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Recently there has been considerable interest in a key paper [1] describing a new approach to conges- 

tion control in Internet traffic which has resulted in significant network performance improvement. The 

approach is based on a 1978 paper [2] and a companion 1979 paper [3] which identified a system oper- 

ating point that was optimal in that it maximized delivered throughput while minimizing delay and loss. 

This operating point is simply characterized by the insight that one should “Keep the pipe just full, but 

no fuller” and we show this is equivalent to loading the system so that in many cases (including those 

relevant to TCP connections) the optimized average number in the pipe is exactly equal to the Bandwidth- 

Delay Product . It is important to understand the reasoning and intuition behind this early insight and why 

it provides such improved behavior of systems and networks. In this paper, we first develop this insight 

using purely deterministic reasoning. We then extend this reasoning by examining far more complex 

stochastic queueing systems and networks using a function called Power to mathematically and graphi- 

cally extract exact and surprising results that support the insight and allow us to identify the optimum 

operating point for a broad class of systems. These observations allow us to study the impact of Power on 

networks leading eventually to supporting the statements about steady state congestion and flow control 

as presented in [1] for today’s Internet. We point out that the discussions about the latest congestion 

control algorithms [ 1 , 4, 5, 6, 7, 8, 9, 10, 11] address the dynamics of tracking flow, dealing with mul- 

tiple intersecting flows, fairness, and more, and which focus on the dynamic behavior of data networks 

whereas our work here focuses only on the steady state behavior. 

© 2018 Published by Elsevier B.V. 
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. Introduction 

We begin with the use of deterministic reasoning to develop in-

uition as regards the proper level of traffic to feed into an Internet

onnection so as to achieve high performance. This quickly leads

s to recommend a level of traffic that translates into the rule of

humb, “Keep the pipe just full, but no fuller”1 . We then consider

tochastic systems and seek to gain insight into the same question.

o accomplish this, we find we must first establish a quantitative

etric that considers the tradeoff between a connection’s delay

nd its throughput; and the metric we choose is Power. Power is

rst introduced as a very general metric and then specialized for

he purposes of an Internet connection as the ratio of system ef-

ciency to normalized response time. The goal is then to find the
E-mail address: lk@cs.ucla.edu 
1 Behind this rule of thumb, we often imply the slightly expanded phrase, “Keep 

he pipe’s bottleneck just full on average, but no fuller.”
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2 traffic level that maximizes Power. We provide the so-

ution which exposes some great simplicity that matches the rule

f thumb we articulated above. We define and present a Univer-

al Power Profile that works for any system of flow and apply it to

ome important stochastic systems. We treat networks as stochas-

ic systems for which we adjust the traffic level that optimizes

ower. In providing the solution of the Power optimal operating

oint, we identify the Optimal Power Trajectory. Note, however,

hat this is an equilibrium (steady state) view which does not ad-

ress the critical dynamics of traffic flow in networks. The issue of

etwork dynamics is then discussed when we introduce some very

ecent work on network congestion control. That work focuses on

ynamic algorithms that seek to track the network parameters and

ows so as to match the rule of thumb we describe above while

esponding to the network dynamics. 

Let us begin with a general model and apply it first to a sim-

le deterministic system. Specifically, consider a “Good” (indepen-
2 From here on, we use superscript ∗ to denote the (Power) optimized value of a 

ariable. 

https://doi.org/10.1016/j.adhoc.2018.05.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2018.05.015&domain=pdf
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Fig. 1. A simple deterministic system. 
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4 The (network) systems we consider refer to arrivals as the arrival of data blocks 

(e.g., bits, bytes, packets, messages, etc.). 
5 Typically transmission. 
6 
dent) variable, G in the domain G ≥ 0 which represents a quantity

that we wish to increase , while at the same time, we consider a

general (dependent) “Bad” function, B ( G ), whose value we wish to

decrease . A simple and extreme example of a deterministic system

of this type is shown in Fig. 1 . Specifically, in Fig. 1 (a) we show

a B ( G ) that remains constant at its minimum value B min as G in-

creases from G = 0 until the maximum value for G, namely, G max ,

is reached at which point the system can provide no further in-

crease in G ; if we try to gain more G we will simply move ver-

tically up the plot gaining no more G but incurring more B ( G ) 3 .

Note further, as shown in Fig. 1 (b), that we cannot provide any

less “Badness” than B min and so the horizontal cross-hatched re-

gion is inaccessible; similarly we cannot provide any more “Good-

ness” than G max and so the vertical cross-hatched region is also

inaccessible. To find the operating point of optimal performance in

the accessible region(clear white region in Fig. 1 (b)), it is clearly

at the point β since that is where we achieve maximum Goodness

at minimum Badness. No other operating point is better for any

sensible definition of optimality. 

Later in the paper, we introduce our performance metric, Power

and use it to mathematically and graphically identify the point

of optimal performance (i.e., maximal Power) for this metric in

more complex scenarios. Power has some remarkable properties
3 We will interpret this behavior as a deterministic system of flow in Section 3 - 

and will, in Section 4 and beyond, consider complex stochastic systems that are 

more realistic than deterministic ones, and for which more sophisticated ap- 

proaches are necessary. 

ρ

fi

l

nd leads us to the insights about Internet congestion and flow

ontrol. 

. Systems of flow 

We consider systems of flow in which a stream of arrivals 4 en-

er a system requesting service 5 from a network of finite capac-

ty (service) resources 6 . In such systems, the inter-arrival times can

e deterministic or stochastic as can be the size of their demands

rom the resources. The system can contain a single resource, or

ultiple resources arranged in some configuration through which

he arrivals flow. 

We begin by defining notation for single resource 7 systems of

ow in which arrivals enter the system requesting service from a

ingle server and, if that server is busy, then the arrival joins a

ueue awaiting its turn for service. These systems of flow are the

ubject of queueing theory [12] for which we define x as the aver-

ge time a customer spends in service and t as the average time

etween customer arrivals. Often we use the following rate nota-

ion for these quantities: x = 1 /μ (where μ is the service rate) and

 = 1 /λ (where λ is the arrival rate). Further we combine these two

uantities and define ρ = x / t = λ/μ as the system efficiency (also

eferred to as the utilization factor); in general, stable systems re-

uire ρ < 1. The notation A / B / K is used for systems in which the in-

erarrival time probability density function is of type A , the service

ime probability density function is of type B and the system con-

ains K servers in parallel. In the multiple server case, ρ = λ/Kμ
ince the total service rate available to the arrival stream is K μ. In

ll cases, if ρ > 1, then the system is unstable 8 in that the queues

row without limit (assuming the queue has enough storage space,

nd if not, then overflowing customers are ”lost”, i.e., forced to

eave with no service). To instantiate the A and B types, we use

he letter D to refer to a deterministic density, the letter M to de-

ote an exponential density, and the letter G to denote a general

ensity. 

One of the most important and general results in the theory of

uch systems of flow (which applies to stochastic as well as deter-

inistic systems) is Little’s Result [12] which states for any such

ystem, that N , the average of N , the number of customers in the

ystem, is given by 

 = ρμT (ρ) (2.1)

here T ( ρ) is the mean system response time (time in queue plus

ime in service 9 ) and μT ( ρ) is referred to as the normalized mean

esponse time. Note that the minimum mean response time is or-

inarily at the “no-load” point ρ = 0 (when there is no time spent

n queue) and for single-server systems is simply equal to 1/ μ,

hat is T (0) = 1 /μ; this explains why μT (ρ) = T (ρ) /T (0) ≥ 1 is

eferred to as the normalized mean response time. 

If we consider flow along a connection for general networks, we

dentify the familiar Bandwidth-Delay Product ( BDP ) as the prod-

ct of the BBandwidth (which is the maximum bandwidth that the

ipe can support for the flow in this connection, namely, the band-

idth of the slowest link in this pipe, or, if you will, the Bottleneck

andwidth of the link) times the NLDelay (which is the time to tra-

erse the connection when there is no traffic interfering with the
Typically network links with a finite transmission rate, e.g., bits/sec. 
7 We extend this to networks of resources later. 
8 In queueing systems, it is generally recognized that the system is unstable for 

≥ 1, but the D / D /1 system is considered stable for ρ = 1 if its initial state has a 

nite queue (usually assumed to be zero). 
9 We do not explicitly address latency due to speed of light, but assume such 

atency is included in the service time. 
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Fig. 2. The D/D/1 deterministic queueing system. 
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ow, i.e., the No-Load Delay ) 10 . The BDP plays an important role in

ur optimizations below (e.g., see Theorem 8.1 ). 

For the systems of flow considered below, we set G = ρ and we

et B (G ) = μT (ρ) . 

. Deterministic systems of flow & deterministic reasoning 

Let us now discuss the issue of deterministic reasoning for de-

erministic systems. Deterministic reasoning is a useful approach

ven with stochastic systems since the Law of Large Numbers

12] tells us that in certain limits, systems with stochastic variables

ehave as if those variables are deterministic. The deterministic ap-

roach allows us to develop insights, intuitions and rules of thumb

egarding optimal performance that apply for stochastic systems as

ell. 

.1. The D / D /1 system 

Let us begin with considering the D / D /1 system (below in

ection 6 we consider more interesting systems such as the classi-

al M / G /1 queueing system). So, the system D / D /1 is a purely de-

erministic system wherein a steady stream of arrivals enters, one

very 1/ λ seconds, each of which spends exactly 1/ μ seconds in

ervice. As long as ρ ≤ 1, then the previous arrival departs service

efore (or exactly when) the next arrival occurs; thus the queue is

lways empty and the server contains a customer a fraction ρ of

he time. The response time for each customer is exactly its service

ime and so the system D / D /1 leads to the plot of B (G ) = μT (ρ)

s G = ρ as shown in Fig. 2 . 

