
On Optimal Scheduling Algorithms for Time-Shared
Systems

L E O N A R D K L E I N R O C K A N D A R N E N I L S S O N

Umvers:ty of Cahforma, Los Angeles, Cahforma

ABSTRACT The problem of fmdlng those opt imum scheduling algorithms for t ime-shared systems that
mlmmize a cost function that depends on waiting time and required service time IS considered An
optimality condmon which sometimes leads to infeasible algorithms is established The procedure is
unproved upon by use of a mathematical programming technique but still does not always generate
feasible algorithms. These results are used as upper bounds on the performance o f known feasible
algorithms so that it is possible to evaluate how close to optimal the present algorithms come.

KEY WORDS AND PHRASES tune-sharing, scheduling, scheduling algorithms, optunal-scheduhng algo-
rithms

cg CATEGORIES 4 32, 4 35, 4 6

1. Introduction

During the last decade considerable effort has been put forth in the analysis of
various scheduling algorithms for multiaccess time-sharing systems. The dominant
performance measure has almost always been the mean waiting time (response time)
conditioned on a customer's (job's) service-time requirement. However, little atten-
tion has been given to the important problem of defining some appropriate cost
function and then of finding that algorithm which is optimal with respect to this cost
function. Some effort must be made to solve this synthesis problem. The original
model for these systems was to view them as single-resource systems [6, 15]. In the
past few years significant understanding has been gained through multiple-resource
models using results from queuing networks [16]. As a first attempt to solve the
optimization problem referred to above, we study only the case of the single-resource
models in this paper.

2. Definitions

We view a time-sharing system as a preemptive queuing system served by a single
(server) resource--the CPU. The model we choose is that of an M / G / I queuing
system [14]; that is, we assume that a Poisson source generates arrivals to the system

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commeroa l advantage, the AC M copyright notice and the Utle o f the pubhcat lon
and its date appear, and notice is given that copying is by permission o f the Association for Comput ing
Machinery. To copy otherwise, or to republish, requires a fee and /o r specific permission

This work was supported by the Advanced Research Projects Agency of the Depar tment of Defense under
Contract D A H C 15-73-C-0368
Authors ' present addresses L Klemrock, Computer Science Department, Umversl ty of California, Los
Angeles, CA 90024, A. Ndsson, North Carohna State UnlversRy, Raleigh, NC 27650

© 1981 ACM 0004-5411/81/0700-0477500 75

Journal of the AssoclaUon for Computing Machinery, Vol 28, No 3. July 1981, pp 477-486

4 7 8 L. KLEINROCK AND A. NILSSON

at a rate h and that the processing-time distribution B(x) is arbitrary (with density-
function b(x)):

P[interarrival time _< t seconds] -- 1 - e -xt, t -> O,
P[service-requirement _< x seconds] = B(x).

The nth moment of service time is denoted by x n.
We define

w(ylx) = the density function for the waiting time of a customer who requires x
seconds of service;

W(x) = mean (conditional) waiting time for a customer requiring x seconds of
service.

Clearly,

W(x) -- yw(ylx)dy. (2.1)

Expressions for the density w(y[x) are not so easily obtained except for some
rather simple scheduling algorithms. The mean waiting time W(x) has been obtained,
however, for a large class of interesting scheduling algorithms [3, 6, 7, 10, 11, 15, 17].

Let us now consider a cost function for a time-sharing system. The form we have
chosen for the cost function is reasonable but really quite arbitrary, and we stress
that there may exist other cost functions that are more realistic for a given application.
We have been forced into defining a cost function, since the user population has so
far failed to come up with one or a set of such functions. Our assumption is that the
expected cost incurred by customers with service time x is a function only of their
expected delay and of x. Specifically, we define

C(W, x) = cost incurred by a customer with service time x if the expected
delay is W (we assume that C(W, x) is convex in W);

W = W(x, s) = expected delay for a customer with service time x if the scheduling
algorithm is s;

COST(s) ffi total expected cost of using algorithm s.

Obviously,

COST(s) ffi C(W, x)b(x) dx, (2.2)

and our objective is to find that scheduling algorithm that minimizes the total
expected cost. We restrict ourselves to algorithms that use "no a priori informa-
tion" [15]. For these algorithms we can relax the problem and minimize over
functions W(x).

