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ABSTRACT The problem of  fmdlng those opt imum scheduling algorithms for t ime-shared systems that 
mlmmize a cost function that depends on waiting time and required service time IS considered An 
optimality condmon which sometimes leads to infeasible algorithms is established The  procedure is 
unproved upon by use of  a mathematical  programming technique but  still does not  always generate 
feasible algorithms. These results are used as upper bounds on the performance o f  known feasible 
algorithms so that it is possible to evaluate how close to optimal the present algorithms come. 

KEY WORDS AND PHRASES tune-sharing, scheduling, scheduling algorithms, optunal-scheduhng algo- 
rithms 

cg  CATEGORIES 4 32, 4 35, 4 6 

1. Introduction 

During the last decade considerable effort has been put forth in the analysis of 
various scheduling algorithms for multiaccess time-sharing systems. The dominant 
performance measure has almost always been the mean waiting time (response time) 
conditioned on a customer's (job's) service-time requirement. However, little atten- 
tion has been given to the important problem of defining some appropriate cost 
function and then of finding that algorithm which is optimal with respect to this cost 
function. Some effort must be made to solve this synthesis problem. The original 
model for these systems was to view them as single-resource systems [6, 15]. In the 
past few years significant understanding has been gained through multiple-resource 
models using results from queuing networks [16]. As a first attempt to solve the 
optimization problem referred to above, we study only the case of the single-resource 
models in this paper. 

2. Definitions 

We view a time-sharing system as a preemptive queuing system served by a single 
(server) resource--the CPU. The model we choose is that of an M / G / I  queuing 
system [14]; that is, we assume that a Poisson source generates arrivals to the system 
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at a rate h and that the processing-time distribution B(x) is arbitrary (with density- 
function b(x )): 

P[interarrival time _< t seconds] -- 1 - e -xt, t -> O, 
P[service-requirement _< x seconds] = B(x). 

The nth moment of service time is denoted by x n. 
We define 

w(ylx ) = the density function for the waiting time of  a customer who requires x 
seconds of  service; 

W(x) = mean (conditional) waiting time for a customer requiring x seconds of  
service. 

Clearly, 

W(x) -- yw(ylx)dy. (2.1) 

Expressions for the density w(y[x) are not so easily obtained except for some 
rather simple scheduling algorithms. The mean waiting time W(x) has been obtained, 
however, for a large class of  interesting scheduling algorithms [3, 6, 7, 10, 11, 15, 17]. 

Let us now consider a cost function for a time-sharing system. The form we have 
chosen for the cost function is reasonable but really quite arbitrary, and we stress 
that there may exist other cost functions that are more realistic for a given application. 
We have been forced into defining a cost function, since the user population has so 
far failed to come up with one or a set of such functions. Our assumption is that the 
expected cost incurred by customers with service time x is a function only of  their 
expected delay and of x. Specifically, we define 

C(W, x) = cost incurred by a customer with service time x if the expected 
delay is W (we assume that C(W, x)  is convex in W); 

W = W(x, s) = expected delay for a customer with service time x if  the scheduling 
algorithm is s; 

COST(s) ffi total expected cost of using algorithm s. 

Obviously, 

COST(s) ffi C(W, x)b(x) dx, (2.2) 

and our objective is to find that scheduling algorithm that minimizes the total 
expected cost. We restrict ourselves to algorithms that use "no a priori informa- 
tion" [15]. For these algorithms we can relax the problem and minimize over 
functions W(x ). 

3. The Optimization Problem 

Our objective is to minimize the total cost with respect to W(x) or, equivalently, the 
scheduling algorithm; that is, 

I; rain C(W, x)b(x) dx. (3.1) 
W(x) 

W(x) is determined by the scheduling algorithm, which can be any "no a priori 
information" algorithm; the service time distribution B(x) also affects W(x), but we 
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assume B (x) to be given and not a function which we are permitted to vary in the 
optimization problem. 