In this figure, as was the case in Fig. 1 (a), for any reasonable

efinition of optimality, there is little question as to where we

hould operate for “optimality”, and that is exactly at the obvious

knee” of the curve at the point β where ρ = 1 . 0 ; this achieves

he minimum response time and the maximum efficiency. At this

oint, it is clear from Eq. (2.1) , that the number in system, N ,

akes on the optimum value N 

∗ = 1 , that is, for D / D /1 we note that

e have that the exact number in system at optimality is equal

o 1. Our deterministic reasoning is clear, namely, for optimality,

e seek to have the server busy all the time (maximum through-

ut) and to have customers spend zero time in queue (minimum

esponse time). One can think of the intuition described here as

ontrolling the rate of customer arrivals so as to “Keep the pipe just

ull, but no fuller” where the pipe here has only one space to fill

i.e., the single server with a single customer in service and none

n queue). Note further that the BBandwidth of this system is the
10 Often NLDelay will be calculated as T (0) which is the no-load delay for the path 

nder consideration. 

3

 

F

aximum rate of the server (pipe), that is μ customers/sec; more-

ver, the NLDelay for an arrival to move through the pipe is 1/ μ
ec, and so BDP for this system is exactly 1. We see that BDP = N 

∗.

hese themes will repeat throughout this paper. 

Our main focus in this paper is to identify the optimum num-

er of customers to have in the system and, in particular, we do

ot focus on the dynamics and time-dependent behavior of this

umber. Nevertheless, we point out that the dynamics of deter-

inistic systems are useful to help us gain insight. In that spirit,

e point to the material in Section 2.7 of [13] in which we discuss

he fluid approximation for queues and describe how to model

ime-dependent behavior. For example, when a queueing system

s temporarily overloaded (as can occur in Internet connections

hen a bottleneck’s bandwidth is temporarily overloaded) then the

acklog queue will grow until the load is reduced below the sys-

em’s capacity at which point the backlogged queue will begin to

drain”; the maximum backlog occurs just when the overload sub-

ides. This concept of needing to drain an overloaded pipe comes

p in the algorithms mentioned in Section 7.4 . 

.2. The D / D / K system 

We now extend the D / D /1 system to include K servers, i.e.,

 / D / K . An arriving customer is assigned to any free server that is

vailable upon its arrival. First we consider the case of equal rate

eterministic servers, i.e., where a customer spends exactly 1 /μ
 in service, regardless which server serves that customer. Once

gain, we have a steady stream of arrivals, one such arrival en-

ering every 1 /λ s. Since we have K servers, the total system ser-

ice capacity is K μ customers/s and so, in this deterministic sys-

em, we can support a maximum input rate of K μ arrivals per sec-

nd, i.e., λmax = Kμ arrivals per second, each of which arrives to

nd a server just going idle to serve it. The behavior of this sys-

em is the same as that shown in Fig. 2 , with β being the optimal

perating point once again. In this case, we see that each of the

 servers is always busy and no customers are in the queue; that

s we have kept each of the K bottleneck servers just full, and no

uller (i.e., no overflow customers waiting in the queue), resulting

n N 

∗ = K. Note again that the NLDelay is 1/ μ and the BBandwidth

s K μ, hence BDP = K which once again gives us BDP = N 

∗. 

Now consider the D / D / K system with unequal rates for each

erver, namely the k th server has rate μk . The total service capacity

s now 

∑ K 
k =1 μk customers/sec. In order to keep (each) bottleneck

ipe (i.e., each server) just full, we feed the system with K arrival

treams, the k th of which consists of μk customers/sec uniformly

istributed in time and served by the k th server, and then super-

mpose these K streams to provide a total input of λmax = 

∑ K 
k =1 μk 

rrivals/s. We then draw the same conclusions as for the equal

ate case above, namely, that each of the K servers is always busy

i.e., the number of customers in the system is equal to the num-

er of resources - servers) and no customers are in the queue,

.e., N 

∗ = K leading to each of them being just full. Let us cal- 

ulate BDP for this system. The BBandwidth is λmax and the no-

oad delay for traffic that flows through the k th server is 1/ μk 

o the average no-load delay is the fraction of the traffic served

y the k th server, ( μk /λmax ), times that delay summed over all

 which gives NLDelay = K/λmax ; hence we have BDP = K which

nce again shows that BDP = N 

∗. 

.3. K D / D /1 systems in series 

We investigate a chain of K D / D /1 systems in series as shown in

ig. 3 . 
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Fig. 3. K resources in series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The finite population with a single resource deterministic model. 
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3.3.1. K D / D /1 systems of equal capacity in series 

We first consider the case where each of the servers has equal

capacity , i.e., μk = μ for all k = 1 , 2 , . . . , K. We drive the system

with a deterministic input stream at the rate λ and so each node

in the series network sees a utilization factor of ρ = λ/μ. Clearly,

the time for a customer to pass through the entire series network,

T ( ρ) is K / μ seconds since there is no queueing in this deterministic

system (as before) and each customer spends exactly 1/ μ seconds

in each of K nodes. The normalization factor for the response time

is simply the no-load response time, namely T (0) = K/μ which, as

earlier is the same as T ( ρ) for all ρ ≤ 1. The profile for this case is

exactly the same as in Fig. 2 except that the vertical axis should

now be labeled T (ρ) /T (0) = (μ/K) T (ρ) instead of μT ( ρ), reflect-

ing the fact that customers must now pass through K nodes. Un-

surprisingly, we identify β as the optimal operating point again,

this being the point where we obtain maximum throughput ( μ
customers/sec) at minimum response time. We note at β that we

have, once again, kept each of the bottleneck pipes (servers) just

full, and no fuller , and that the number of customers in the system

is equal to the number of resources, namely, K , that is, N 

∗ = K; fur-

thermore, each D / D /1 system contains, on average, one customer,

i.e., N 

∗
k 

= 1 . Calculating BDP we see that the BBandwidth is μ and

the NLDelay is K / μ hence BDP = K and so, again, BDP = N 

∗. 

3.3.2. K D / D /1 systems of dissimilar capacity in series 

Now consider the non-uniform case where each server has its

own constant service rate, namely, the k th server has a rate μk .

This being a series network, all customers must visit each of the K

servers, so we must limit the input rate, λ, to assure that no server

has a utilization, ρk that exceeds unity. Let us identify the service

rate of the slowest server (and there may be more than one with

the same slowest rate) and label it μs ( μs ≤μk for all k ); this node

is clearly the bottleneck node of the network. Since we require

that ρk = λ/μk ≤ 1 for each node, then λ≤μs . We seek the op-

timum operating point, i.e., to maximize the throughput, λ, and so

we set λ = μs . We see that nodes with service rates greater than

the minimum μs will not be serving at their full capacity and so

will be busy only μs / μk of the time, thereby reducing the number

of customers in the system to less then K as opposed to the never-

idle case for the optimized uniform case. Importantly, the optimum

number of customers in the system has now been reduced from K

to 
∑ K 

k =1 μs /μk , that is, 

N 

∗ = 

K ∑ 

k =1 

μs /μk (3.1)

Once again, the same deterministic intuition applies, namely,

that we must “Keep the pipe just full, but no fuller” where the bot-

tleneck is the slowest node(s) in the series chain; the other nodes

are not bottlenecks and therefore are not the critical pipes about

which to be concerned. (The profile for this case, once again is

exactly the same as that shown in Fig. 2 except that the vertical

axis should now be labeled T (ρ) /T (0) = T (ρ) / 
∑ K 

k =1 1 /μk instead

of μT ( ρ) and the maximum achievable value for the average uti-

lization, ρmax , instead of reaching ρmax = 1 is ρmax = 

∑ K 
k =1 

μs /μk 
K .)

Calculating BDP we see that the BBandwidth is μs and NLDelay =
T (0) = 

∑ K 
k =1 1 /μk , hence BDP = μs 

∑ K 
k =1 1 /μk = N 

∗ again. 

3.3.3. The deterministic single resource finite population model 

Another manifestation that exposes the value of deterministic

reasoning is evident in the extension we now consider. The model,
hown in Fig. 4 (a), is that of a finite population of L users access-

ng a single server resource (denoted as R 1 ) in a cyclic fashion,

s in Section 4.11 of [13] as well as in [14] . We assume 1/ μ sec-

nds is the deterministic service time a customer spends being ser-

iced in the single server and that the deterministic time each user

pends in the “Thinking Resource” (which we denote by R 2 ) think-

ng up a new request for the single server (i.e., the classic notion

f thinking time ), is 1/ λ seconds. The system response time, T ( L ), is

efined as the time spent by a user in the cloud waiting for and

sing the server in this L-user system after that user has finished

hinking and has just requested service. Referring to Fig. 4 (b) we

ee in the top row the behavior for a single user ( L = 1 ) denoted

s “1” cycling through the system. We assume the cycle time for

 user is his/her thinking plus service time, i.e. 1 /λ + 1 /μ which

e denote by τmin . Note that if we begin to increase L , then we

an insert 5 more users (for a total of L = 6 users) without “bump-

ng into” the first user when he comes back for his next service,

s can be seen in the middle row of Fig. 4 (b). That is, whenever

 user requests service, the server is always available to him, as if

hat server was his private resource; this is a perfect fit. If we in-

rease L beyond 6 as in the bottom row of Fig. 4 (b), we will cause

sers to wait in the queue until the now extended cycle time τ ,

nds. In this case, the critical number of users, which we denote

s the saturation number , L s is 6. It is easy to see that L s is sim-

ly the minimum cycle time, τmin divided by the service time 1/ μ,

hat is L s = 1 + μ/λ. In general, we see that this deterministic sys-

em model performs as if the first L s users appear as if they were

ollectively just one user and for each user beyond L s , the sys-

em response time increases by exactly one service time (i.e., by

/ μ seconds) and that user completely interferes with all the other

sers. As in our earlier observations, our ”Keep the pipe just full, but

o fuller” intuition suggests that we drive the system with exactly

 s customers (giving an always busy server and an always empty

ueue), thus achieving maximum throughput and no time wasted

ueueing (i.e., minimum T ( L )). 
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Fig. 5. Performance of the finite resource deterministic model. 

