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ABGIRACT

scheduling algorithms for time-shared camputing facili-
ties are considered in terms of a queueing theory model.
The extremely useful limit of "processor-sharing” is
adopted, wherein the quantum of service shrinks to zero;
this approach greatly simplifies the prdblem. A class of
algorithms is studied for which the scheduling discipline
may change for a given job as a function of the amount of
service received by that job. These multilevel disciplines
form a natural extension to many of the disciplines previ-
ously considered.

Solved for is the average response time for jobs condi-
tioned on their service requirement. Explicit solutions
are given for the system M/G/1 in which levels may be first-
come-first-served (FCFS) or feedback (FB) in any order; in
addition, the round-robin (RR) may be used at the first
level. An integral equation is developed which defines
(but does not as yet provide a solution for) the RR case at
arbitrary level. The special case in which RR is used at
the last level is solved under the condition that the serv-
ice time behave exponentially for this last level.

Examples are described for which the average response
time is plotted. These examples display the great versatil-
ity of the results and demonstrate the flexibility avail-
able for the intelligent design of discriminatory treatment
among jobs (in favor of short jobs and against long jobs)
in time-shared system design.

*This work was supported by the Advanced Research
Projects Agency of the Department of Defense (DAHC-15-69-
C-0285) .
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1. INTRODUCTION

Queueing models have been used successfully in the analy-
sis of time-shared camputer systems since the appearance of
the first applied paper in this field in 1964 [1]. The re-
cent survey [2] of such analytical work attests to this
fact. One of the first papers to consider the effect of
feedback in queueing systems was due to Takacs [3].

Generally, an arrival enters the time-shared system and
competes for the attention of a single processing unit.
This arrival is forced to wait in a system of queues until
he is permitted a quantum of service time; when this quan-
tun expires, he is then required to join the system of
queues to await his second quantum, etc. The precise model
for the system is developed in Section 2. 1In 1967 the no-
tion of allowing the quantum to shrink to zero was first
studied [4] and is referred to as "processor-sharing." As
the name implies, this zero-quantum limit provides a share
or portion of the processing unit to many customers simul-
taneously; in the case of round-robin (RR) scheduling [4],
all customers in the system simultaneously share (equally
or on a priority basis) the processor, whereas in the feed-
back (FB) scheduling [5] only that set of custamers with
the smallest attained service share the processor. We use
the term processor-sharing here since it is the processing
unit itself (the central processing unit of the computer)
which is being shared among the set of the custamers; the
phrase "time-sharing" will be reserved to imply that custo-
mers are waiting sequentially for their turn to use the en-
tire processor for a finite quantum. In studying the liter-
ature one finds that the cbtained results appear in a rather
camplex form and this camplexity arises fram the fact that
the quantum is typically assumed to be finite as opposed to
infinitesimal. When one allows the quantum to shrink to
zero, giving rise to a processor-sharing system, then the
difficulty in analysis as well as in the form of results
disappears in large part; one is thus encouraged to consider
only the processor-sharing case. Clearly, this limit of
infinitesimal quantum is an ideal and can seldam be reached
in practice due to considerations of swap time; neverthe-
less, its extreme simplicity in analysis and results brings
us to the studies reported in this paper.

The two processor-sharing systems studied in the past
are the RR and the FB [4,5]. Typically, the quantity solved
for is the expected response time conditioned on the custo-
mer's service time; response time is the elapsed time from
when a custamer enters the system until he leaves campletely
serviced. This measure is especially important since it
exposes the preferential treatment given to short jobs at
the expense of the long jobs. Clearly, this discrimination
is purposeful since it is the desire in time-shared systems
that small requests should be allowed to pass through the
system quickly. In 1969 the distribution for the response
time in the RR system was found [6]. In this paper we con-
sider the case of mixed scheduling algorithms whereby custo-
mers are treated according to the RR algorithm, the FB algo-
rithm, or first come first served (FCFS) algorithm, depend-
ing upon how much total service time they have already re-
ceived. Thus, as a custamer proceeds through the system
dbtaining service at various rates he is treated according
to different disciplines; the policy which is applied among
customers in different levels is that of the FB system as
explained further in Section 2. This natural generalization
of the previously studied processor-sharing systems allows
one to create a large number of new and interesting disci-
plines whose solutions we present.



