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Summary

We discuss the effect that flow control procedures
have on the throughput in a computer network. We intro-
duce the notion of starvation and use it as the basis
for the measure of ‘the cost of any fiow control proce-
dure. For any given flow control procedure, we then
apply a previously defined measure of power and show
how to identify that operating point which yields maxi-
mum power.

Introduction

Among the remaining technical problems in computer
network design, perhaps one of the most important is
that of flow control (we distinguish technical problems
from the "softer'' social, political, legal and ecolog-
ical problems). Although '"The Flow Control Problem'
does not have a universally accepted definition, it is
enough for this paper to describe it as the problem of
2llocating network resources to the demands placed upon
those resources by the user population. The user popu-
lation includes any source of data which requires trans-
mission through the computer network. The network
resources include communications capacity, processing
capacity (at the network switching nodes) and network
storage capacity. The purpose of a flow control proce-
dure is to throttle the flow of traffic entering (and
leaving) the net in a way which protects the network
and the data sources from each other while at the same
time maintaining a smooth flow of data in an efficient
fashion. it would be lovely if we knew how to accomp-
lish all of this at the same time - unfortunately, we
do not. To date, there is no clear procedure for allo-
cating network resources to provide a large throughput
at low delay in an equitable fashion among competing
demands distributed across a network.z Occasionally we
flood low speed output devices or "nickel-and-dime' high
speed input devices with incessant interrupts, or over-
whelm the network with too much traffic or starve the
network with too little traffic, or mis-allocate network

resourges so that deadlocks and performance degradations
occur.

in this paper, we wish to make some definitions,
introduce a useful cost measure, and draw some general
conclusions about flow control procedures. It is not
out intent to describe any particular flow control pro-
cedure, but rather to step back and identify some phe-
nomenological issues and concepts of importance.

The Model

Our view of a network Is simply a system to which
is applied a certain input message traffic. The net-
work accepts a portion of this traffic (the carried
traffic) and delivers it to its destination. The aver-
3ge time it takes to deliver this traffic we denote by
T. Thus, we have the following definitions: -

A« input rate applied to the network (msg/sec)

Y = v(}) = traffic carried by the network

= network throughput (msg/sec)

T = average network delay (msg)

.

Let us also define the network capacity as the maximum
traffic that can be handled by the network:

Yo " network capacity (msg/sec)

We are interested in the function Y(A) which
expresses the throughput achieved by a given flcw con-
trol procedure which is subject to an input traffic
intensity of A. Under ideal conditions we would have
the y(X) profile shown in Figure |. Here we see that
all the input traffic is accepted until we saturate at
2 value equal to the network capacity. This corresponds
to perfectly regulated traffic. However, due to random
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Fig. 1. An ideal throughput characteristic.

fluctuations in the input traffic, we do not achieve
this ideal behavior. Indeed, we may encounter at least
three kinds of y(X) curves according to the type of flow
control we exert, as shown in Figure 2. First we could
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Fig. 2. The behavior of various flow control policies.
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adopt a conservative policy and accept less traffic than
<he netwo-x can handle, thereby insuring no congestion
{but lots of rejected input traffic). Second, we could
relax completely and allow the traffic to flow freely;
that is, we could put no limitations on the accepted
traffic (no flow control). As we see, this policy often
leads to serious degradations, and even to deadlocks if
the congested traffic flow patterns in the network
result in “resource-smashing' (poor or destructive use
of resources, such as excessive retransmissions). The
more sensible policy is to apply some form of dynamic
flow control which will.throttle the accepted traffic

25 a function of the network congestion, capacity, delay,
etc.3 In what follows, we usually assume the existence
of some reasonable flow control policy.

Some Definitions

Consider the flow control function y(X) shown in
ic. 3. In this figure we have extended the two asymp-
totes of the ideal curve. Let us examine the regions
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Fig. 3. Starvation

in this figure. First, we consider the ideal curve,

YID{AL(A) defined as

A A<y
) -0

Y peaL ™M ' M
YO 2 YO

Let us now define the function f{A) es

F0) £ vy - 2 (2)
N&w, for X < Yy, we have’
f(A) = vq - Y, peaL N (3)

tn this region, we see that the network is carrying all
of the applied traffic. However, the net is being
“igtarved' in the sense that it is capaET: of carrying
~ore traffic {in fact, it can carry f(1) more). There-
fore, we refer to the region )\ < YO as the region of

sinetwork starvation.'' On the other hand, for A 3‘70

we have - S

f(A) = YlDEAL(A) - (4)

in this region we see that the network has reached its
treffic-carrying capacity. However, a growing fraction
of the applied traffic is being turned away (or, if you
will, held back in an explosive queue). Thus let us

27.2.2

refer to this region as the region of ‘'source starva-
tion' (i.e., the source wants more capacity). Since
£(A) is negative for A > y,, we measure the source

starvation by -f()\). Thus, we define the "irreducible
starvation" function S'RR(X) as

f()) A < Yo

S, = [FOV] ()
A > YO

-f())

This function is shown in Figure 4.