It has been shown [10, 15] that the function W(x)  (= W for convenience) must 
obey at least four different constraints, namely, 

d W  (i) - ~ -  _> 0, 

(ii) W_< Wu (upper bound), 
(iii) W_> WL (lower bound), 

(iv) W(x) ( l  - B (x)) dx = constant (independent of the scheduling algorithm) 

px 2 
- z~ L ,  

2 0  - 01 = 
where Wu _> WL --> 0. 

Condition (i) simply states that W ( x )  cannot decrease with x. Conditions (ii) and 
(iii) are tight upper and lower bounds, where 

)tx 2 xpx 

Wu(x)  = 2(1 - p)(1 - px) + 1 - p------~' 

Xx~ 
WL(X) - 

2 0  - px)' 

and 

= ynb(y )dy  + xn(l - B(x)) ,  

px = Lx-'~. 

Condition (iv) is a conservative law, which must be valid for any work-conserving 
scheduling algorithm (we restrict ourselves to such algorithms). 

The optimization problem may now be formulated as 

fo o min C(W, x ) b ( x ) d x  (3.2) 
W 

under the conditions (i)-(iv) (where W(x) is varied by varying the scheduling 
algorithm). We recognize this problem as belonging to the class of calculus-of- 
variations problems. Unfortunately, it has been impossible to fmd a computationally 
efficient mathematical procedure which solves such a problem, excluding mathemat- 
ical programming, which we report on in Section 5. However, using just one of  the 
conditions (the conservation law), it is possible to obtain a relatively simple expression 
for W that optimizes C. For simplicity we assume that W is a continuous function; 
unfortunately (for the purists), this means that the large and interesting class of 
multilevel systems [9, 111 are not included among the algorithms we consider. 
(However, the selfish scheduling algorithms (SSA) [4, 8, 151, which may use these 
multilevel systems, will smooth out their discontinuities and are included among our 
algorithms.) Of greater importance is the observation that since we have kept just 
one of the four conditions, we may end up with a solution for W ( x )  which violates 
some (or all) of the other three conditions. 

Yet more annoying is the fact that even if we do find a W which falls into the class 
of functions defined by (i)-(iv), it still may not be feasible, since conditions (i)-(iv) 



480 L. K L E I N R O C K  A N D  A. NILSSON 

are necessary but not sufficient; further, it may be that we have no idea how to 
implement such a scheduling algorithm even if it can be shown to be feasible. 

These problems arise since there may exist other constraints on W unknown to us 
at this time. That is, we can make use of  some known necessary conditions on W(x) 
but are currently unable to state the necessary and sufficient conditions on IV. 
However, we make use of the following important observation. 

If  we optimize over a constraint space which includes some, but not necessarily all, 
of the constraints, then any solution which we obtain and which is also reahzable 
by means of a known algorithm must be the true optimum solution (obviously it 
must satisfy all the feasibility constraints if it is realizable). 

Thus the optimization problem may be formulated as 

min C(W, x)b(x)dx, (3.3) 
W 

under the constraint 

fo = W(x)(1 B(x))dx (3.4) L. i 

A straightforward approach (using the Lagrange multiplier technique) gives us the 
following necessary condition for optimality (note that we have assumed that 
C(W, x) is convex in W(x)): 

O 
OW (C(W, x)lb(x) = k(1 - B(x)), (3.5) 

where k is a Lagrange multiplier. An optimal W(x), which we denote by W for 
simplicity, can be derived from this relation, although it may possibly be infeasible, 
as we have said. We conclude that the result of  this optimization procedure is a class 
of  optimal W only some of which are feasible. 

In order to proceed with some examples and special cases, we require the 
specification of the cost function C(W, x). It is difficult to find a generally agreed- 
upon function of this type, and so we are left in the position of  having to invent 
some. This we do in the following sections as we study some examples and extensions. 

4. Simple Examples 

In this section we demonstrate the above method through some simple, yet important, 
examples and also show that it is possible to end up in the feasible or infeasible 
regions. 