2. THE MODEL

The model we choose to use in representing the schedul~
ing algorithms is drawn from queueing theory. This corre-
sponds to the many previous models studied (1,2,4,5,6,7,81,
all of which may be thought of in terms of the structure
shown in Fig. 2.1. 1In this figure we indicate that new
requests enter the system of queues upan arrival. When-
ever the computer's central processing unit (CPU) becomes
free, same custamer is allowed into the service facility
for an amount of time referred to as a quantum. If during
this quantum, the total accunulated service far a customer
squals his required service time, then he departs the sys-
rem; if not, at the end of his quantum, he cycles back to
the system of queues and waits until he is next chosen for
additional service. The system of queues may order the
custamers according to a variety of different criteria in
oxder to select the next custamer to receive a quantum.

In t:hispaper,weassunethatthemlyneasureusedin
evaluating this criterion is the amount of attained service
(total service so far received).
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Figure 2.1. The Feedback Gueueing Modei

in order to specify the scheduling algorithm in temms of
this model, it is required that we identify the following:

a. The customer interarrival time distribution. We as-
sume this to be exponential, l.e.,

At

plinterarrival time < t] = 1 - e t>0 (2.1)

where \ is the average arrival rate of customers.
b. The distribution of required service time in the CPU.

This we assume to be arbitrary (but independent of the
interarrival times). We thus assune

Plservice time < x] = B(x) (2.2)

Also assume l/u = average service time

c. The tun size. Here we assune a processor-shared
model in ﬁ% custamers receive an equal but vanishingly
small amount of service each time they are allowed into
service. For more discussion of such systems, see [4,6,7].

d. The system of %g We consider here a generaliza-
tion conso. tion many systems studied in the past.
In icular, we define a set of attained service times
{a;} such that

0=a0<a1<a2<...<aN<aN+l=w (2.3)

The discipline followed for a job when it has attained
gervice, T, in the interval

T < a,  BE R U (R | . o A (2.4)

a. &
i=1 — i

will be denoted as Di’ We consider Di for any given level

i to be either: FIRST CCME FIRST SERVED (FCFS) ; PROCESSOR
SHARED-FB_ (FB) ; or ROUND-ROBIN PROCESSOR SHARED (RR) . The
FCFS system needs no explanation. The FB system gives serv-
Toe next to that custamer who so far has least attained
service; if there is a tie (among K custamers, say) for this
position, then all K members in the tie get served simul-
taneously (each attaining useful service at a rate of 1/K
sec/sec), this being the nature of processor sharing sys-~
tems. The RR processor sharing system shares the service
facility among all custamers present (say J custaners)
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giving attained w.rvice to each at a rats of 1/J sec/sec.

Moreover, between intexrvals, the jabs are treated as a set
of FB disciplines. See Fig. 2.2. For exomple, fox N = 0,
we have the usual single-level case of either FCFS, RR or

FB.
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Figure 2.2. Intervals of Attained Service, with Disciplines, D;

For N = 1, we could have any of nine disciplines (FCF5 fol-
lowed by FCFS, ..., RR followed by RR); note that FB fol-
lcwed by FB is just a single FB system (due to the overall
FB policy between levels).