~
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Fig. 4. The irreducible starvation.
Since we have been considering the ideal curve, we see

that the irreducible starvation S'RR(X) is the minimum

we can ever have; that is, we must pay at least the

“price" SlRR(A).

Now, let us consider the "typical' flow control
function Y()A) as in Figure 3. For this function, we
may define the starvation function S(i) as

s (Yo - y(3)

A<y
s(a) = -0

{6)
A-y() o X2y,

S(A) is sketched in Figure 5, in which we have also
shown S.RR(A).

A
Fig. 5. A typical starvation functior.
We may write
S(A) = SIRR(A) + YIDEAL(X) - y(}) (7)
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wWe further define the ''excess starvation' function Se(k)
as

s, &50) -5 .. ()

{RR

= YipgaL M - YR (8)

Thus, we see that Se(A) is simply the vertical offset
between Y\ peaL and Y(\) as shown in Figure 3.

Note that the maximum of Se(k) occurs at L = Y,

as shown in Figure 6. This is true in general so long
as y(*) is concave (i.e., with non-increasing slope).

St

Fig. 6. The excess starvation.

We may further define the network starvation as

n(3) & yg - v0) (9)

and the source starvation as

s(A) 2 a-vy(n) (10)

as shown in Figs. 3and 7. Clearly we have n(yo) - s(yo)
and we see in general why we refer to the region X<‘Y°

as the region of network starvation and to the region
> Yo s the region of source starvation.

s(A)
n{\)
1
0 70
Fig. 7. Network and source starvation

- [
Cleariy, if we subtract out the irreducible net star-
vation, Yo" A (A:\b), from n(A) and subtract out the
irreducible source starvation, A=y, (>«_>_Yo). from
s()) we obtain the excess net and source starvation
func:ions ne(k) and se(k), respectively. Thus
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A= xy(X)

A<
n () & Yo (1)
€ Yom YD 2>y,
o N ‘A = y(A)y <y 02)
S - .
i lvg=v) 2>y

and so we have that
ng(A) = s 0) =y 00 0) - () (13)

and so

ne(k) = se(k) = Se(l) (14)

(see Figure 6).
A Cost Measure

We now
‘‘cost'' C of

propose an extremely simple measure of the
a flow control procedure, namely,

A (-]
c -_/; 5, (A) ¢

suggest that the cross-hatched area shown

(15)

That is, we

in Figure 3 be the measure of badness of a flow control
procedure. |f we study Figure 2, we see that
CrRee-FLOW =
CconservaTIVE > Covnamic
0

€ioeaL =

and so the measure seems to have the correct flavor.
(Actually, a better measure of cost would be the proba-
bility-weighted value of SC(A), that is, the expected

value of Se(A); unfortunately, it is far more difficult

to evaluate this expectation - we need some knowledge of
the statistical structure - than it is to evaluate the
expression given in Eq. (15).)

Let us now consider the cross-hatched area A shown
in Figure 5. C(Clearly

S A CTE RIS}

-jo'“’ 5, (1)

and so A = C. Thus we can see that both areas are ident-
ical and both are intuitively pleasing measures of bad-
ness which are easy to evaluate.

(16)

Flow Control and Power

An interesting performance ratio was recent'y
defined in [1] which they refer to as '‘power''. i: com-
bines the throughput y(1) and the average network delay
T into the following single measure of power, P:

P“’LTAl (17)

Clearly T = T(y(X)) which we choose to write as T(y).
We inquire as to the conditions necessary for P to be
maximum. We have

A [T(y))?
ICC '78.
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Since T(Y! > 0, the condition for Puay is simply

dy(}) dT (y)
T L ey ) e

dT(y) dy(»)

™S00

] For the rest of this section (unless stated other-
wise) we shall assume that the average network delay

may be modelled as a k-hop network with each hop model-

fed by an M/M/] queue and with an instantaneous end-to-

end acknowledgement. . That is, each hop adds an amount
|

Yo © Y(X)

seconds to the average delay and so the total average

or

(18)

network delay T(y) is given by
T(y) = —= (19)
ERTO)
Then
dT(y) _ K
dy (A
Y g v
Using this in Eq. (18) gives
1 .
Yo - Y(A) y{X)
whose solution is
Y(A) = Yo/2 (20)

Thus, the condition for PHAX is that )\ be selected at
the value 3* such that Y Ay - yo/ 2, and this
implies that T(y") = 2k/Y0 = 27(0). That is, we balance
throughput and delay such that we operate at half the

maxirum throughput and twice the minimum delay. This
applies to any throughput function y(A)!

Note that for all y(A) that P = y/T = Y(Yo- Y)/k.
For Y!DEAL(A)’ we have y(A) = 70/2 at \* = 70/2. (See

Fig. 8 for the ideal case.)

IDEAL

Fig. 8.

Power, delay and throughput in the
ideal case.

- [N

let us consider a
dynamic flow control model using a window scheme.? This

Moreover, as a special case,

we model by claiming that N, the average number of mes-
sages in the network, is restricted to a number w (the
window size). Thus by Little's result 4

Ne=we= )Ty (21)
or >
ky ()
Yo - YA
which gives
Y = = Y, (22)

For optimality, we know that y(})= Y,/2 which implies

that w=k. This implies that the network should contain
k messages, on the average, to give maximum power. That
is, we should just keep the pipe full (i.e., one message
per hop).

