and low-priority queues. The distribu- 
tions are defined by eq. (23). Now since an arrival requires service at the low- 
priority queue only if it requires in excess of kq see of service we have 

Xk X, Xl X ~ e -"~q 
) ,e-~kq 

. . . .  7~,. (B.5) 
i=k 1 - e-~q 

Thus, 

E 2 
E ( T 1 )  = (k/2)[Ek(r2) + ~'k l ( r  )] (B.6) 

1 - p(1 - e -~kq) 

To calculate E(T2) we now return to the original FB~ model. We observe that 
the average number of arrivals in Wk must be based on W~ ~ (k - 1)q since the 
tagged unit received (k - 1)q sec of service before reaching the kth (less than Nth) 
queue. Clearly, each of the new arrivals must be allocated (k -- 1) quanta of service 
of which Ek-1(r) is the average amount taken. Thus, 

E(T.2) = X[Wk + (k  - 1)q]Ek-l(r). (B.7) 

Finally, therefore, 

W, = ~[Wk + (k -- 1)q]E,_l(r) 

E 2 (B.S) -b (k/2)[Ek(r2) + ' ) 'k  ~(r)]  1 < k < N - -  1, 
1 - p(1 - e -~kq) 

Solving for Wk and substituting for Ek-.l(T), we obtain 

W, = (~/2) [E, ( r : )  H- ~kEl(r2)] 
[i - p(1 -e- 'k~)l[1 - p(l - e-'(k-1)q)] 

(B.9) 

÷ P ( ~ - ~ - ~ ' - ' ) ~ )  ( k -  1)q, I < k _ < A T - 1 .  
1 - p ( 1  - ~ - . ( k - 1 ) q )  

Adding t to eq. (B.9) now produces eq. (22a) of Theorem 5. 
Finally, for k > N -- 1 we may simplify matters by observing that  all units in 

the system at the time of arrival must be served to completion before the tagged 
unit comes to the service point for the Nth  time. Thus for E(T~) we may use the 
result for the waiting time in queue for the FCFS system. In particular, from eq. 
(18) we have (subtracting the time t in the server) 
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E(TI )  - p(1/t*) (B.10) 
t - p  

Now the period during which we must allow for new arriwds is again W~ -k (k - 1 )q. 
Because of the nature of the Nth  queue each of these new arrivals will be allocated 
(N - 1)q see of service. Thus 

E(T~) = ,~[Wk + (t~ -- 1)q]Eec_,(r). (B.11) 

Adding eqs. (B.10) and (B.11) and solving for lYk now yields 

Wk = p ( t /**) 
( 1  - p ) [ 1  - p ( 1  - e - ~ ( ~ - * ) Q ]  

• ( B . 1 2 )  

q_ p(1 -- -,(ee-~>~) (/c - 1)q, k > N. 
1 - p(1 - e-~¢N-1)q) 

Adding t to eq. (B.12) now establishes eq. (22b) of Theorem 5 and completes the 
proof of Theorem 5. Q.E.D. 

A P P E N D I X  C. Proof of Theorem 6 

To find conditional waiting times for the priority FB~ model, we employ a method 
that is basically similar to that  used in the proof of Theorem 5. We consider the 
mean waiting time in queue Wp k of a unit entering the system at the pth level and 
requiring service up to the kth level (p < k). 

First, we indicate which units, in the system at arrival, must precede the tagged 
unit's quantum-service at the kth level and how much service they are entitled to. 
For the present we assume k > p + 1. From the description of the priority FB~ 
service discipline we see that all units at the j t h  < p th  level queues will be allocated 
service, as required, up to and including the/cth level, and all units at t h e j t h  (p < 
j N k -- 1) level will be allocated service up to ~md including tile (k - 1)-st level. 
Now tile processing of new arrivals during W~ k will be as follows. New arrivals at  
the j th  <_ (p - 1)-st level will be given service up to and including tile/cth level 
and new arrivals at levels p through (k - 1) will be given service up to and includ- 
ing the (k - 1)-st level. 