3. The Optimization Problem

Our objective is to minimize the total cost with respect to W(x) or, equivalently, the
scheduling algorithm; that is,

I; rain C(W, x)b(x) dx. (3.1)
W(x)

W(x) is determined by the scheduling algorithm, which can be any "no a priori
information" algorithm; the service time distribution B(x) also affects W(x), but we

On Optimal Scheduling Algorithms for Time-Shared Systems 479

assume B (x) to be given and not a function which we are permitted to vary in the
optimization problem.

It has been shown [10, 15] that the function W(x) (= W for convenience) must
obey at least four different constraints, namely,

d W (i) - ~ - _> 0,

(ii) W_< Wu (upper bound),
(iii) W_> WL (lower bound),

(iv) W(x) (l - B (x)) dx = constant (independent of the scheduling algorithm)

px 2
- z~ L ,

2 0 - 01 =
where Wu _> WL --> 0.

Condition (i) simply states that W (x) cannot decrease with x. Conditions (ii) and
(iii) are tight upper and lower bounds, where

)tx 2 xpx

Wu(x) = 2(1 - p)(1 - px) + 1 - p------~'

Xx~
WL(X) -

2 0 - px)'

and

= ynb(y)dy + xn(l - B(x)) ,

px = Lx-'~.

Condition (iv) is a conservative law, which must be valid for any work-conserving
scheduling algorithm (we restrict ourselves to such algorithms).

The optimization problem may now be formulated as

fo o min C(W, x) b (x) d x (3.2)
W

under the conditions (i)-(iv) (where W(x) is varied by varying the scheduling
algorithm). We recognize this problem as belonging to the class of calculus-of-
variations problems. Unfortunately, it has been impossible to fmd a computationally
efficient mathematical procedure which solves such a problem, excluding mathemat-
ical programming, which we report on in Section 5. However, using just one of the
conditions (the conservation law), it is possible to obtain a relatively simple expression
for W that optimizes C. For simplicity we assume that W is a continuous function;
unfortunately (for the purists), this means that the large and interesting class of
multilevel systems [9, 111 are not included among the algorithms we consider.
(However, the selfish scheduling algorithms (SSA) [4, 8, 151, which may use these
multilevel systems, will smooth out their discontinuities and are included among our
algorithms.) Of greater importance is the observation that since we have kept just
one of the four conditions, we may end up with a solution for W (x) which violates
some (or all) of the other three conditions.

Yet more annoying is the fact that even if we do find a W which falls into the class
of functions defined by (i)-(iv), it still may not be feasible, since conditions (i)-(iv)

480 L. K L E I N R O C K A N D A. NILSSON

are necessary but not sufficient; further, it may be that we have no idea how to
implement such a scheduling algorithm even if it can be shown to be feasible.

These problems arise since there may exist other constraints on W unknown to us
at this time. That is, we can make use of some known necessary conditions on W(x)
but are currently unable to state the necessary and sufficient conditions on IV.
However, we make use of the following important observation.

If we optimize over a constraint space which includes some, but not necessarily all,
of the constraints, then any solution which we obtain and which is also reahzable
by means of a known algorithm must be the true optimum solution (obviously it
must satisfy all the feasibility constraints if it is realizable).

Thus the optimization problem may be formulated as

min C(W, x)b(x)dx, (3.3)
W

under the constraint

fo = W(x)(1 B(x))dx (3.4) L. i

A straightforward approach (using the Lagrange multiplier technique) gives us the
following necessary condition for optimality (note that we have assumed that
C(W, x) is convex in W(x)):

O
OW (C(W, x)lb(x) = k(1 - B(x)), (3.5)

where k is a Lagrange multiplier. An optimal W(x), which we denote by W for
simplicity, can be derived from this relation, although it may possibly be infeasible,
as we have said. We conclude that the result of this optimization procedure is a class
of optimal W only some of which are feasible.

In order to proceed with some examples and special cases, we require the
specification of the cost function C(W, x). It is difficult to find a generally agreed-
upon function of this type, and so we are left in the position of having to invent
some. This we do in the following sections as we study some examples and extensions.