 

N  

n  

h  

fi  

i  

h  

t  

t  

t  

ρ  

t  

u  

n  

k  

m  

1

 

i  

b  

S  

(  

e  

c  

u  

S

Fig. 6. The finite resource deterministic queueing system. 
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This deterministic performance curve is shown in Fig. 5 (a).

ote, however, that this is not quite a B ( G ) vs G curve since L is

ot really a G function. Indeed, recall that in this Section 2 , we

ave chosen G = ρ, i.e., system utilization. The measure, ρ , for this

nite population model, is simply the fraction of the service capac-

ty of the service resource, R 1 that is utilized by our population. We

ave already established that L s is the maximum number of users

hat the system can support with no interference, and so we see

hat the relative efficiency ( ρ) of the server resource R 1 is the frac-

ion of time the resource is being used in a cycle, which is simply

= L/L s . If we plot ρ vs L , we obtain the curve in Fig. 5 (b). Note

hat at the point where L = L s we have that there is exactly one

ser in service (i.e., in the ”system” - the cloud) at all times, and

one in queue (all the rest are thinking) showing again that we are

eeping the pipe just full, but no fuller. Clearly, N 

∗ = 1 . Further-

ore, the BBandwidth is simply μ and the NLDelay in the cloud is

/ μ, hence, BDP = 1 . Once again we have BDP = N 

∗ = 1 . 

Looking at Figs. 5 (a) and (b), we can create a single plot elim-

nating L and mapping μT ( ρ) directly vs ρ . This produces Fig. 6

elow and we note that this is the same Fig. 2 that we saw in

ections 3.1 and 3.3 where β is again the optimal operating point

i.e., at the point of minimal μT ( ρ) and maximum ρ or, more gen-

rally, at the point of minimum B ( G ) and maximum G ). This pro-

ess of eliminating an intermediate variable (in this case, L ) will be

sed again when we discuss congestion control in the Internet in

ection 7.4 below. 
. Stochastic systems of flow 

In Section 3 , we have been considering deterministic systems

f flow. These considerations have led us to the dominant insight

hat we should “Keep the pipe just full, but no fuller”. This resulted

n operating the systems at their minimum B ( G ) and simultane-

usly at their maximum ( G ), which is the best we could hope

or. However, few systems are truly deterministic and so we now

sk what insights apply to stochastic systems of flow. Indeed, we

nd the remarkable and satisfying result that the deterministic in-

ight holds very well (exact in some cases and approximate in

thers). Stochastic behavior leads us to consider queueing systems

12] in which the arrival process and/or the service process is ran-

om. The key observation here is that we cannot drive the system

o utilizations that are as high as for the deterministic systems.

his is because the uncertainties in the arrival times and the ser-

ice times (and even in the path followed through the more com-

lex networks we consider below) create unpredictable bunching

f arrivals and variations in service times; this causes interference

mong the objects moving through the system and increases wait-

ng times even when the system is not fully loaded. As a result,

e find that the loads must be backed-off from the maximum so

s to reduce the additional waiting times (reducing B ( G )) due to

tochastic behavior while at the same time lowering the efficiency

 G ). This suggests that we need a more sophisticated balancing of

 ( G ) and G . 

Our journey here begins, as in Section 1 , with the considera-

ion of a plot of B ( G ) vs G . The key observation is that the typi-

al performance function for stochastic systems is not as simple as

hat shown in Fig. 1 (a) but rather typically looks like that shown

n Fig. 7 . Here we plot the generic performance curve B ( G ) vs G

instead of μT ( ρ) vs ρ) in order to prove a theorem ( Theorem 5.1 )

ith great applicability. 

As earlier, we seek an “optimum” operating point for the pro-

le in Fig. 7 . Looking at this Figure, one wonders if it is better to

perate at the point α where we get lots of ”good” G while paying

he price of lots of ”bad” B ( G ), or conversely, at the point γ where

he reverse is true, i.e., getting little ”good” G and incurring only a

ittle “bad” B ( G ). Somehow, we would like to identify the intuitive

knee” of the curve to help us with this trade-off when the knee is

ot clearly evident. This tradeoff was not in question for Fig. 1 (a)

ince the “knee” of the curve was readily apparent at the point β
n that figure. So how can we handle this tradeoff for more general

ases? 
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Fig. 7. Stochastic systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Minimum slope is maximum Power. 
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5. Power functions 

To resolve this tradeoff, we introduce a performance metric,

called Power , which we will use to mathematically (and therefore

precisely) identify the knee of the curve. Specifically, we define

Power, P ( G ), as the ratio of G divided by the function B ( G ), namely,

goodness divided by badness 11 . Our objective is to find that value

of G which achieves maximum Power, i.e., to optimize the tradeoff

between maximizing G while minimizing the risks that come due

to the system behavior B ( G ) 12 . 

Our Power definition below has the attractive property that it

leads to intuitive rules of thumb that are totally consistent with

the deterministic reasoning we explored in Section 3 . Specifically,

Power leads to the same intuition that the optimal load on the

system is to drive it to ”Keep the pipe just full, but no fuller” by

choosing it to be the BDP , i.e., such that the average number in the

system should be less than or equal to the number of resources in

the pipe. 

5.1. The basic form for Power 

We define Power, P(G), as 

P (G ) = 

G 

B (G ) 
(5.1)

First, let us assume that B ( G ) is differentiable and convex with

respect to G and that B ( G ) > 0 for G ≥ 0. To obtain maximum Power,

we differentiate to find 

dP (G ) 

dG 

= 

G 

dB (G ) 
dG 

− B (G ) 

B 

2 (G ) 

Setting this to zero we find the condition for maximum Power to

be: 

dB (G ) 

dG 

= 

B (G ) 

G 

(5.2)

Let us interpret this condition. We first note that a straight line out

of the origin of the [ G, B ( G )] plane that passes through any point,

say [ G 1 , B ( G 1 )], has a slope equal to B ( G 1 )/ G 1 as shown in Fig. 8 (a).

The value of the slope to any point [ G 1 , B ( G 1 )] is thus seen to be

1/ P ( G 1 ), and so to find the value of G which maximizes P ( G ), we

need simply to find that point on the function B ( G ) for which a

line out of the origin to B ( G ) has a slope which is minimized . This

optimum point occurs at G = G 

∗ where the line out of the origin to
11 We explore a more generalized definition of Power in the Appendix. 
12 Note that optimizing Power has application to any field of study well beyond 

those addressed herein. 

 

t  

a  

w  

i

he point [ G 

∗, B ( G 

∗)] is tangent to B ( G ) as shown in Fig. 8 (b). We

lso observe that this satisfies the optimality condition given in Eq.

3), i.e., that the slope of B ( G ) at G 

∗ is equal to the slope of a line

ut of the origin to the point [ G 

∗, B ( G 

∗)]. 

If, however, we drop the requirement that B ( G ) be convex, it is

ossible for this last condition (i.e., Eq. 5.2 ) to hold at some point

 1 and not maximize Power; an example is shown in Fig. 9 (a)

here there are two points G 1 and G 

∗ that satisfy Eq. 5.2 ; in this

ase the point β at G 

∗ with minimum slope identifies the opti-

um. 

Let us now drop the requirement that B ( G ) be differentiable and

onvex. In fact, B ( G ) need not have any properties beyond B ( G ) > 0;

hat is, it need not be differentiable nor continuous nor convex,

tc. In this case, our key observation above still holds, namely, that

he slope of a line out of the origin to any point G 1 is seen to

e 1/ P ( G 1 ), and so to find the value of G which maximizes P ( G ),

e need simply to find that point on the function B ( G ) for which

he slope of this line, 1/ P ( G ), is minimized. An example of such

 situation is shown in Fig. 9 (b), where G 

∗ is the optimal power

oint. 

Now let us consider the limiting case of B ( G ) as G → ∞ . If, in

his limit, B ( G ) < ∞ , then the optimum G 

∗ occurs for G → ∞ since

 line out of the origin touching this finite limiting value of B(G)

ill have slope → 0 and the limiting value of P ( G ) will approach

nfinity. 
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Fig. 9. Finding the optimum operating Point G ∗ . 
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13 The ratio throughput to response time was first introduced as a measure of 

power by Giessler, et al. [15] ; however note our Power definition in Eq. (5.1) is 

far more general and that the more specific version of Power we introduced in 

Eq. (6.1) is a ratio of normalized quantities which provides a metric that lends it- 

self better to optimization [16] . 
Further, and trivially, we see that the optimum operating point

e found for the deterministic systems in Section 3 also corre-

ponds to optimal power (the slope of a line out of the origin is

inimized at the point ρ∗ = 1 ). 

We can now state the following: 

heorem 5.1 (Basic Power Theorem) . For a convex and differentiable

 ( G ) > 0 defined for G ≥ 0, the Power, P ( G ), is maximized at that value

f G, namely, G 

∗, for which a straight line out of the origin is tan-

ent to B ( G ) . The analytic condition for finding this point is simply

q. (5.2) above, namely, 

dB (G ) 

dG 

∣∣∣
G = G ∗

= 

B (G ) 

G 

∣∣∣
G = G ∗

More generally, for any B ( G ) for which B ( G ) > 0 in the range G ≥ 0,

hen P ( G ) is maximized at that value of G, namely, G 

∗, for which the

lope of a straight line out of the origin to B ( G 

∗) is minimized. 

Now what does the metric Power have to say about our intu-

tive result, ”Keep the pipe just full, but no fuller”. We address this by

tudying some specific queueing systems as examples of stochastic

ystems of flow in the next sections. 

. Using the power metric for queueing systems 

In this section we determine the optimal operating point for a

umber of queueing system configurations. The optimization met-

ic we use is Power. We show for all M / G /1 systems that BDP =
 

∗ = 1 at optimization. For some other systems, we show that the

ptimized average number in system, N 

∗, is typically less than or

qual to the number of resources in the pipe. 