As in the proof of Theorem 5 we now construct, a modified, two-level model which 
is equivalent to the original one in terms of the waiting time of a p th  priority unit 
requiring service up to the kth level. The high-priority queue of the two-level model 
will consist of priority r milts, where 1 < r < p, being allocated k -- r q- 1 quanta 
of service, and units of priorities (p -k 1) through (k - 1) being allocated (k - r) 
quanta of service. The low-priority queue of the two-level model will consist of all 
priority r units, with 1 < r < p, that  required in excess of (k - r q- 1) quanta of 
service, all priority r units, with p -k 1 < r _< k - 1, that required in excess of 
(k - r) quanta of service, and all units which arrive at level k or above. Now the 
probability that  a unit requires greater than kq see of service is simply e -"kq. Thus, 
the total arrival rate of units to the j t h  > kth level queue is given by 

i 

A~. = ~ are -'°'-~)e. (C.1) 

We see that ~--~.i~=k+, Aj represents the contribution, based on arrivals initially to 
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all levels, to the low-priority queue from all levels beyond the kth. However, for the 
total  low-priority arrival rate we must also take into account those units of priority 
r ( p  < r < k)  that  require greater than (k - r) quanta of service; these units will 
be behind the tagged unit when the latter receives its last quantum of service in the 
kth queue. This contribution (at the /~th level) to the low-priority queue of the 
modified model is given by 

k--1 

A;k : E xr~ - ~ - ~ .  (c.2) 
r = p + l  

We define h*k = 0 for k = p or p q- i. Finally, therefore, 

i = k + l  

l~ecall that  we need to consider only one low-priority queue because all units arriving 
to the low-priority queue receive but one quantum of service at a time. Clearly, 
the total arrival rate A~ to the high-priority queue will be simply 

A. = ~ x~. (¢.4) 

In  comparing eqs. (C.3) and (C.4) note particularly that arrivals to the high- 
priority queue are units taking up to and including k or (k - 1) quanta, but that 
arrivals to the low-priority queue are units (irrespective of their original level of 
entrance) that  take up to and including only q sec of service (see Figure B.1). 

We are now in position to calculate Wp k. Let us first assume that  k > p q- 1. Now 
considering, as in the proof of Theorem 5, the high-priority queue of the modified 
(two-level) model as the higher priority in a two-level conventional priority model, 
we may again apply Cobham's analysis. Accordingly, we divide the waiting time 
W~ ~ into two intervals T~ and T2. T~ is the time to process the high-priority units 
in the system at the time of arrival and T2 is the time required to service the new 
arrivals occurring in W p  k q- (k  - p)q .  Now for the expected value of 7'~ we use 
Cobham's result as given below. 

Wo (¢.5) 
E (  T1) - 1 - ppk ' 

where W0 is the expected time to complete the unit in service at arrival and ppk is 
the utilization factor for the high-priority queue. To find ppk we first write the mean 
service time E ~ ( r )  of a unit in the high-priority queue of the two-level model. 
From earlier definitions we have 

z~m Lr~l 

From. the above it is clear that 

p k-I 

XrEk-~(r)]. (C.6) 
r~p4-1 

pp~ = A,E,~(T) = Z XrEk-r+l(T) + Z Xr~k-~(r), k > p + 1. (¢.7) 
• v=l r~p-bl  

Since it is clear that  the second term must be omitted for k = p or p q- 1, we have 
established eq. (32). For W0 we take one-half the weighted sum of the second 
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moments of the  high- and low-priority service time distributions according to the 
two-level model. Thus,  

Wo = } X.E._ .÷, ( . ' )  + ~2 x.E._.(/) + A . , ~ , ( . ' )  . (C.S) 
r ~ l  r ~ p + l  

Here again, the second term must  be omitted for k = p or p + 1, so that  in con- 
junction with eq. (C.3) we have established eq. (33). Thus,  eq. (C.5) is deter- 
mined. Now for E(T2)  we reason as before to obtain, according to the present model, 

E(T,) = [m, ~ + (k - p)q] L.=~ h.E,_.+.(r) + .=,~ ),.Ek_.(r) . (C.9) 

Substituting eqs. (C.5) and (C.9) into the relation 

we get 

W ~  k 

w .  ~ = E i T 0  + E(T~) ,  

W o  

E ' - '  k_, 1 (1  - -  p,k) I - -  ~ XrEk_r+l(7") -- ~ ~.rEk_r('r) 
r ~ l  r ~ p  

p--1 k--1 

)~,Sk_,+l(r) + 2 •,Ek_,(r) 

p--1 k--1 

1 -- ~ X.Ek_.+l(r) -- ~ X,.Wk_.(r) 
r ~ l  r ~ p  

from which eq. (31) follows when we observe 

p--1 k--1 
--#(k--p) q 

x .Zk_ .+~(~ - )  + ~ X . E k _ . ( ~ )  = p,,,, - p.~ , 
T~I r ~ p  

(C.10) 

(k - p)~;, 

where pp = X~EI(r). Q.E.D. 
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