4. Simple Examples

In this section we demonstrate the above method through some simple, yet important,
examples and also show that it is possible to end up in the feasible or infeasible
regions.

Example 1. Let us choose

C(W, x) = W,
b(x) = lie -~'x.

This is a reasonable but simplistic cost function.
From eq. (3.5) we find that

k
W - 2~'

and therefore W(x) is independent of x.
One feasible scheduling algorithm which gives us a W independent of x is FCFS

(first come first served), and so FCFS is one optimal choice (from among many, in

On Optimal Scheduling Algorithms for Time-Shared Systems 481

fact, from among all nonpreemptive algorithms which operate independent of the
service time).

Example 2. Here we choose

W
C(W, x) - x + a' where a _> 0, a constant,

b(x) = #e -~.

This cost function is fairly reasonable in that it behaves sensibly with regard to W
and x.

The optimal W must be (eq. (3.5))

k
W = ~ (x + a).

A feasible algorithm which gives us this optimal W is one picked from the SSA
family, namely, SRR (selfish round robin) [4, 8, 15].

If, however, b(x) is chosen as

the optimal Wis

b(x) = 2#(2p, x)e-~x,

W (x) = ~ (x +a) l + .

This W(x) clearly violates constraint (i), dW/dx > 0, for small x. This solution is
infeasible.

Example 3. Now consider

W 2
c (w , x) - ,

x

b(x) = 2#(2/zx)e -~x.

This combination once again gives us that SRR is optimal! On the other hand, with
b(x) = ize -~ we fmd that the processor-shared round robin (RR) algorithm [2, 6, 15]
is optimal. Both of these are feasible, of course.

Example 4. If we let

W
C(W, x) x 2 + a

b(x) = ize -~,

we get that

W(x) -~- (x 2 ---- --I- a) .
2t~

Unfortunately, this W violates the upper bound Wtr, which requires that Wu ~
px/(l - p) when x is large, and therefore the optimal Wwe have found is infeasible,
since it is proportional to x 2.

Example 5. Finally, consider

c (w , x) = w ,

b(x) = 2#(2/tx)e -2~x.

482 L. K L E I N R O C K AND A. NILSSON

21
A

x 1

0

/
w /

e{W, x) -
x+O,5 /

M/M/1 SYSTEM /

p-o.3 / / J
/ Jo T,MAL

-///
- - - - - ~ I I I I

1 2 3 4 5
X

Opt tmal W(x) for C(W, x) ~- W2/(x + 0 5) M / M / I
system, tL = 1, p = 0.3

FIG 1

This gives us a W of the form

W = ~ I ~ .

The solution is such that dW/dx < 0, and since this violates constraint (i), we see
that this solution is also infeasible.

5. Solution by Mathematical Programming

In Section 3 we showed one way of obtaining an optimal algorithm. The optimization
problem formulated in eq. (3.2) under the conditions (i)-(iv) may also be solved by
mathematical programming. We have carried out this method; it is a straightforward
numerical optimization [5], and we do not describe the specific method here. Instead,
we report on the results obtained for some interesting combinations of C(W, x)
and B(x).

(1) Let us choose

W
c (w , x) -

x + a '

b(x) = lie -~.

This is Example 2 of Section 4, and there we showed that the optimal algorithm
is SRR.

In Figure 1 we show the optimal W(x) obtained from the numerical procedure
and the upper and lower bounds. Clearly, we recognize this W(x) as the response
curve for an SRR algorithm. We knew this beforehand from our analytical optimi-
zation method; nevertheless, it serves as a verification of the numerical procedure.

(2) Now choose

W
C(W(x), x) = x2 + a'

b(x) = #e -~'.

On Optimal Scheduling Algorithms for Time-Shared Systems

2 c~ x,- _w /
• x" + 0.5 ,ff

- /

M/M/1 SYSTEM / /
/a - l , p=O.3 / /

UPPER BO~y///
1 - / / SOLUTION BY

/ / MATHEMATICAL
/ / / PROGRAMMING

/ /

0
0 1 2 3 4

x

FIG 2

5
OpUmal W(x) for C(W, x) = W2/(x 2 + 0.5) M / M / I

system, tt = 1, p = 0 3.