Example 1. Let us choose 

C(W, x)  = W, 
b(x ) = lie -~'x. 

This is a reasonable but simplistic cost function. 
From eq. (3.5) we find that 

k 
W -  2~' 

and therefore W(x) is independent of x. 
One feasible scheduling algorithm which gives us a W independent of x is FCFS 

(first come first served), and so FCFS is one optimal choice (from among many, in 



On Optimal Scheduling Algorithms for Time-Shared Systems 481 

fact, from among all nonpreemptive algorithms which operate independent of  the 
service time). 

Example 2. Here we choose 

W 
C(W, x)  - x +  a' where a _> 0, a constant, 

b(x ) = #e -~. 

This cost function is fairly reasonable in that it behaves sensibly with regard to W 
and x. 

The optimal W must be (eq. (3.5)) 

k 
W = ~ ( x  + a). 

A feasible algorithm which gives us this optimal W is one picked from the SSA 
family, namely, SRR (selfish round robin) [4, 8, 15]. 

If, however, b(x) is chosen as 

the optimal Wis 

b(x ) = 2#(2p, x)e-~x, 

W ( x ) = ~ ( x  +a)  l +  . 

This W(x) clearly violates constraint (i), dW/dx  > 0, for small x. This solution is 
infeasible. 

Example 3. Now consider 

W 2 
c ( w , x )  - , 

x 

b(x ) = 2#(2/zx)e -~x. 

This combination once again gives us that SRR is optimal! On the other hand, with 
b(x) = ize -~  we fmd that the processor-shared round robin (RR) algorithm [2, 6, 15] 
is optimal. Both of these are feasible, of course. 

Example 4. If  we let 

W 
C(W, x) x 2 + a 

b(x ) = ize -~, 

we get that 

W(x) -~- (x 2 ---- --I- a ) .  
2t~ 

Unfortunately, this W violates the upper bound Wtr, which requires that Wu ~ 
px/( l  - p) when x is large, and therefore the optimal Wwe have found is infeasible, 
since it is proportional to x 2. 

Example 5. Finally, consider 

c ( w ,  x )  = w ,  

b(x) = 2#(2/tx)e -2~x. 



482 L. K L E I N R O C K  AND A. NILSSON 

21 
A 

x 1 

0 

/ 
w / 

e{W, x) - 
x+O,5 / 

M/M/1 SYSTEM / 

p-o.3 / /  J 
/ Jo T,MAL 

-/// 
- - - - -  ~ I I I I 

1 2 3 4 5 
X 

Opt tmal  W(x) for C(W, x) ~- W2/(x + 0 5) M / M / I  
system, tL = 1, p = 0.3 

FIG 1 

This gives us a W of the form 

W = ~ I  ~ .  

The solution is such that dW/dx < 0, and since this violates constraint (i), we see 
that this solution is also infeasible. 

5. Solution by Mathematical Programming 

In Section 3 we showed one way of obtaining an optimal algorithm. The optimization 
problem formulated in eq. (3.2) under the conditions (i)-(iv) may also be solved by 
mathematical programming. We have carried out this method; it is a straightforward 
numerical optimization [5], and we do not describe the specific method here. Instead, 
we report on the results obtained for some interesting combinations of  C(W, x) 
and B(x). 

(1) Let us choose 

W 
c ( w , x )  - 

x + a '  

b(x ) = lie -~. 

This is Example 2 of Section 4, and there we showed that the optimal algorithm 
is SRR. 

In Figure 1 we show the optimal W(x) obtained from the numerical procedure 
and the upper and lower bounds. Clearly, we recognize this W(x) as the response 
curve for an SRR algorithm. We knew this beforehand from our analytical optimi- 
zation method; nevertheless, it serves as a verification of the numerical procedure. 