As an illustrative example, con-
sider the N = 2 case shown in Fig. 2.3.
Nnyreﬂarrivalsbeqinmsharethe
processor in a RR fashion with all FCFS
other customers who so far have less
than 2 seconds of attained sexvice.
Custamers in the range of 2 < T < 6 §
may get served only if no customers N i
present have had less than 2 seconds
of service; in such a case, that custo- EB
mer (or customers) with the least at-
tained service will proceed to occupy
the service in an FB fashion until they + 2
eitherleave,orread'x‘r=6,orsme RR
new custamer arrives (in which case the
overall FB rule provides that the RR 0
policy at level 1 preempts) . If all Figure 2.3. Example of N =2
custcmers have T > 6, then the “oldest”
custarer will be served to campletion
unless interrupted by a new arrival. The history of same
custamers in this example system is shown in Fig. 2.4. We
denote custamer n by Cn' Note that the slope of attained

service varies as the number of customers simultaneously
being serviced changes. We see that C2 required 5 seconds
of service and spent 14 seconds in system (i.e., response
time of 14 seconds) .
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Figure 2.4. History of Customers in Example



So much for the system specification. We may summarize
by saying that we have an M/G/1 queueing system* model with
processor sharing and with a generalized multilevel sched-
uling structure.

The quantity we wish to solve for is

T(t) = E[response time for a customer requir-
ing a total of t seconds of attained (2.5)
service] .
We further make the following definitions:

T, (B) = E{time spent in interval i @ 4, a)

for custamers requiring a total of t (2.6)
seconds of attained service}
We note that
T (8) = T; (£") for t,t%i> a; (2.7)

Furthermore, we have, forak_1<t_<.ak, that
k
T = T, (& -
(®) =3 Ty () (2.8)

Also, we find it convenient to define the following quan-
tities with respect to B(t) truncated at t = x:

x -]

. =f tdB(t) + xf aB(t) (2.9)
X

X )
Ex =f t2aB(t) + x2f aB(t) (2.10)
Py = qu (2,11)

AEZ

Wx = 2—(1_—%‘)— (2.12)

Nobethathrepreeentstheexpectedworkfowxdbyanav

arrival in the system M/G/1 where the service time distri-
bution is B(t) truncated at x.

3. RESULTS FOR MULTILEVEL QUEUEING SYSTEMS

We wish to find an expression for T(t), the mean system
time (i.e., average response time) for jobs with service

t.nnetstx:hthata11<t<a,1e., jobs which reach the

levelqueue mﬂﬂlenleavethesystan To accamplish

th:.s:.t:.scmvementto:.solatethei level to same ex-
tent. We make use of the following two facts.

1. By the assumption of preemptive priority of lower
level queues (i.e., FB discipline between levels) it

is clear that jobs in levels higher than the it level
can be ignored. This follows since these jobs cannot
interfere with the servicing of the lower levels.
Z.mareintemtedinjwsthatwillzeadmmeith
level queue and then depart from the system before pass-
ingtothe(i%-l)Stlevel. The system time of such a
job can be thought of as occurring in two parts. The
first portion is the time fram the job's arrival to
thequeueingsystenmt_ilthegrmpattheimlevel
is serviced for the first time after this job has

read‘nedtheimlevel. The second portion starts with

*M/G/1 denotes the single-server queueing system with
Poisson arrivals and arbitrary service time distribution.
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the end of the first portion and ends when the jab
leaves the system. It is easy to see that both the
first and secand portions of the job's system time are
unaffected by the service disciplines used in levels

1 through i - 1. Therefore, we can assume any conven-
ient disciplines. In fact, all these levels can be
lumped into one equivalent level which services jobs
with attained service beweenOanda secmdsus.i.ng
any service discipline.

Fram (1) and (2) above it follows that we can solve for

T(t) for jobs that leave the system from the i level

by considering a two-level system. The lower level services
jobs with attained service between 0 and a; , whereas the
second level services jobs with attained service between
a; ; and a,. Jabs that would have passed to the i + 3"t
level after receiving a; seconds of service in the original
system are now assumed to leave the system at that point.
In other words the service time distribution is truncated
at a;.