483

From Section 4 we know that the analytical method produces an infeasible solution.
The mathematical programming solution is shown in Figure 2; note that the optimal
IV(x) has been forced to stay within the permissible region. Unfortunately, this
solution is still not feasible, since we know that a realizable IV(x) cannot coincide
with Wu(x) over a measurable interval. Moreover, we have no direct procedure for
implementing that part of IV(x) which does lie in the permissible region. Thus we
conclude that there must exist other constraints on IV(x) which are unknown to us
at this time. We can, however, learn quite a lot from the optimal infeasible IV(x) as
given by the numerical procedure. A good compromise for a scheduling algorithm is
an SFB algorithm, and our numerical investigations show that the optimal cost as
obtained from the numerical method does not differ much from the cost obtained
when an SFB algorithm with suitable parameters is chosen.

(3) Now consider

W
C(w, x) -

x + a '
b(x) = 2/~(2btx)e -2~.

We know that the analytical method generates a W(x) that violates constraint (i),
that is, dW/dx _> O. The optimal solution from the mathematical programming
approach is shown in Figure 3 (of course, it will not violate the conditions (i)-(iv));
we note that this is a plausible response function, but alas we do not know how to
implement it. Once again, however, we may take advantage of the optimal algorithm
(yet unknown) and attempt a suitable approximation; indeed, let us choose a
multilevel system with two levels, namely, FCFS up to x = 1.3, followed by RR [9].
The numerical investigation shows that the optimal cost is 0.214 units and the cost
for the multilevel system is 0.218 units. Since the mathematical programming
approach yields a solution whose cost must be a lower bound on the optimal cost, and
since we have guessed a solution which is almost as good as the lower bound, we are
encouraged that we must be extremely close to the optimal feasible algorithm.

484 L. KLEINROCK AND A. NILSSON

¢

CiW, x) = w
x +0.5

M/E2/1 SYSTEM

= 1, p = 0 . 3

UPPER BOUND /

/
/

/

/
/

/
/

/
/

/

/ SOLUTION BY
/ MATHEMATICAL

/ PROGRAMMING

s s ~ LOWER BOUND
I

/

= ~ I I I I
1 2 3 4

X

FIG. 3.

5

Optimal W(x) for C(W, x) = WZ/(x + 0 5) M/Ez/I
system, ~ = I, p = 0.3.

2 j
c(w, x) - ~ +~.5

:':f ,::7 /
-~ I,--- UPPER B O U N D / ~

/ /SOLUTION BY
/ I MATHEMATICAL

/ / PROGRAMMING

/ / /

0 1 2 3 4 5
X

Optimal W(x) for C(W, x) = VW/(x + 0.5) M / E 2 / i
system; # = 1, p = 0 3

FiG 4.

(4) Finally, consider

W
C(W, x) = x + a'

b(x) = 2#(2/uc)e -2~.

Once again we get an optimal W(x) which we do not know how to implement (see
Figure 4). We also have the same kind of behavior as in Example 2, namely, that the
optimal W(x) hits the upper bound and stays there. A good approximation for

On Optimal Scheduling Algorithms for Time-Shared Systems 485

this optimal algorithm is once again a two-level system with FCFS up to x -- 1.5,
followed by FB.

In summary then, we find that the mathematical programming technique provides
us with a means for finding (possibly infeasible) solutions for W(x). These solutions,
however, do provide lower bounds on the cost C and do suggest what the optimal
feasible solution may be. Moreover, the suggested feasible solutions have costs which
often come extremely close to the lower bounds!

6. Conclusion

We have presented a new method which optimizes the scheduling algorithm in a
time-sharing system. The importance of this work is that it provides some insight
into the vast and difficult problem of synthesizing optimal queuing systems and,
specifically, single-resource models of time-sharing systems. Unfortunately, we have
not been able to formulate a complete optimization problem, since all the necessary
and sufficient conditions on W(x) are not known to us at this time. Furthermore,
some of the conditions known to us are such that they do not easily lend themselves
to mathematical optimization. The mathematical programming numerical procedure
allows us to overcome some of these difficulties. Unfortunately, it does not settle the
problem of finding feasible scheduling algorithms, since, as was shown by the
examples in Section 5, we often found an optimal W(x) that we could not implement.
However, as has been shown, we managed to derive some useful and interesting
results. Our point of view in Section 5 was to use the numerical procedure to suggest
an appropriate feasible algorithm whose closeness to optimality we could measure.