Once again we set G = ρ and B (G ) = μT (ρ) . In this case we

ee that Power is expressed as the ratio of efficiency to normalized

esponse time, i.e., 

 (ρ) = ρ/μT (ρ) (6.1)

e will use this definition throughout the rest of this paper (and

ill introduce its generalization in the Appendix). 13 

Since P (ρ) = ρ/μT (ρ) and N = ρμT (ρ) , we see that 

 (ρ) = ρ2 / N (6.2) 

hich offers another expression for Power. 

Furthermore, since ρ ≤ 1 and μT ( ρ) ≥ 1 we conclude from

q. (6.1) that 

 (ρ) ≤ 1 (6.3) 

or all stable queueing systems. 

.1. The universal power profile 

As we have said, the plot of μT ( ρ) vs ρ is the common per-

ormance plot for queueing systems. Now that we have intro-

uced P ( ρ) as our important optimization metric, we find from

qs. (6.1) and (2.1) that, independent of the queueing system in-

olved , we can easily plot curves of constant power, P ( ρ), as well as

urves of constant average number in system, N , on the μT ( ρ) vs

axes as shown in Fig. 10 (a). On this plot we note that a curve of

onstant power, say P 0 , is simply a (dashed) straight line out of the

rigin of slope 1/ P 0 since from Eq. (6.1) we have μT (ρ) = ρ/P 0 ;

hese are shown in Fig. 10 (a) for the sample values P 0 = 1.0, 0.9,

.8, ... , 0.1. In addition, since for any particular average number in

ystem, say N 0 , we note from Eq. (2.1) that μT (ρ) = N 0 /ρ allow-

ng us to plot the family of hyperbola as (solid) curves in Fig. 10 (a);

e show these for a sample set of values, namely, N 0 = 1/10, 1/4,

/2, 3/4, 1, 4/3, 2 and 4. 

We now introduce the inverse of the normalized response time,

amely, the function T (0)/ T ( ρ) (which we often write as 1/ μT ( ρ)

hen there is no ambiguity). When plotted against ρ , we conve-

iently find that the range of this function is fully contained in the

1 × 1] unit square as shown in Fig. 10 (b) where we have plotted

urves of constant Power and curves of constant N for essentially

he same set of values as in Fig. 10 (a). We refer to this canonical

lot of 1/ μT ( ρ) versus ρ as The Universal Power Profile . As above,

hese curves are independent of the queueing system involved. In

his case we note the dual situation to that of Fig. 10 (a) in that

he curves of constant power are now hyperbola (since for any P 0 ,

 /μT (ρ) = P 0 /ρ shown as dashed lines) and curves of constant N 

re now straight lines out of the origin (since for any particular av-

rage number in system, say N 0 , 1 /μT (ρ) = ρ/ N 0 shown as solid

ines). 

For consistency, in both parts of Fig. 10 we have shown the

onstant Power curves as dashed lines and the constant N curves

s solid lines. Let us observe in Fig. 10 (a), that at ρ = 1 , the con-

tant Power curves intersect the vertical axis at 1/ P 0 and the con-

tant N curves intersect this vertical axis at N 0 . This situation is

eversed for the Universal Power Profile in Fig. 10 (b) in that at

= 1 the constant Power curves intersect the vertical axis at P 
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Fig. 10. Performance curves for any single server queueing system. 
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and the constant N curves intersect the vertical axis at 1 / N 0 . How-

ever, in this normalized inverse case of the Universal Power Profile,

we have in addition that the constant Power curves intersect the

line 1 /μT (ρ) = 1 at ρ = P 0 and the constant N curves intersect the

line 1 /μT (ρ) = 1 at ρ = N 0 . Another advantage of the Universal

Power Profile is that we can see the full range of P and N curves

in the compact region of the [1x1] plot whereas in the ordinary

plot of μT ( ρ) vs ρ , the upper limit of the vertical axis shown will

limit the visibility of large values of N (note that for these queue-

ing systems, we need only consider P ( ρ) ≤ 1 as seen in Eq. (6.3) ). 

Given our discussion earlier for deterministic systems, we note

that β , the optimal deterministic operating point for our systems,

is easily located on both plots of Fig. 10 . Specifically, β is identi-

fied with the point N 

∗ = 1 and ρ∗ = 1 (where also P (ρ) = 1 and

μT (ρ) = 1 ) as shown in both parts of the Figure. In addition, for

all single resource systems, we have that BDP = 1 . 

Once we apply both plots in Fig. 10 to a given class of queueing

systems (as for example in Section 6.3 for M / G /1), we can plot the

actual 1/ μT ( ρ) vs ρ curves to investigate the behavior of that class.

6.2. The M / M /1 queueing system 

We begin by applying the Power metric to the classic queueing

system M / M /1 [12] . 

For M / M /1, we know that μT (ρ) = 1 / (1 − ρ) . Thus,

d μT (ρ) /d ρ = 1 / (1 − ρ) 2 . Applying Eq. (5.2) , we see that op-

timal Power occurs for that ρ which satisfies ρ = 1 − ρ, i.e.,
= 0 . 5 . That is, the maximum Power occurs at the point G 

∗,

here G 

∗ = ρ∗ = 0 . 5 . In addition, at maximum Power, μT (0.5) =
 = 2 μT (0). Thus, for M / M /1, the optimum Power point occurs at

alf the maximum efficiency and twice the minimum normalized

esponse time. Moreover, the maximum Power is 1/4. Further-

ore, we know for M / M /1 that N , the average number in system,

s given by N = ρ/ (1 − ρ) . Hence, at optimality, we see that N 

∗ = 1 .

hus, we have the key result for M / M /1 

 

∗ = 1 (6.4)

nd ρ∗ = 0 . 5 . Furthermore, the BBandwidth is simply μ and the

LDelay is the average service time 1/ μ; hence, BDP = 1 . Once

gain we have BDP = N 

∗ = 1 . This result in Eq. (6.4) is especially

leasing since, as we saw from Section 3 , our deterministic reason-

ng of “Keep the pipe just full, but no fuller” suggests that we keep

xactly one person in the system in order to maximize efficiency

the single server is always busy) while minimizing response time

no one is on queue wasting time). However, we cannot control

he M / M /1 system deterministically (it is a stochastic system), and

o this optimum Power result says that for M / M /1, control the in-

ut rate so as to keep one person in the system on average ; oc-

asionally, there will be more than one in system which adds ad-

itional (wasted) response time and occasionally there will be no

ne in the system which reduces efficiency, but by setting the aver-

ge number in system = 1, we are doing the best possible . From now

n, we will imply, but usually omit, the additional phrase on aver-

ge to our intuitive rule “Keep the pipe just full on average, and no

uller”. These results for M / M /1 were first shown by the author [2] .

Another way to think about these results is as follows. We rec-

gnize that in a pure deterministic system, we keep exactly one

erson in the system in order to maximize Power (i.e. ρ = 1 giv-

ng 100% utilization of the server and no one ever in the queue

asting time). However, in a stochastic system, we must account

or fluctuations which cause queues to form, and to ameliorate the

aste due to these queues, we allocate some residual system ca-

acity to absorb the random fluctuations (this is the “Balance of

ower Principle” for Pareto optimal power as articulated by Yemini

17] ). In the case of M / M /1 we just found it optimal (with regard to

ower) to load the server at only 50% efficiency, leaving the other

0% to absorb the stochastic fluctuations. We will see this numer-

us times below where we find it optimal to back off from the

00% utilization that optimizes pure deterministic systems and ac-

ept lower utilization of bottleneck resources to ameliorate the ef-

ects of stochastic traffic, while at the same time accepting some

dditional response time. 

.3. The M / G /1 queueing system 

We now extend our analysis to the more general M / G /1 queue-

ng system [12] . As in Sections 2 and 6 we set G = ρ and B (G ) =
T (ρ) . We will now apply the results of Section 5.1 to M / G /1. We

now from Eq. (5.71) of [12] that μT (ρ) = 1 + 

ρ(1+ C 2 
b 
) 

2(1 −ρ) 
where C b 

s the coefficient of variation for the service time (i.e., the ser-

ice time standard deviation divided by its mean). Preparing to ap-

ly Theorem 5.1 , we observe that d μT (ρ) /d ρ = 

1+ C 2 
b 

2(1 −ρ) 2 
and that

T (ρ) /ρ = 1 /ρ + 

1+ C 2 
b 

2(1 −ρ) 
. Equating these last two as the condi-

ion for optimality, we see that maximum Power occurs at that

, namely ρ∗, which satisfies 1 = 

ρ∗2 (1+ C 2 
b 
) 

2(1 −ρ∗) 2 
. Now recall that N =

μT (ρ) and using ρ∗ in this expression for N produces N 

∗ = 1

s the condition for optimal Power for all M/G/1 queueing systems !

his interesting result for M / G /1 was first shown by the author in

3] . Once again, we see that our deterministic reasoning of ”Keep

he pipe just full, and no fuller”, leads us to obtaining optimal Power
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Fig. 11. The queueing system M / G /1. 
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y running the system at a level such that the optimal average

umber in system, N 

∗, is exactly equal to 1, i.e., 

 

∗ = 1 f or M/G/ 1 (6.5)

ust as for D / D /1 and M / M /1, the BBandwidth is clearly μ and the

LDelay is T (0) = 1 /mu, hence BDP = 1 = N 

∗. 

Moreover, as shown in [3] , the optimal load, ρ∗, is 

∗ = 

1 

1 + 

√ 

(1 + C 2 
b 
) / 2 

f or M/G/ 1 (6.6) 

s noted earlier, with stochastic systems, at optimality, we must

llocate some residual capacity, 1 − ρ∗, to absorb the stochastic

uctuations, and for M / G /1 we see that this allocation of 1 − ρ∗

anges from 

√ 

2 − 1 = 0 . 414 (when C 2 
b 

= 0 , i.e., M / D /1) to 0.5 (when

 

2 
b 

= 1 , i.e., M / M /1), to 1 (when C 2 
b 

= ∞ ). This basic results in this

aragraph are generalized in Appendix B. 