We see that for A< Yo We have net starvation; for

A> Yor We have source starvation. Therefore, one is
inclined to suggest that the '‘proper'' operating range

is in the vicinity A= Yo Iindeed, for the ideal curve
shown in Figure 1, we see that )= Yo is the proper oper-

ating region for deterministic flow.t The apparent
contradiction between this last statement and the fact
that maximum power is achieved at A= YO/Z in Fig. 8 is

.reconciled when one replaces the M/M/] assumption from

Fig. 8 with the D/D/1 assumption in the last sentence.
We note that the condition necessary such that A= Yo be

the value which maximizes P is simply Y(yo) - YO/Z.
An additional observation regarding the power P

may be made by studying the delay-throughput function
in Fig. 9. From Eq. (17) we see that P is the inverse

Tty)

ek/y b e =
70 '
k/y |
|
|
1
Fig. 9. Maximum power in the delay-throughput plane.

slope of the line joining the origin to the T(y) curve.
For the assumption of k M/M/1 hops as given in Eq. (19),

") = *) = .Uf
Puax Occurs when v (A7) 70/2 and T(y*) = 2T(0) we

select any other function for T(y) (instead of the form
given in Eq. (19)), then Puax ™Y be found from Fig. 9

as the inverse slope of the tangent to T(y) fr9m the
origin. To prove that last statement mathematically,
we return to Eq. (18) and rewrite it as

dT(y) _ T(y)
dY(k; = yzki

Twe note at this operating point (i= YO) that n(X) = s (&)
and so the net starvetion and source starvation are, in
some sense, ''matched'; for A< Yo+ n(A) > s(X), whereas

for >y, n(x) <s(A).
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which simply states that the condition on Yy(A) for Puax

is that the slope of T(y) be equal to T(y)/y which is
the condition we stated earlier (namely, that y* is
that value of Yy at which a ray out of the origin is
tangent to T(y)). This is true for any T{y) and any
y(}).

Moreover, we may observe that when the optimality
condition given in Eq. (18) is satisfied, then the rel-
ative increase in delay (d1/T) is equal to the relative
increase in throughput (dy/y). This last observation
lends credibility to the usefuiness of the notion of
maximum power as follows: For y< y* we find that
dT/T < dy/y anc therefore we should increase A since
we then gain more in relative throughput than we lose
ir relative delay. For y>Y* we find that dT/T > dy/y
and therefore we should decrease )\ thereby reducing the
relative delay faster than we are reducing the relative
throughput. Clearly, this forces us to converge to
y= 3% y=y* at which point the relative increase in
delay exactly equals the relative increase in through-

oot
Conclusions
=t ysions

Let us now summarize the main results of this
paper:

(1) We have defined the concept of starvation and how
it behaves in various operating regions. Specifically,
we have the net starvation (n(A)), the source starva-

tien (s{»)), the irreducible starvation (S'RR(A)). and

the excess starvation (SC(A)). We have identified
Sl:R()) as the minimum price which must be paid, and
have shown that the excess net starvation (ne(A)) and

source starvation (se(A)) are such that

ne(k) = se(k) = Se(A).

{2, We have proposed a cost function C which is a use-
‘! measure of the poorness of a flow control scheme.

{ is equal to the area between the ideal and the actual
throughput functions. Perhaps a more accurate cost
‘unction would be the difference between the ideal and
the actual throughput weighted by the probability of
achieving each throughput {this would give the average
cifference); however, such a measure would require an
enormous amount of additional information (the proba-
tility measure) which is difficult to calculate, whereas
the area is independent of such information.

3] We used the power P as a means to determine where
the ""best’ operating point should be (where best means
=aximum P). We found the. following:

(a) For any delay function T{y) and any through-
put function y(A), the optimum point s the place
where a ray out of the origin is tangent to the
T{y) function. That is, we must operate at the
"knee' of the T(y) curve; this is an intuitively
pleasing result.

(b) As an example, if we assume a k-hop M/M/| form

fer T'y) (see Eg. (19)), then for any Y{(A) we have
the following:

(i) The power is maximized when XA is selected
such that y()) = yo/z. That is, drive the _

Svsie~ 10 achieve only half of the maximum
throuchput.

(ii} At this optimum point, we have a delay
which is twice the minimum delay, i.e.,
T ’(‘:‘c/Z) = 27(0).

27.2.5

(1ii) At this optimum point, the window
should be w= k; this assumes no delay for
acknowledgements.

(k) The “balanced starvation point' n(}) = s()) always
occurs at A= Yo The power will be maximized there if,

as in (3a) above, the tangent occurs at ;.= Yo Of if, as
in (3b) above, y(yo) = 70/2.

Although we have emphasized the application of flow
control to a single network in this paper, it should be
clear that these considerations are equally well applied
to the far more complicated structure of many inter-
connected networks, a subject of considerable current
interest.
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