&

3.1. i™ Level Discipline is FB

Consider the two-level system with the second level

corresponding to the ith level of the original system.
Since we are free to choose the discipline used in the
lower level, we can assume that the FB discipline is used
in this level as well. Clearly the two-level system be-
haves like a single level FB system with service time dis-
tribution truncated at a;. The solution for such a system
is known [5,11]:
o
T(t) = 1= + > (3.1)
Pt "2 =0 )

3.2, i™ Level Discipline is FCFS

Consider again the two-level system with break-
points at a; 1 and a;. Regardless of the discipline in the

lower level, a tagged jcb entering the system will be de-
layed by the sum of the work currently in both levels plus
any new arrivals to the lower level queue during the inter-
val this job is in the system. These new arrivals fomm a
Poisson process with parameter A and their contribution to
the delay is a randam variable whose first and second mo-

ments are 't_<a and ? respectively. By delay cycle analy-
i

sis [9] we have

Wa. + t
T(t) = — (3.2)
e

It is also possible to use these methods for solving last-
cane-first-served and random order of service at any level.

3.3. i™ Level Discipline is RR

Results to date allow explicit solutions for only
two cases. (1) RR in the first level and (2) RR in the
last level with the added restriction that once a jdb has
reached this level the distribution of remaining service
time is exponential. The analysis will be developed for
the general case as far as possible before being restricted
to special cases.

We start by considering the two-level system with
breakpoints at a; 4 and a;. Consider the busy periods of

the lower level. During each such busy period there may be
a nunber of jobs that pass to the higher level. We choose
to consider these arrivals to the higher level as occurring
at the end of the lower level busy period so that there is
a bulk arrival to the higher level at this time. We also
choose to temporarily delete these lower level busy periods
fram the time axis. In effect we create a virtual time
axis telescoped to delete the lower level busy periods.
Since the time from the end of one lower level busy period
to the start of the next is exponentially distributed
(Poisson arrivals!), the arrivals to the higher level appear



in virtual time to be bulk arrivals at instants generated
from a Poisson process with parameter A.

Consider a job that requires t =a; | +7 seconds of
service (0 <t <a, - a;_4). let oy be the mean real time

the job spends in the system until its arrival (at the end
of the lower level busy period) at the higher level queue.
Let az(r) be the mean virtual time the jcb spends in the

higher level queue.

oy can be calculated using delay cycle analysis. The

initial delay is equal to the mean work the job finds in
the lower level on arrival plus the a; ; seconds of work

that it contributes to the lower level. This initial delay
is expanded by new jobs arriving at the lower level by a
factor of 1/(1 - Pea ) (see [9]). Therefore

I

-

1
a, = e} W + a, {3.3)
17T p<ai—-]_ { a, l—l}

If az('r) is the mean virtual time the job spends in

the higher level, we can easily convert this to the mean
real time spent in this level. In the virtual time inter-
val a, (1) there are an average of )‘“2 (1) lower level busy

periods that have been ignored. Each of these has a mean
length of -~ “<a;_;
: I-—_-E;———- .
a,
i-1
Therefore, the mean real time the job spends in the higher
level is given by

£

<a,
a, (1) + Aa, (1) i-l .
2 2 1*O< I-p

a1 @1

a, (1)
. (3.4)

Canbining these results we see that a jab requiring

L:ai_l+rsecondsofsexvicehasn'eansyscantimegivm

by

P - 1 1
Tag ) + 0 =TT : {wai_l va, )+ az(r)} (3.5)
-

The only unknown quantity in this equation is oy {t) s
To solve for az(t) we must, in general, consider an M/G/1

system with bulk arrivals and RR processor sharing. The
only exception is the case of RR at the first level which
has only single arrivals. Since the higher level queves
can be ignored, the solution in this exceptional case is
the same as for a round-robin single level system with
service time distribution truncated at ay. Therefore, fram
[8] we have for the first level

T(t) = p—p— o<t<a (3.6)
<a
1

Let us now consider the bulk arrival RR system in isolation
in order to solve for the virtual time spent in the higher
level queue, a, (1) which we temporarily write as a(t).