Let us now examine the performance of the M / G /1 system

y filling in its behavior on the plot we showed in Fig. 10 (a)

we choose not to clutter this figure with the full set of curves

rom Fig. 10 (a) - specifically, we only need N 

∗ = 1 ); this gives us

ig. 11 (a) in which we show μT ( ρ) vs ρ for a number of M / G /1

ases (i.e., C 2 
b 

= 0 which is M / D /1, C 2 
b 

= 1 which is M / M /1, and oth-

rs up to C 2 
b 

= 32 ). We show the tangent out of the origin which

ocates the optimum operating point 14 for each of these curves
14 We denote these optimal operating points as βC 2 
b 
. 

t  

P  

r  
nd the locus of these optimal points is exactly at N 

∗ = 1 as just

roven. Note, as with M / M /1, that the optimum has moved from

he deterministic optimum at point β to the set of points { β
C 2 

b 
} in

he interior of the diagram at various values of ρ and μT ( ρ), but

till maintaining the value of N 

∗ = 1 . This is interesting and elabo-

ated upon in the next paragraph. 

We now examine the performance of M / G /1 on the Universal

ower Profile of Fig. 10 (b) giving us Fig. 11 (b) in which we show

/ μT ( ρ) as curved solid lines and P ( ρ) as thin concave solid curves.

nce again, in order to reduce any possible clutter, we show only

 

∗ = 1 and a smaller number of power curves than we did in

ig. 10 (b). Note that maximum Power occurs for a set of points

hat lie on the line f (ρ) = ρ shown as a linear heavy solid line at

nit slope. This follows since, as we noted above, N = ρμT (ρ) and

f we set N = 1 in this last equation, we see that the intersection

f 1 /μT (ρ) = ρ occurs at N = 1 . That is, once again we see that

he optimum occurs at N 

∗ = 1 . Observe that β is the optimal oper-

ting point for the deterministic case of D / D /1, but that for M / G /1

e find { β
C 2 

b 
}, the set of optimal operating points, moving down

he line f (y ) = ρ as C 2 
b 

grows. Note well that all of the optimal

perating points lie on the line N 

∗ = 1 and so we may refer to

his line, N 

∗ = 1 , as the “Optimal Power Trajectory”. As we have

emarked, the best one can hope for is to operate at the determin-

stic point μT (ρ) = 1 and ρ = 1 , but as the stochastic component

ncreases (in the case of M / G /1 as C 2 
b 

grows), we must leave more

nd more capacity (i.e., lower utilization ρ while incurring more

elay μT ( ρ)) to allow the system to absorb the fluctuations. The

oint to be made is that, wherever we are on the Optimal Power

rajectory, we always maintain N 

∗ = 1 ( “Keep the pipe just full, and

o fuller”). And, this intuition comes right out of our deterministic

easoning supported by the BDP . 

Let’s examine this M / G /1 Universal Power Profile plot a bit fur-

her. We define y (ρ) = 1 /μT (ρ) . First we show that y ( ρ) is sym-

etrical around the line f (ρ) = ρ . This requires that ρ = y (y (ρ))

nd this is easily established from the expression for y (ρ) =
2(1 −ρ) 

2(1 −ρ)+ ρ(1+ C 2 
b 
) 
. Further, we recall from Section 6.1 that Power on

his plot is a set of hyperbolas (shown as dashed lines), each for a

onstant value of Power (i.e., 1 /μT (ρ) = P 0 /ρ). By definition, these

yperbolas are clearly symmetrical about the line f (ρ) = ρ . For a

iven y ( ρ), one seeks that constant Power curve (dashed hyper-

ola) of maximum value with which y ( ρ) intersects. Since both

unctions are symmetric about the line f (ρ) = ρ this will be a

oint of tangency (at a slope of −1 ) and will provide maximum

ower, which, as was stated above, will lie on the line f (ρ) = ρ
hich we have shown is the line N 

∗ = 1 . 

.4. The G / M /1 queueing system 

The queueing system G / M /1 does not enjoy the canonic proper-

ies of the M / G /1 system. That is, we no longer find that the opti-

al Power point occurs when N = 1 as we did for all M / G /1 sys-

ems. However, we do find intuitive results similar to our earlier

ntuition which warns us about pumping too much traffic into the

ipe’s bottleneck, i.e., we find for a large class of G / M /1 systems

hat N 

∗ ≤ 1 . 

We begin by looking at a class of G / M /1 systems in which C a 
2 ,

he coefficient of variation of the interarrival time, satisfies C a 
2 ≤ 1.

his is the class of systems where the interarrival time distribution

s a k -stage Erlangian distribution [12] . In particular, it is shown

n [16] for all k -stage Erlangian distributions, that 0 . 796 ≤ N 

∗ ≤ 1 . 0

ith N 

∗ = 1 for k = 1 (which is equivalent to M / M /1) and decreas-

ng monotonically to N 

∗ = 0 . 796 as k → ∞ (which is equivalent

o D / M /1). Thus we see that N 

∗ hovers near N 

∗ = 1 ; apparently the

ower metric is more sensitive to the stochastic behavior of the ar-

ivals than it is to the stochastic behavior of the service times, but
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Fig. 12. Optimality for the queueing system E 2 / M /1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The queueing system M / M / K . 

Fig. 14. The optimum number in system is approximately K for M / M / K . 
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p  

n  
similarly drops the load (reducing the system efficiency) to avoid

potential queue buildups. By way of illustration, we show an exam-

ple of a G / M /1 system that behaves approximately as does M / G /1.

Specifically, our example is the E 2 / M /1 system described in Prob-

lem 6.2 of [12] . We find N 

∗ = 0 . 890 as the condition for optimal

Power. Of special note is how close to our earlier M / G /1 optimal

value of N 

∗ = 1 is this case. In Fig. 12 , we show the usual Power

Profile for this E 2 / M /1 system. Note that the optimum, denoted by

the label β , is close, but not (as earlier) at, the intersection of ρ
and 1/ μT ( ρ). 

Let us now look at G / M /1 systems in which C a 
2 ≥ 1. Such a class

includes the Hyperexponential interarrival time distribution [12] .

In [16] , it is shown for a class of Hyperexponential distributions,

that as C a 
2 → ∞ , then N 

∗ → 0. Again we suspect this is the effect

of the Power metric responding to the potential queue buildups as

C a grows. It is worthwhile to note that N 

∗ ≤ 1 for these G / M /1 sys-

tems which supports the “... but no fuller” portion of our intuitive

conclusions. 

6.5. The M / M / K queueing system 

As a further extension, let us extend this concept of “Keep the

pipe just full, and no fuller” by looking at the multiple server system

M / M / K [12] . As usual, we set G = ρ and B (G ) = μT (ρ) . 

The limiting behavior of μT ( ρ) vs ρ for M / M / K as K → ∞ is the

same as the behavior of D/D/1 as was shown in [3] . This behav-

ior is shown in Fig. 13 (a). Moreover, we see from Fig. 13 (b) that as

K increases, the optimum Power occurs at an increasing value of

ρ which suggests that the optimum N 

∗ is also increasing with K .

Specifically, we see from [3] as shown in Fig. 14 below, that at op-

timum Power, there are, on average, approximately K customers in

the system (one for each server), i.e., N 

∗ ≈ K , but also N 

∗ ≤ K once

again supporting “Keep the pipe just full, but no fuller” where the

pipe consists of K servers, each of which is busy serving approx-

imately one customer on average (and no “extra” customers are

wasting their time waiting in the queue). 

6.6. Summary for the power metric for queueing systems 

The overwhelming intuition we extract from this Section 6 is

that optimizing Power leads to the same deterministic intuition as

earlier, namely that the optimal load on the system drives it to

“Keep the pipe just full, but no fuller” by choosing N 

∗ to be the BDP

(which results in N 

∗ typically being less than or equal to the num-

ber of resources in the pipe). In addition, we introduced the Uni-

versal Power Profile and the Optimal Power Trajectory as tools of
reat generality in the study and evaluation of stochastic systems

f flow. 

. Applications to optimization of networks 

Let us now extend our use of Power to find optimum operating

oints for networks with stochastic traffic. By networks, we mean

etworks of queues, i.e., systems of more than one service station,
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Fig. 15. Performance of the finite resource stochastic model. 

Fig. 16. The finite resource queueing system. 
e it in a parallel network 15 , a finite population network, a series

etwork, or a more general network of arbitrary topology. The se-

ies networks discussed in Section 7.2 below are of special interest

o our later discussion in Section 7.4 on Internet congestion con-

rol since an Internet TCP connection can be modeled as a path of

inks in series between the source and destination nodes of that

nternet connection. 

As usual in these systems of flow, we set G = ρ and B (G ) =
 (ρ) /T (0) , the normalized average response time for data to tra-

erse the network. In these networks, the normalization constant

e use is T (0) which is the average time to traverse the network

hen no other traffic is in the network (i.e., the “no-load” response

ime); for each of the networks considered below, we will give ex-

licit expressions for T (0). 

In the case of networks below, we find we occasionally need to

istinguish between maximizing global network power and maxi-

izing the power of the individual flows. In addition we will dis-

uss the issue of whether we can control all the flows in the net-

ork or if the flows act on their own. These issues add consider-

ble complexity to the discussion. 

.1. The stochastic finite population model 

This discussion of finite population networks is of limited im-

ortance for us, but we include it to expose the way in which these

etworks reinforce our continuing theme of the value of determin-

stic reasoning and its affirmation of the rule of thumb “Keep the

ipe Just Full, But No Fuller”. 