Another approach to the problem of infeasible solutmns is to "turn the problem
around," as follows. Let us begin with a known feasible IV (i.e., one which we know
how to implement) and find that class of cost functions C(W, x) which are minimized
by that 1,II (rather than seeking the W which minimizes a given C(IV, x)). Examples
of this approach may be found in [13].

Other approaches and extensions to this problem would be welcome contributions
to the field.

REFERENCES

(Note Reference [12] ts not cited m the text)
1 COrFMAN, E.G JR., AND KLEINROCK, L Feedback queuemg models for time-shared systems J

ACM 15, 4 (Oct 1968), 549-576
2 COFFMAN, E.G JR, MUNTZ, R R , AND TROTTER, H Waiting time dtstnbuUon for processor-shanng

systems. J ACM 17, 1 (Jan 1970), 123-130
3 ESTRIN, G , AND KLEINROCK, m Measures, models and measurements for time-shared computer

utilities. Proc 22nd Nat. Conf of the ACM, Washington, D C, Aug 1967, pp 85-96
4 Hsu, J Analysis of a continuum of processor-shanng models for time-shared computer systems

Tech Rep UCLA-ENG-7166, Umvensty of Cahforma, Los Angeles, Cahf., Oct. 1971.
5 KARLSSON, J On optimal time-sharing algorithms Master Th , Lund Insntute of Technology, Lurid,

Sweden, 1977.
6 KLEINROCK, L Analysts of a ttme-shared processor Nay Res Log Q 11 (March 1964), 59-73
7 KLE~NROCK, L Time-shared systems. A theoretical treatment J ACM 14, 2 (April 1967), 242-261
8. KLEINROCK, L A continuum of Ume-sharmg scheduling algorithms AFIPS 1970 Spnng JCC,

AFIPS Press, Arlington, Va., pp. 453--458
9 KLEINROCK, L, AND MUNTZ, R R Multilevel processor-sharing queuing models for ttme-shared

models Proc 6th International Teletraffic Congress, Munich, W Germany, Aug 1970, pp. 341/I-8
10 KLEINROCK, L, MUNTZ, R R, AND HSU, J Tight bounds on the average response time for processor-

sharing models of time-shared computer systems Proc IFIP Congress 71, North-Holland Publishing
Co., Amsterdam, 1977, pp 124-133

11 KLEINROCK, L A selected menu of analytical results for time-shared computer systems. In System-
programmlerung, R Oldenburg Verlag, Mumch, W Germany, 1972, pp. 45-73

486 L. KLEINROCK AND A. NILSSON

12 KLEINROCK, L., AND MUNTZ, R.R. Processor-sharing queueing models of mixed scheduling disci-
plines for time-shared systems. ~ ACM 19, 3 (July 1972), 464.-482

13 KLEINROCK, L, AND NILSSON, A On optimal scheduling algorithms for time-shared systems. UCLA
Computer Systems Modeling and Analysis Note, Univ. of California, Los Angeles, Calif., June 1974.

14. KLEnqROCK, L. Queueing Systems, Volume 1: Theory. John Wiley and Sons, New York, 1975.
15. KLEINROCK, L. Queueing Systems, Volume II: Computer Applications. John Wiley and Sons, New

York, 1976.
16. REiSER, M. Interactive modeling of computer systems. IBM Syst. J. 15, 4 (1976), 309-327.
17. SCtmAOE, L E. The queue M/G/ I with feedback to lower priority queues. Management Sci. 13

(1967), 466-4? 1.

RECEIVED DECEMBER 1977, REVISED OCTOBER 1979; ACCEPTED MARCH 1980

Journal of the Assoclauon for Computing Machinery, Vol 28, No 3, July 1981