3.3.1. The Bulk Arrival, RR Model

We approach this problem by first considering
a discrete time system with quantum size g > 0. We assume
that arrivals and take place only at times that
are integral multiples of q. For small g any continuous
distribution can be approximated. By letting g approach 0
equations for continuous time systems can be found.

Let n(ig) = the mean number of jobs in the
system with iq seconds of at-  (3.7)
tained service.
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g. = the prabability that a job

which has received iq seconds (3.8)
of service will require more '
. than (i + 1)g secords of service.

the mean bulk size of arrivals. (3.9)

21
L}

b = the mean number of arrivals (3.30)
with a tagged jab. o

since we intend to let q approach 0, the posi-
tion of the tagged job with respect to the jobs that arrive
in the same group is not important. We wil' assume for con-
venience that the tagged jcob is the last jcb in the group.

The mean time until the tagged jab has re-
ceived its first quantum of service is given by

T = 2 n(jglg + bg + g (3.11)
=0

In general, the mean time between the (i - l)St and ith
quantum of service to the tagged job is given by

=Y |
T, j‘_‘ (n()q)ujcj+1 0j+i—-2 q)
-1
+ EE (Aa Tj°0°1 ci-j-—2 q)
j=1
+q+ b[°0°1 oi_llq (3.12)

The first term represents the time required by those jobs
which were initially in the system and will still be there
after the tagged job has received i - 1 quanta of service.
The second tem is the contribution due to jobs that have
arrived since the tagged job entered the system. The third
term is due to the tagged jdb itself. The last temm re-
sults fram those jobs which arrived with the tagged jab and
requirenmethani—lquantaofservice.

Dividing both sides of Eq. (3.12) be g we get

A o
i
— =3 n(jglo.o. v Qe
q =0 33+l J+i-2
i-1
+j§1 kachool “ee 04 _s5e2 (3.13)

+ 1+boyoy «.0 05

Let ig = t and jg = x. Then as q + 0:

T
i Viey = dalt)
‘a‘" a'(t) = =g (3.14)
1 -B(x+ t)
050541 ** 954i-2 . —BTX (3.15)
n{jq) * nx) (3.16)
0g0y - ci—j—Z + 1~ B(t ~ x) (3.17)

0g0y -+ G T 1 - B(t) (3.18)

Therefore as q + 0 Eq. (3.13) becares

a0 = [ noo 232Gt -

- B(x
€
+)‘§fa,'(x)[l - B(t - x)]dx
0
+1+ bl - B(t)] (3.19)



Fram Kleinrock and Coffman [7] we also have
that

n(x) = Aa[l - B(x)]a'(x) (3.20)

Substituting for n(x) we have

oo

o' (t) = )Ef o' () [1 - Blx + t)]dx

0
t.
+ )Ef a'(x)[1 - B(t - x)]dx
0
+1+Db[l-B(t)] (3.21)

This integral equation defines a'(t) for the case of bulk
arrival to a RR processor-sharing M/G/1 system. Unfortun-
ately no general solution has been found for this.equation
in terms of B(t). However, for exponential service time
the eguation can be solved.

3.3.la. MM/1 with Bulk Arrival. In this

case
Blt) =1-e ¥t (3.22)

Therefore the Eq. (3.21) becames

a'(t) = )Ef ' (x)e M K+ gy
0

+ Aa f o' (x)e M (t-x)dx
0
+1+baHE (3.23)

From Eq. (3.20) we obtain

0 o
A\a f o' (x)e W Max = f nx)e ¥ax = ne Mt (3.29)
0 0

where n = E[no. found in system by a new arrivall. Using
this expression for the first tem on the right-hand side
of Eq. (3.23) and taking Laplace transforms we cbtain

sh+b+1) +u

e (3.25)

so*(s) =

Inverting, we get for t > 0 (cbserving that a'(0) =
n+b+1),

W) pds 4 EEBEDA -0l o1 w0 g

where
Aa
Pl (3.27)
Here, n and b are unknown quantities which need not be
solved for directly. Instead we cambine them in a new un-