We now return to the single resource finite population model of

ection 3.3.3 shown earlier in Fig. 4 (a), but this time we consider

 stochastic system in which the service times are exponentially

istributed with the same mean as earlier, namely 1/ μ seconds,

nd the thinking time is exponentially distributed with the same

ean as earlier, namely, 1/ λ seconds. The mean response time,

 ( L ), is defined as the mean time spent by a user in the cloud wait-

ng for and using the cloud server, R 1 , in this L-user system after

hat user has finished thinking and has requested service from the

loud shown. The deterministic system model of Section 3.3.3 gives

s a lower bound for μT ( L ) in this stochastic system, and that is

hown in Fig. 15 (a) as the dashed line whereas the true mean re-

ponse time for the stochastic system is shown as the solid line in

ig. 15 (a) (this curve was calculated using Eq. (4.65) from [13] for

hich the parameters were chosen as λ = 0 . 2 , μ = 1 . 0 and thus

 s = 6 ). We also plot the efficiency, ρ vs L in Fig. 15 (b) for these

ame parameters (where the dashed line is the deterministic ideal

pper bound case from Section 3.3.3 and the true efficiency is the

olid line). Our “Keep the pipe just full, but no fuller” intuition sug-

ests that we drive the system with the optimum value L ∗ in the

ange of L s customers (giving an almost busy server and an almost

mpty queue), but since the system is actually stochastic we expect

o load it below it’s saturation point (as discussed in Section 4 ),

hat is, we expect L ∗ < L s . As we did in Section 3.3.3 , we can cross-

lot the two graphs of Fig. 15 and create a single plot eliminating

 and mapping μT ( ρ) directly vs ρ; this is shown in Fig. 16 . 
15 We do not pursue parallel networks in this paper, but point to some of the re- 

ults in [18] and [19] which include the following. Consider a Poisson arrival stream 

t rate λ which splits into K streams, where the k th stream has rate λk = p k λ ac- 

ording to a given set of probabilities, p k . Each stream is served by its own par- 

llel server with mean service time x k . If the service time for each is exponen- 

ially distributed and if we scale λ to maximize Power for the system, we find that 
 K 
k =1 μs /μk ≤ N ∗ ≤ K where, as usual, μk is the service rate of the k th server and 

s is the slowest of the exponential servers. If the λk can be selected independently 

o maximize Power for the system, then N ∗ = K. On the other hand, if the service 

ime for each is of its own General type ( G ), and if ρk = ρ ∀ k , then optimum Power 

ives N ∗ = K. 

 

f  

d  

F  

t  

a  

p  

d  

w  

i

Unsurprisingly, it turns out that when we calculate the Power

or this stochastic system we find that the optimum Power point

oes actually result in L ∗ < L s ; indeed, for the example shown in

ig. 15 , we find that the optimum L ∗ ≈ 4 and this corresponds to

he tangent line out of the origin of Fig. 16 which occurs at ρ ≈ 0.6

nd identified by the optimal operating point β as usual. Most im-

ortantly, we find for this example our earlier intuition that the

eterministic optimum N 

∗ = 1 holds very well in this example for

hich we find the stochastic optimum N 

∗ ≈ 1 . As in the determin-

stic case in Section 3.3.3 , BDP = 1 . 
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7.2. Series networks 

As we stated above, the series networks discussed herein are of

special interest to our later discussion in Section 7.4 on Internet

congestion control since a single Internet TCP connection can be

modeled as a path of links in series between the source and desti-

nation nodes of that Internet connection. This discussion of series

networks is of value in modeling and optimizing the performance

of single flows over Internet connections. A summary of our find-

ings for series networks, as well as other related results is given in

Theorem 8.1 of Section 8 . 

7.2.1. The series network of K identical M / M /1 queueing systems 

We first consider a series network consisting of K identical

M / M /1 queueing systems in tandem, i.e, a stochastic version of the

series network considered in Section 3.3.1 . This system was con-

sidered in our previous paper [2] in which we assume each M / M /1

system is independent of the others (see the Independence As-

sumption of [12] ). ρ is, as usual, the efficiency of each queueing

system (and, due to them being identical, is also the efficiency

of the entire tandem system). The results for this network are

that optimal Power occurs at ρ∗ = 0 . 5 for each member of the K-

member chain and that N 

∗, the average number of customers in

the full chain, is 

N 

∗ = K (7.1)

and these K are uniformly distributed among the K members such

that for each member, say the k th member of the chain, the Power

optimal average number is N 

∗
k 

= 1 (as in Section 3.3.1 ). Once again,

we see that each node is an equivalent bottleneck, and so each

node satisfies “Keep the pipe just full, and no fuller”. The BBandwidth

is obviously μ and the NLDelay to pass through the chain is K / μ,

hence, BDP = K. Once again we have BDP = N 

∗ = K. 

7.2.2. The series network of K heterogeneous M / M /1 queueing 

systems 

Next we consider a series network consisting of K heteroge-

neous M/M/1 queueing systems in tandem, i.e., the k th server has

a mean service time of 1/ μk seconds; this is a stochastic version

of the series network considered in Section 3.3.2 . As shown in

[16] and [20] , we find that when Power is optimized, then N 

∗ ≤ K

and also N 

∗ = 

∑ K 
k =1 ( N 

∗
k 
) 2 where N 

∗
k 

is the Power optimized aver-

age number in the k th node of the tandem. Furthermore, in [16] it

is shown that 
∑ K 

k =1 μs /μk ≤ N 

∗ where μs is the rate of the slowest

server, i.e., μs ≤μk for all k . Thus, at optimal Power we see that N 

∗
is bounded above and below by 

K ∑ 

k =1 

μs 

μk 

≤ N 

∗ ≤ K (7.2)

The BBandwidth is simply μs and the NLDelay to pass through the

chain is 
∑ K 

k =1 1 /μk , hence, BDP = 

∑ K 
k =1 μs /μk . In this case we

have BDP ≤ N 

∗ ≤ K. 

7.2.3. The series network of K identical “M / D /1” queueing systems 

Again we consider K servers in series, the first of which is fed

with Poisson traffic, but now where the service time of each user is

constant (and identical) at each server. The first node is an M/D/1

queue, but the subsequent nodes are more complicated; we abuse

the notation and refer to this as a series of ”M / D /1” systems. In

[19] we show that 

N 

∗ = K (7.3)

This equation is true even though the average number in the

first member of the chain is considerably larger than the num-

ber in each of the subsequent members of the chain; specifically,
ll queueing occurs in the first node, and no queues form at any

odes beyond the first. We also note that the (Power) optimal load

or this system is ρ∗ = 

√ 

2 K 

1+ √ 

2 K 
. Here, as in both series systems with

dentical servers we studied above (i.e., the K D / D /1 systems of

ection 3.3.1 and the K M / M /1 systems of Section 7.2.1 ), we see

he full meaning of ”Keep the pipe just full, and no fuller” at optimal

ower, i.e., on average, as many customers are allowed in the tan-

em as there are nodes in the tandem (i.e., K ). The BBandwidth is μ
nd the NLDelay to pass through the chain is K / μ, hence, BDP = K.

nce again we have BDP = N 

∗ = K. 

.2.4. The series network of K heterogeneous M / D /1 queueing systems

Here again we consider K servers in series, the first of which is

ed with Poisson traffic, and where the service time of each user is

onstant at each server, but in this case, they need not be identical;

ence we refer to this as a heterogeneous system. Again, the first

ode is an M/D/1 queue and the subsequent nodes are more com-

licated. As in Section 7.2.2 , let us label the slowest server in the

hain as the “saturated” server and denote it by the subscript s and

hose average service time is 1/ μs . It was shown in [21–23] that

his series chain has a mean response time equal to the sum of
 K 
k =1 1 /μk for k 
 = s plus the response time of a single M/D/1 queue

ith a service time equal to the maximum of the service times of

he chain (i.e., with a service time = 1 /μs ); thus we see that 

 (ρ) = 

ρs 

2 μs (1 − ρs ) 
+ 

K ∑ 

k =1 

1 /μk (7.4)

For this system, we show in [19] that at maximum Power, we

ave 

 

∗ = 

K ∑ 

k =1 

μs 

μk 

≤ K (7.5)

he BBandwidth is the service rate of the slowest server, μs , and

he NLDelay to pass through the chain is 
∑ K 

k =1 1 /μk , hence, BDP =
 K 
k =1 μs /μk . In this case we have BDP = N 

∗ ≤ K. 

Note if we compare Eqs. (7.2) and (7.5) , we see that for the het-

rogenous cases, we have 

 

∗
M/D/ 1 ≤ N 

∗
M/M/ 1 (7.6)

hereas for identical cases ( Eqs. (7.1) and (7.3) ) we have that

 

∗
M/D/ 1 = N 

∗
M/M/ 1 = K, and, of course, for both identical cases we

ave BDP = N 

∗ = K. 

It is also interesting to see that whereas N 

∗ is independent

f the order of the individual nodes, the individual values for

 

∗
k 

do depend on their order (and although it is tempting from

q. (7.5) to think that N 

∗
k 

= μs /μk , it is not true). 

In this important case, we have the same guiding intuition,

Keep the pipe just full, and no fuller”. Note as well that whereas

ueueing systems in general can operate with N at very large num-

ers, our result in Eq. (7.5) shows that the Power optimal average

umber in system does not exceed the number of servers in the

ystem! Furthermore, since the message length does not change as

t travels along an Internet connection, this M / D /1 series network

s often used to model a TCP connection in today’s Internet which

e discuss below in Section 7.4 . 