(2) Now choose 

W 
C(W(x), x) = x2 + a' 

b(x ) = #e -~'. 
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From Section 4 we know that the analytical method produces an infeasible solution. 
The mathematical programming solution is shown in Figure 2; note that the optimal 
IV(x) has been forced to stay within the permissible region. Unfortunately, this 
solution is still not feasible, since we know that a realizable IV(x) cannot coincide 
with Wu(x) over a measurable interval. Moreover, we have no direct procedure for 
implementing that part of  IV(x) which does lie in the permissible region. Thus we 
conclude that there must exist other constraints on IV(x) which are unknown to us 
at this time. We can, however, learn quite a lot from the optimal infeasible IV(x) as 
given by the numerical procedure. A good compromise for a scheduling algorithm is 
an SFB algorithm, and our numerical investigations show that the optimal cost as 
obtained from the numerical method does not differ much from the cost obtained 
when an SFB algorithm with suitable parameters is chosen. 

(3) Now consider 

W 
C(w, x )  - 

x + a '  
b(x) = 2/~(2btx)e -2~. 

We know that the analytical method generates a W(x) that violates constraint (i), 
that is, dW/dx _> O. The optimal solution from the mathematical programming 
approach is shown in Figure 3 (of course, it will not violate the conditions (i)-(iv)); 
we note that this is a plausible response function, but alas we do not know how to 
implement it. Once again, however, we may take advantage of  the optimal algorithm 
(yet unknown) and attempt a suitable approximation; indeed, let us choose a 
multilevel system with two levels, namely, FCFS up to x = 1.3, followed by RR [9]. 
The numerical investigation shows that the optimal cost is 0.214 units and the cost 
for the multilevel system is 0.218 units. Since the mathematical programming 
approach yields a solution whose cost must be a lower bound on the optimal cost, and 
since we have guessed a solution which is almost as good as the lower bound, we are 
encouraged that we must be extremely close to the optimal feasible algorithm. 
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(4) Finally, consider 

W 
C(W, x )  = x +  a' 

b(x ) = 2#(2/uc)e -2~. 

Once again we get an optimal W(x) which we do not know how to implement (see 
Figure 4). We also have the same kind of behavior as in Example 2, namely, that the 
optimal W(x) hits the upper bound and stays there. A good approximation for 
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this optimal algorithm is once again a two-level system with FCFS up to x -- 1.5, 
followed by FB. 

In summary then, we find that the mathematical programming technique provides 
us with a means for finding (possibly infeasible) solutions for W(x). These solutions, 
however, do provide lower bounds on the cost C and do suggest what the optimal 
feasible solution may be. Moreover, the suggested feasible solutions have costs which 
often come extremely close to the lower bounds! 

6. Conclusion 

We have presented a new method which optimizes the scheduling algorithm in a 
time-sharing system. The importance of  this work is that it provides some insight 
into the vast and difficult problem of synthesizing optimal queuing systems and, 
specifically, single-resource models of time-sharing systems. Unfortunately, we have 
not been able to formulate a complete optimization problem, since all the necessary 
and sufficient conditions on W(x) are not known to us at this time. Furthermore, 
some of the conditions known to us are such that they do not easily lend themselves 
to mathematical optimization. The mathematical programming numerical procedure 
allows us to overcome some of these difficulties. Unfortunately, it does not settle the 
problem of finding feasible scheduling algorithms, since, as was shown by the 
examples in Section 5, we often found an optimal W(x) that we could not implement. 
However, as has been shown, we managed to derive some useful and interesting 
results. Our point of view in Section 5 was to use the numerical procedure to suggest 
an appropriate feasible algorithm whose closeness to optimality we could measure. 

Another approach to the problem of infeasible solutmns is to "turn the problem 
around," as follows. Let us begin with a known feasible IV (i.e., one which we know 
how to implement) and find that class of cost functions C(W, x) which are minimized 
by that 1,II (rather than seeking the W which minimizes a given C(IV, x)). Examples 
of this approach may be found in [13]. 

Other approaches and extensions to this problem would be welcome contributions 
to the field. 
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