1mamc=ﬁ+b-12—p and we dbtain

o) = s + ceH1-0)t (3.28)

Integrating and using the initial condition that a(0) =0
we get

g c o)t
G(t) = m— + m— [1 e - ] (3.29)

In the next section we will evaluate the
constant C and calculate a for a multilevel queueing system
with RR at the last level where the service time distribu-
tion may be general up to this level, but must be exponen-
tial in this last (semi-infinite) level; i.e., B(x) must
have an exponential tail and we denote this system by
M/GM/1. The same method can be used to.camplete the solu-
tion for a single level queue with bulk arrivals.
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3.3.1b. M/GM/1 with Bulk Arrival. Returning
to our discussion of the two level queueing system with
breakpoints at a; , and a;, we had Eq. (3.5)

i 1
T(ai_l + 1) = '1T {Wai-l

i-1

+a; o+ az(r)} (3.5)

where az(r) was the mean virtual time spent in the higher

level queue. But in virtual time this is the solution for
the bulk arrival case just studied. The study in the gen-
eral case M/G/1 led to an integral equation, Eq. (3.21),
for which no more explicit solution was cbtained. However,
in the case of an exponential distribution, we have the
solution given in Eq. (3.29). Thus, we may pemmit RR at
the first level (see Eq. (3.6)) in M/G/1 or at the last
level in M/GM/1. In the latter case, we therefore consider
the equivalent two-level system in which the breakpoints
a1 and a; are restricted to ay and «, respectively.

Thus, forthecaset=aN+'rwehavefran
Eq. (3.29) that

oy (1) =alr) = 1= +dll - eHi-elT) (3.30)

where C = u(1 - p)d. Therefore, fram Eq. (3.5),

= 1 T _ a~u(l-p)T
T(aN+T)_1—-—E;{WaN+aN+1———p+d[l e ]}
(3.31)

_ In addition to the constant d we also need
tosolvefora,themeansizeofthebtﬂkirrivalswﬂle
Runeue,sincethisiscmtai.nedinp=_)ﬁ. This we do

I
for the general case a; ; a;. a is just the mean number of
’
jobs that arrive during a lower level busy period and re-
quire mrethanai_lsecaxdsof service. Therefore a must

satisfy the equation

a=\t, a+ [1- B(ai-l)ll (3.32)
i-1
In this equation XE_
3j-1
arrive during the service time of the first job in the busy
period. Since each of these jobs in effect ates a
busy period, there are an average of At a arrivals to
i-1
the upper level queue due to these jobs. The second temm
is just the average number of times that the first job in
the busy period will require more than a, lsecondsof
service. 2z

is the mean number of jcbs that

Clearly then
S=1-BE2)
as= _T%— (3.33)

Now we may camplete the solution for
t=aN+'tbysolvixx3foeryconserving’d1eneanworkin
the system. Since the single server works at a constant
rate as long as there is any work in the system, the amount
of work in the system at any time is independent of the
service disciplines and system levels. It follows immedi-
ately that the mean work in the system is a constant (de-
pending only on Aand the service time distribution). The
mean work in the system is given by W (see Eq. (2.12)).

We also have fram Eq. (3.20) that n(t) =
A[l - B(t)]T' (£) where n(t) is the mean number of jobs in
the system with t seconds of attained service. The mean re-
maining service requirement for a job which has already re-
ceived t seconds of service is given by

©

B (3.34)
-

Therefore the mean work in the system is also given by



e {7 xam
wm f n(t) l./. r_——BTET t‘ dt (3.35)
0 t -
or
W= [ - B(mfr-(tﬂf o - tlae (.36
0 ! t }
With no loss of generality, we may assume
that the RR discipline is the lower level queue discipline.