.3. The general network of K heterogeneous M / M /1 queueing 

ystems 

A general computer network with K nodes was modeled and

nalyzed by the author in [24] and used to evaluate its perfor-

ance. The model used was a modification of Jackson networks

25] . The Power metric can be extended to this model as well, and

t can be shown [26] that maximizing Power based on the mean
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Fig. 17. Comparing BBR ( β), TCP ( α) and Power ( β ′ ). 
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esponse time of the network derived in [24] leads to the con-

istent conclusion that, if the traffic can be so arranged, then the

raffic at each node in the network should be chosen so that there

hould be an average of exactly one customer in each node, i.e.,

 

∗
k 

= 1 ; this also gives us that N 

∗ = K. Once again we see the deter-

inistic rule of thumb “Keep the pipe just full, but no fuller” where

ach node may be a bottleneck. However , it is not generally true

hat this traffic pattern can be achieved for an arbitrary network.

or the more realizable model where the traffic matrix is given

rather than designed as with [26] ), then in [16] , it is shown that

f we scale all traffic levels so as to optimize Power for the total

etwork, then N 

∗ = 

∑ K 
k =1 ( N 

∗
k 
) 2 and in particular, N 

∗ ≤ K, where K

s the number of links in the network, a result we have seen so

any times. 16 

Selecting a feasible set of Power optimum flows in a general

etwork is challenging. One approach to the problem is that pre-

ented in [17] in which is considered Pareto optimum allocations

f flow using the metric of Power which balances the individual

ains of a flow against the interference that flow may cause other

sers. We mentioned this approach earlier in Section 6.2 where we

aw the need to leave sufficient server capacity to absorb the fluc-

uations in the traffic. Another approach for general networks as

onsidered in [27] uses Nash Equilibrium as the greedy algorithm

or flow control formulated as a multi-user noncooperative game

nd it is shown that there exists an equilibrium set of Power opti-

ized (Nash) flows. 

.4. Internet congestion control 

The concept of optimal Power (and thus optimal traffic in the

ipe) is a natural metric for computer networks. Recently, the

oogle “make-TCP-fast” team [1] used the principle of optimum

ower to control of the amount of in-flight data as articulated in

2] and [3] to dramatically improve congestion control in the Inter-

et. 17 This is a TCP flow control algorithm from Google that they

all BBR (Bottleneck Bandwidth Round-trip propagation time). They

rovide a fine elucidation of the behavior of a (full-duplex) TCP

onnection in a network by recognizing that the behavior of that

onnection is the same 18 as a single link with the same round-

rip time and the same bottleneck bandwidth as has the connec-

ion itself. By using a deterministic model, they identify the bounds

n performance in terms of RTprop , the minimum round-trip time

o cycle the connection with no congestion, and BtlBW , the bot-

leneck bandwidth of the connection. They refer to the product

tlBW 

∗RTprop as the “pipe’s bandwidth-delay-product”; of course

his is the same as our BDP (except we consider the one-way Band-

idth Delay Product, which is easily converted to theirs). They

lot the round-trip time as well as the delivery rate, each versus

he amount of data in flight (as shown using two coupled graphs

n their Fig. 1 ). Their coupled plot is similar to the plot that we

resented as two separate plots in Figs. 15 (a) and (b). Here we

hoose to replot the information in their coupled graph onto a sin-

le graph of Round-Trip Time vs. Delivery Rate, (similar to what we

id to create the graph in Fig. 16 ) as shown in Fig. 17 ; the straight
16 The problem of finding optimal flow to minimize response time alone (this was 

efore the concept of Power was introduced) in these general networks was solved 

uch earlier and led to the Flow Deviation algorithm [28] . 
17 The reason that the early work of 40 years ago took so long to make its current 

mpact is because in [31] it was shown that the mechanism presented in [2] and 

3] could not be implemented in a decentralized algorithm. This delayed the appli- 

ation of Power until the recent work by the Google team in [1] demonstrated that 

he key elements of response time and bandwidth could indeed be estimated us- 

ng a distributed control loop sliding window spanning approximately 10 round-trip 

imes. 
18 As we commented in Section 7.2.4 , this equivalence derives from earlier work 

y [21] –[23] . 
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ine behavior is a consequence of their deterministic model, but

o show the qualitative performance of a stochastic connection, we

ave added the convex dashed line as the round-trip response time

urve. Note that this is a B ( G ) vs G plot where G = Delivery Rate (i.e.,

hroughput) and B ( G ) = Round-trip Time (i.e., response time). This

traight line plot is very much like the plot of K D / D /1 systems

n series shown above in Fig. 2 . From our usual considerations,

he optimal Power point is at the “knee” of the curve which, for

he deterministic case is located at the intersection of G = BtlBW 

nd B (G ) = RT prop, this point being denoted by β in Fig. 17 , as

e have used earlier to identify the location of the optimal de-

erministic Power point. At this maximal Power point, we get the

inimal Round-trip Time with the maximum Delivery Rate. This

oint also satisfies “Keep the pipe just full, and no fuller” by send-

ng exactly as many message units (packets in Internet terminol-

gy) as the pipe can hold without causing congestion. In [1] , it is

learly stated that many of the current loss-based congestion con-

rol versions (e.g., Reno [29] and Cubic [30] ) of the Internet’s TCP

rotocol tend to put excessive flow into the pipe and cause queues

o form at the bottleneck, thereby driving the flow away from the

oint β up to the point α which is an undesirable situation since

t leads to buffer bloat and/or packet loss. BBR , on the other hand,

ecognized the value of the Power optimization approach taken

n [2] and [3] which leads the system to operate at the point β .

owever, in reality, the flow has certain stochastic properties and

o the point β may be unattainable since the performance profile

ay look like the dashed curve in Fig. 17 (this is an example of

he performance profiles μT ( ρ) shown in Fig. 11 (a)). To find the

ptimal operating point in this case, we can revert back to the dis-

ussion in Theorem 5.1 and seek to find the appropriate tangent

o the dashed curve (or the line of minimum slope) to identify the

ptimal point as, for example in Fig. 17 at the point β ′ represent-

ng a point such as we saw in the Fig. 11 (a) profiles (in which ex-

mples of β ′ were shown as the points { β
C 2 

b 
}). This leaves us with

he need to develop an algorithm to find this point dynamically

n an operating network, an issue we discuss further below. The

asic ideas of the BBR algorithm are to: (i) track the windowed

aximum bandwidth and the minimum round-trip time on each

CK that gets returned to the source end of the link, to control the

ending rate based on the model; (ii) to sequentially probe for the

aximum bandwidth and minimum round-trip times to feed the

odel samples; (iii) to seek high throughput with small queues;

iv) to approach the maximum achievable throughput for random

osses less that 15%; and (v) to maintain small bounded queues in-

ependent of the depth of the buffers. 

Following the introduction of the BBR paper [1] in late 2016,

here has followed a continual flurry of discussions, papers and

ctive work in progress by the community on the BBR Develop-

ent site [4] which addresses improvements to [1] . The issues re-

olve around improving the dynamics of the flow rate algorithm
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so as to enhance fairness among multiple flows, prevent underuti-

lization, reduce high queueing delays and avoid packet loss. Let us

review some of these contributions/discussions. In May, 2017, Hus-

ton [11] was early to blog a lucid summary of the history of TCP

flow control algorithms 19 including Reno, Cubic, Vegas, and BBR

and then pointed out some issues with the first version of BBR

including unfairness among multiple flows (especially with differ-

ent TCP versions running). In July, 2017, the Google team provided

a specification [9] of their BBR congestion control algorithm v1.0

including an overview of the design and details of the algorithm.

Around the same time, Ma, et al. published some measurements

that showed a fairness issue related to competing flows with dif-

ferent round-trip times [5] . In October, 2017, Hock, et al. [6] , looked

deeper into the issue of multiple flows competing for a share of

the bottleneck link, confirming that BBR works well with a sin-

gle flow but that the behavior of multiple flows at the bottleneck

presents some challenges including unfairness among competing

flows along with increased delays with large buffers as well as

packet loss with small buffers; in addition, they summarize a num-

ber of approaches that have been made over the years to address

congestion control. A subsequent paper [7] by the same group in

October, 2017 offered their delay-based congestion control algo-

rithm, TCP LoLa, as their approach to limit queueing delay while

maintaining high utililization at the bottleneck link 20 as does BBR ,

but with the ability to provide flow rate fairness independent of

round-trip times of competing flows using a technique they call

“fair flow balancing”. The group at Google described their version

v2.0 of BBR in November, 2017 offering their effort s in the new

version to address reducing loss rate in shallow buffers, reducing

queueing delay, improving fairness, improving throughput on wifi,

cellular, cable networks with widespread ACK aggregation, and re-

ducing queueing and loss in data center networks with large num-

bers of flows; their slides and their presentation can be found at

[10] and [8] . Active progress continues to be made as reported in

[4] . 

8. Conclusion 

In this paper, we studied congestion control in networks by

generalizing our work in 1978 [2] and 1979 [3] and identified the

optimal amount of data ( N 

∗) to pump into a network connection.

By focusing on the performance metric Power , we identified the

Power-optimal operating point β (or, more realistically, β ′ ). Our

approach began with developing deterministic reasoning as a rule of

thumb which was confirmed in the stochastic flow case by consid-

erations of Power both of which are supported by the Bandwidth-

Delay Product BDP . 

Theorem 5.1 describes how to find the optimal power point.

When applied to queueing systems (which are models of Internet

traffic flow), this informs us as to how much traffic to pump into

the TCP connection to achieve optimality and drive us toward the

operating point β . The general rule of thumb that emerges is “Keep

the pipe just full, and no fuller”. We constructed a new diagram, the

Universal Power Profile, which allows one to see the performance

of any queueing system and, from that diagram, to define the Op-

timal Power Trajectory which identifies the location of the optimal

operating point as the input process changes in its level of stochas-

tic behavior (and for a large class of queueing systems, the trajec-

tory travels along the line N 

∗ = 1 ). 

In this paper, we showed a number of cases (e.g., the important

case of a series chain of K links of identical M / D /1 queueing sys-

tems - as in Section 7.2.3 ) in which N 

∗, the optimum number to
19 A detailed survey of the development of TCP published in 2010 can be found in 

[32] . 
20 Note how this implies using Power as a useful metric. 

 

 

B  

p  
lace in a pipe of length K (i.e., how much traffic to keep in flight)

s equal to the length of the pipe, i.e., N 

∗ = K. We also showed

hat N 

∗ = BDP which further confirms our intuitive reasoning. In

ther cases (e.g., the important case of a series chain of K links

f heterogeneous M / D /1 queueing systems - as in Section 7.2.4 ),

he optimum number to place in a pipe of length K was given by

he result in Eq. (7.5) , namely, N 

∗ = 

∑ K 
k =1 μs /μk ≤ K. Once again,

t turns out that N 

∗ = BDP . In this case, the reduction from K to

 

∗ allows the system to absorb some of the stochastic fluctuations

o which we referred earlier, and accounts for the convex dashed

ine behavior of the response time in Fig. 17 leading to the optimal

perating point β ′ . In all these cases, we observe that N 

∗/K ≤ 1

hich makes clear that the network connection should hardly ever

e driven into congestion! 