In this case we have fram Egs. (3.6), (3.31) and W fram
Eq. (2.12) that b

t

T=p, 0 <t<ay
aN
(L) = ¢ )
AtZ
1 “ay & ay
I'=p

= * Ayt T
ale(I o<aN) o

<

~u(l-p) (t:—a\N)1 ;

Using this expression for T(t) in Eq. (3.36)
we can solve for d. Since B(x) is arbitrary in the range
0 <t<ay (and exponential for t > ay) the solution is not

expressible in a campact form. When B(x) is exponential
over 0 < x < @ the solution is simplified. In particular
for all t

+dll ~e t > ay (3.37)

fw m(x) -t = l
4 T =B M : (3.38)

Therefore

W, =f ML - B(O)]T' (6) 3 dt = %f M mat (3.39)
0 0

Now using the Eq. (3.37) for T(t) we have
—

e T
W=A;[1—e )+e“an N
o u llu - D< ’ 201 = 2
N Pea )
aN
! ~H
T4} ?(1aN e c?(laN T (
M -p sl ) o = 0 =P
ay <y |
(3.40)
At_z 2

. 2 - <o - Ay "
Setting W =6, T3 we essentially have a

solution for C. The solution is illustrated later in the
examples section. :

ture of the results we have cbtained. Recall that we have
given explicit solutions far our general model in the case
M/G/lwithpmcessorsharimvmemtheanmedsdxeduling

disciplines within a given level may be either FCFS or FB.
Moreover, for this general system we allow RR at level 1.

1hat is,for the case M/G/1,

{ RR, FCFS, FB i=1 |
- . (4.1)

D
i=23, ..., N+1]}

i | peps,

Furthemmore, in the case M/GY/1 we permit
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RR, FCFS, FB i=1

$

b, = ) FCFS, FB i

2:3; oy N$ (4.2)
RR, FCFS, FB i=N+1

That is, we also permit RR at the highest level if B(x) is
of exponential form in the interval ay < x.

We begin with three examples from the system M/M/L. As
mentioned in Section 2, we have nine disciplines for the
case N = 1. 'This comes about from Eq. (4.2) where we allow
anyoneofﬂueedisciplinesatlevellamlanyoneof
three disciplines at level 2. As we have shown, the behav-
ior of the average conditional response time in any particu-
lar level is independent of the discipline in all other
jevels. In Fig. 4.1 we show the behavior of each of the
three disciplines for the system N = 1.

Py
//
7.
sk //
5 4
’/
=N \,,’/
///'/\un
. /7
= 4/
g V,
Enr
FCFS
o
gu—- /
up
B SN
/
o / AR
FCFS
" 7 L ! ] 1 L ]
) 1 2 3 “ 5 8 7

Figure 4.1. Response Time Possibilities for N = 1, M/M/1, u=1,A=.75a =2

J.nthiscasewehaveassunedusl,).==0.75,anda1=2.

Note that for the case MM/l we have fram Egs. (2.9), (2.10),
and (3.33) the follrwing:

- 1 “Hay
t<al =7 (-e ) =0.865 (4.3)
=2 ~uay =Hy
t“"l =55 Ml-e -vae 1=119 (4.4)
71
o Tuey o
a=e / (1 -2XE, ) =0.385 (4.5)
2y

aAlso, for the parameter values chosen, we have C = 2.42.
Fram Eq. (3.1) we see that the response time for the FB sys-
tem is completely independent of the values a; and therefore

the curve shown in Fig. 4.1 for this response time is appli-
cable to all of our M/M/1 cases. Note the inflecticn point
in this curve which results in a linear growth for response
time as t » « (a phencmenon not cbservable fram previously
published figures). As can be seen fram its defining equa-
tion, the response time for FCFS is linear regardless of the
level; the RR system at level 1 is also linear, but as we
see from this figure and from Eq. (3.37) the RR at level

N + 1 is non-linear. Thus one can determine the behavior of
any of nine possible disciplines fram Fig. 4.1. Adiri and
Avi~Itzhak considered the case (FB, RR) [12].