The relation between N 

∗, BDP and the pipe length K is remark-

bly simple and links together three key variables for our systems.

e summarize this relation in the following Theorem (proofs are

n Sections 3, 6.3 and 7.2 ): 

heorem 8.1. For all the systems considered below 

 

∗ = BDP (8.1)

• For D/D/1 and for all M/G/1 systems 

N 

∗ = 1 (8.2)

• For D/D/K and any series network of K identical D/D/1 systems or

of K identical M/M/1 systems or of K identical M/D/1 systems 

N 

∗ = K (8.3)

• For any series network of K heterogeneous D/D/1 systems or of K

heterogeneous M/D/1 systems 

N 

∗ = 

K ∑ 

k =1 

μs 

μk 

≤ K (8.4)

Note carefully, however, that our work focuses on the optimal

teady state operating point and does not address the design of an

lgorithm that tracks the dynamics of traffic that interferes with

ur connection. In this case we must track and adapt the allocation

f bandwidth and adjust the amount of data inflight to achieve

ptimal performance. It is this latter, more difficult problem, that

1,5–11] and its variations seek to solve. Based on the results of

heorem 5.1 we here suggest that one could build an algorithm

hat continually measures the tangent of B ( G ) (i.e, μT ( ρ)) at the

urrent operating point and then adapt the operating point ( N 

∗) so

hat the tangent intersects the origin of the [ B ( G ), G ] axes. 

ppendix A. Generalizations of the Power function 

Let us consider the following simple, but useful, generalization

f the definition of Power in Eq. (5.1) which we denote by P r ( G ): 

 r (G ) = 

G 

r 

B (G ) 
(A.1)

he reason for introducing this generalization of the basic Power

unction as given earlier in Eq. (5.1) is to account for the case

here one perhaps values G more than one deplores B ( G ) (i.e.,

 > 1), or vice-versa (i.e., r < 1). Assuming for the moment that B ( G )

s differentiable and convex, and following the same procedure as

n Section 5.1 above, we find the condition for maximum Power to

e: 

dB (G ) 

dG 

= 

rB (G ) 

G 

(A.2)

This says that the optimal G , say G 

∗, occurs when the slope of

 ( G ) at G 

∗ is r times the slope of a line out of the origin to the

oint [ G 

∗, B ( G 

∗)]. In Section 5.1 , this was easy to visualize since all
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w  
e had to do was to find the tangent with minimum slope; in this

eneralization it is not that simple. However, we do note that if we

lot B ( G ) vs G 

r , then, in these axes, the slope of a line out of the

rigin to the point [ G 

r , B ( G )] is B ( G )/ G 

r and this is exactly 1/ P r ( G ).

s usual, we wish to maximize P r ( G ), and so we desire to find the

ptimum G 

∗ for which this slope is a minimum. Thus we see that

lotting B ( G ) vs G 

r allows us to proceed as in Section 5.1 to find

he optimal operating point via a simple (minimum slope) tangent

o B ( G ) on these new axes. On the other hand, since P r ( G ) ≥ 0, then

aising P r ( G ) to any power does not change the location of its max-

mum. This observation offers another way to find the optimum

oint, G 

∗, namely, to plot B 1/ r ( G ) vs G . On these axes, the slope of

 line out of the origin to the point [ G, B 1/ r ( G )] is B 1/ r ( G )/ G and

his is exactly (1/ P r ( G )) 1/ r . In this case, if we find the point G 

∗ for

hich this slope is a minimum, then we have found the point of

aximum P r ( G ). In some cases, it might well be more convenient

o consider this plot to find the optimum. 

We further observe that if we do not require any condition on

 ( G ) beyond B ( G ) > 0 as earlier in Section 5.1 (e.g., it need be nei-

her differentiable nor continuous nor convex), then this construct

f locating the point G 

∗ for which the slope of a line out of the ori-

in to point G 

∗ is a minimum, will still identify the point of maxi-

um Power. 

One could suggest that another generalized Power might be

 

P (G ) = 

G 
[ B (G )] s 

but this will lead to no more generality than given

n Eq. (A.1) since we could set s = 1 /r, raise the full expression

o the r th power (and not affect where the maximum Power is

btained since, as above, s P ( G ) ≥ 0) and obtain the same expres-

ion as in Eq. (A.1) . Similarly, were one to suggest s P q (G ) = 

G q 

[ B (G )] s 

e find by substituting s = q/r and raising the full expression to

he ( r / q )th power, that once again we have Eq. (A.1) which shows

hat we have no more generality. Thus, the generalized Power in

q. (A.1) is quite general. 21 

Generalized Power P r ( G ) given in Eq. (A.1) was first introduced

ears ago in [3] and it was applied to M / M /1 and M / G /1 queueing

ystems. For M / M /1, the following intriguing Theorem was proven:

heorem 9.1. For the M/M/1 queueing system, generalized Power (as

efined in Eq. (A.1) ) is maximized when 

 

∗ = r (A.3) 

∗ = 

r 

r + 1 

(A.4) 

As compared to the case r = 1 , when r > 1 the increase in N 

∗
nd ρ∗ as r increases is consistent with our valuing efficiency more

han deploring delay in that we are now willing to load the system

ore heavily (higher efficiency) at the expense of more delay; that

s, we are willing to “Keep the pipe fuller” as r increases. The con-

erse statements apply for r < 1. For M / G /1, we do not enjoy the

ame simple results as we do for M / M /1 in Eqs. (A.3) and (A.4) ,

ut in [3] explicit expressions for N 

∗ and ρ∗ were given in his The-

rems 6.2 and 6.4 respectively. 

Generalized Power P r ( G ) for a series chain of K M / M /1 queueing

odes was examined in [20] and again in [16] . It was shown that

 

∗ = Kr f or identical nodes (A.5) 

 

∗ ≤ Kr f or heterogeneous nodes (A.6) 

nce again showing the “Keep the pipe fuller” intuition as r in-

reases. 
21 Certainly one could introduce a yet more general Power function such as 

f (G ) P h (B (G ) (G ) = 

f (G ) 
h (B (G )) 

to gain more flexibility, but we choose not to address that 

n this paper. 

i

N

O  

f

Just as was found in [16] for the general network of K het-

rogeneous M / M /1 queueing systems discussed in Section 7.3 for

 = 1 that N 

∗ ≤ K, it was also found there that when using gener-

lized Power (arbitrary r > 0) that the result is N 

∗ ≤ Kr . Further, for

he case of identical network nodes, each of the K nodes behaves

ndividually as in Eqs., (A.3) and (A.4) , i.e., we have N 

∗
k 

= r and
∗
k 

= 

r 
r+1 ; in this case, once again we have N 

∗ = Kr. Gail [16] also

onsiders a number of other network configurations for general-

zed Power. 

One additional generalization of Power was introduced in [3] in

hich we included the negative effect of blocking in queueing and

etwork systems that endure loss of arrivals when there is limited

torage space in the queue. Let us define p B as the blocking prob-

bility that an arriving message is rejected by the system due to

uffer overflow. In this case we define Power, P [ p B ] (G ) , as 

 [ p B ] (G ) = 

G (1 − p B ) 

B ( G ) 
(A.7) 

his metric, P [ p B ] (G ), was applied in [3] to a number of combined

oss and delay systems. In addition, in that paper, cases of pure

oss were also considered; for these, the metric was defined as

n Eq. (A.7) but without the denominator B ( G ). Of course, one

ould add the effect of loss to the generalized power given in

q. (A.1) and define a mixed generalized power function, which we

enote as P [ p B ] ,r (G ) , to be 

 [ p B ] ,r (G ) = 

G 

r (1 − p B ) 

B ( G ) 
(A.8) 

ppendix B. The ZAP Approximation - Beyond M / G /1 

In [33] , the ZAP approximation was introduced as a family of

esponse time functions to represent the performance of various

ystems of flow. Here we follow that approach and consider the

ollowing three-parameter expression for T ( ρ), 

 (ρ) = A 

Z − ρ

P − ρ
(B-1) 

here Z, A , and P are constants to be selected with the following

onstraints: A > 0, P > 0 and Z > P or Z < 0. Z represents a ”zero” of

 ( ρ) whereas P represents a ”pole”. Since we have been consider-

ng normalized response time functions, we note that T (0) = AZ/P 

nd then form the following: 

T (ρ) 

T (0) 
= 

P 

Z 

Z − ρ

P − ρ
(B-2) 

ote that A has dropped out of this expression. If we interpret

 ( ρ)/ T (0) as a normalized response time, then the range of interest

s for ρ is 0 ≤ρ < P . Looking at the M / G /1 expression for μT ( ρ) at

he beginning of Section 6.3 , we see that M / G /1 is a special case of

AP with P = 1 and Z = 2 / (1 − C 2 
b 
) . 

Let us optimize Power for the ZAP expression given in

q. (B.2) in the range of interest. This is easily done by show-

ng that its second derivative with respect to ρ in this range is

on-negative and is therefore convex. Then we apply the result of

heorem 5.1 to find the optimal value of G 

∗ which in our case is
∗ and is given by 

∗ = Z −
√ 

Z 
√ 

Z − P (B-3) 

t is easy to prove that 0 ≤ρ∗ < P . 

To find the Power-optimized number in system, N 

∗, as earlier

e use Little’s Result ( Eq. (2.1) ), namely N = ρT (ρ) /T (0) , and plug

n ρ∗ from Eq. (B.3) to obtain the interesting result that 

 

∗ = P (B-4) 

f course, for P = 1 we have our earlier result showing N 

∗ = 1 but

or more general normalized response times. 

lk
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