Continuing with the case M/M/1, we show in Fig. 4.2 the
case for N = 3 where D, = RR, D =FB,D3=FCFS,and

D4=RR.Inthiscasev»ehave ai=iandu=l,

A = 0.75. We also show in this figure the case FB over the
entire range as a reference curve for camparison with this
discipline. Note (in general for M/M/1) that the response
time for any discipline in a given level must either coin-
cide with FB curve or lie above it in the early part of the
interval and below it in the latter part of the interval;

this is true due to the conservation law [10].

i e,

%l  Ds=FCFS Ve
D= RR

2

8-

AVERAGE RESPONSE TIME, T(t)
8
Ll

= 1 1 1 1 I I J
o 1 2 3 4 5 O 7
t

Figure 4.2. Response Time for an Example of N = 3, M/M/1,
u=1,1=0.75a=i

The third example for M/M/1 is for the iterated struc-
tureDi=FCFS. Once again we have chosen p = 1, A = 0.75,

a, = 1i.
and ;=1

AVERAGE RESPONSE TIME, T(t)

Figure 4.3. Response Time for the M/M/1 Iterated Structure,
u=11=0.75,8=i, N=0
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Also shown in this figure is a dashed line corresponding to
the FB system over the entire range. Clearly, one may se-
lect any sequence of FB and FCFS with duplicates in adja-
cent intervals and the behavior for such systems can be
found from Fig. 4.3. It is interesting to note in the
general M/G/1 case with D, = FCFS that we have a solution
fortheFBsystanwimfiﬁitequantunqi=ai-ai_lvhere

preemption within a quantum is permitted!

ForwrlastexatplewedxoosethesvstanM/Ez/lwith
N = 1. In this system we have

X . 2e* x>0 (4.6)
as shown in Fig. 4.4. We note that the mean service time
here is againgivsnby 1/u; the second moment of this dis-
tribution is 3/2u“. We calculate

2pa

AR 4B o, 2
t<a1 ot Tl 1+ Zual + 2(pa,) ] (4.7)
08
06 |-
b(x) 0.4 -
02
5 ] ] I
0 1 2 3 4

Figure 4.4. Service Time Density for M/E;/1, 11 = 1

Wed)ooseﬂxesystanN=lwithD1=RRamiD2=1-'CFS. For
ﬂxecasesal=1/2u, 1M, 2/u, 4/uwithu=1and A = 0.75
we show in Fig. 4.5 the behavior of this system.

> 8 2

AVERAGE RESPONSE TIME, T(t)

t
Figure 4.5. Response Time for RR, FCFS in M/E, /1
withuy=1,X075anda=1/2,1,2,4,~



" attained service.

ihis figure demonstrates again the kind of behavior obtain-
able from our results as one varies the appropriate system
carameters; once again one may choose to discriminate in a
variety of ways in favor of the short jobs and against the
longer jobs.

5. CONCLUSION

Our purpose has been to generalize results in the model-
ling and analysis of time-shared systems. The class of sys-
tems considered was the processor-sharing systems in which
various disciplines were permitted at different levels of
The principle results for M/G/1 are the
tollowing: (1) The average conditional response time at
level i is independent of the queuveing discipline at all
other levels; (2) the performance for the FB discipline at

any level is given by Eq. (3.1); (3) the performance for the -

FCFS discipline is linear with t within any level and is
given by Eq. (3.2); (4) the perfommance for the RR discipline
at the first level is well-known [8] and is given by Eg.
{(3.6); (5) an integral eguation for the average conditional
response time for RR at any level (equivalent to bulk arrival
FR) is given by Eq. (3.21) and remains unsolved in general.
Por M/@M/1 (exponential tail for t > aN) we have the perform-

ance for RR at the last level as given by Eg. (3.37).
Examples are given which display the behavior of save of

the possible system configurations. From these, we note the
great flexibility available in these multilevel systems.
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