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Abstract

The dynamic behavior and stability of packet switching in a random multi-access

broadcast data communication channel is considered.

We give quantitative esti-

mates for the relative stability of these channels and discuss the tradeoff among

channel stability, delay and throughput.
for channel control procedures.

1. INTRODUCTION

Random multi-access broadcast channels have been
studied in the past [1,2,3,4,5]. (Such channels

are also referred to as ALOHA channels.) These pre-
vious studies obtained steady state performance re-
sults for throughput and/or delay under the assump-
tion of equilibrium conditions. Often this assump-
tion is not satisfied,in which case the aforemen-
tioned performance applies only for a (possibly
small) interval of time. In this paper we investi-
gate the effect of this phenomenon.

2. THE MODEL

2.1 MODEL DESCRIPTION

The broadcast channel is assumed to support a large
number (Nm) of active terminals. Each terminal

has buffer space for exactly one (fixed length) mes-
sage packet. All terminals are assumed to synchro-
nize their packet transmissions into fixed channel
time slots. Throughout this paper, time is ex-
pressed in units of channel slots. Only when the
terminal buffer is empty, may a new message packet
be generated (by the terminal's external source)
and this will occur with probability o in a slot.
When simultaneous independent packet transmissions
are attempted by more than one terminal, these
packets "destroy" each other and must be retrans-
mitted at a later time [4]. _Such packets are said
to be backlogged. We let N~ be a random variable
representing the total number of backlogged packets

in the channel and St be the combined input rate
of packets into all terminals at time t. The vec-

tor (Nt,St) is defined to be the channel state
For Nt = n,
(Nt,St) = (n,(Nm - n)o). Note that the channel in-

vector or channel load at time t.

put rate St decreases linearly as Nt increases.

In slotted satellite channels (see [4]) packets

These considerations indicate the need

which "collide" at the channel are retransmitted
(after a round-trip propagation delay of R slots)
during one of the next K slots, each such being
chosen at random with probability 1/K. Thus re-
transmission takes place on the average R + (K+#1)/2
slots after the previous transmission. This retrans-
mission scheme is difficult to analyze and so we
assume the simpler scheme** whereby every backlogged
packet independently retransmits with probability p.
This is an excellent approximation for the slotted
satellite channel above as shown by simulations for
moderate to large K when we choose

- 1
P= x> X+ 0)/2

As in [4] we assume R = 12 and we express our
numerical results in terms of K (using Eq. (1))
rather than p.

N

2.2 CHANNEL THROUGHPUT

We define Sout

put) rate of the channel, which is the probability
of exactly one (successful) packet transmission in a

channel slot. For the model above, if (Nt,St) =

to be the delivered output (through-

(n,(Nm - n)o) then
n Nm-n-l
Sout = (1 -p) (Nm - n)o(l - g)
n-1 N,n
+np(l - p)” " - 0) (2)
In the 1limit when Nm + o and 0 + 0 (such that

S < ») we have the infinite population model

NHP =
in which new packets are generated for transmission
over the broadcast channel at the constant Poisson
rate S. In this case Eq. (2) reduces to

)n-le—S

-S
Sgue = (1 - P)'Se™ + mp(1 - p 3)

[¢)

*This research was supported by the Advanced Research Projects Agencybof the
Department of Defense under Contract No. DAHC15-73-C-0368.

**This is a realizable scheme in radio channels with negligible propagation delays.
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This expression is very accurate even for finite
Nm if o << 1 and if we replace S =N 0o by

'S = (Nm - n)o.

In Fig. 1, for a fixed K we show the behavior of
S as a function of the channel load (n,S) as

out
expressed in Eq. (3). Note that there is an equi-
librium contour in the (n,S) '"phase plane' on
which the channel input rate S is equal to the

In the shaded region

channel throughput rate Sout'
enclosed by the equilibrium contour, S
S; t
- exceeded!). The area of the shaded region may be
increased by increasing K as shown in Fig. 2

where a family of equilibrium contours are dis-
played.

sout
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elsewhere S > Sou (the system capacity is
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Fig. 1 Channel Throughput Rate as
a Function of Load
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Fig. 2 Equilibrium Contours

3. TIME VARYING INPUTS

Consider the case in which Nm = Nm(t) as for

example shown in Fig. 3. We use the fluid approxi-
mation [6] for the trajectory of the channel state
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vector (Nt,St) on the (n,S) plane as sketched in
Fig. 4; we show two possible cases corresponding to
Fig. 3 for different values of NS‘ (The arrows

indicate the directions of "fluid" flow.) The solid
line (case 1) represents a trajectory which returns
to the original equilibrium point on contour (j
despite the input pulse. The dashed line (case 2)
shows a less fortunate situation in which the de-
crease in the channel input at time t, is not suf-
ficient to bring the trajectory back ifito the '"safe"
region. Eventually the channel will be paralyzed as
a result of an increasing backlog and a vanishing
channel throughput rate.
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Fig. 4 Fluid Approximation Trajectories
We have demonstrated channel "instability' due to a
time varying input. Next we study the conditions

under which the channel with a stationary input is
"'unstable." '

4. STATIONARY INPUTS
4.1 CHANNEL STABILITY

When both Nm and O are constant in time we have

a "stationary" input. For this case we define the
channel load line in the (n,S) plane as the line
S = (Nm - n)G. A channel is said to be stable when

its load line intersects (nontangentially) the equi-
librium contour in exactly one place.

4,2 STABLE AND UNSTABLE CHANNELS

In Fig. 5(a) we show an example of a stable channel
and its operating point. If Nm is finite, a

stable channel can always be achieved by using a



sufficiently large K (see Fig. 2). Of course, a

large K implies large average packet delays which
may not be desirable [4].
n n
Nm Nm
CHANNEL CHANNEL
OPERATING OPERATING
POINT POINT
nc
Mo
S
S s,
(a) (b)

Fig. 5 Stable and Unstable Channels

In Fig. 5(b) we show an example of an unstable chan-
nel. (Note that a load line which misses or is

only tangential to the equilibrium contour is also
unstable by our definition.) The point (no,SO)

is the desired operating point since it yields the
largest channel throughput and smallest packet de-
lay. The channel, however, cannot maintain equi-

librium at this operating point indefinitely since

Nt is a random process; that is, with probability

one, the backlog Nt crosses the "critical' value
n, in a finite time and as soon as it does § ex-

ceeds S Under this condition, although there

out”
is a small probability that Nt may return below
n., all our simulations showed that the channel

state vector (Nt,St) accelerated up the channel
load line producing an increasing backlog and a
vanishing throughput rate. In this state, the chan-
nel was disabled and external intervention was
necessary to restore proper channel operation.

4.2 A STABILITY MEASURE

From the above discussion and referring to Fig. S(b),
we divide the channel load line into two regions:

the safe region consisting of the channel states
{(n,5)Tn < nc} and the unsafe region consisting of

the channel states {(n,S)|n> n_}. A good stabil-

ity measure (for these unstable channels!) is the

average time to exit into the unsafe region start-
ing from a safe channel state. To be exact we de-
fine FET to be the average first exit time into

the unsafe region starting from an initially empty
channel (zero backlog size). FET will be used as

our measure of channel stability. 1Its derivation

and an efficient computational procedure are given
in [7].

5. NUMERICAL RESULTS

As in [4], all our numerical computations assume a
SOKBPS satellite channel with 1125 bit packets and
a round-trip propagation delay of 0.27 second (giv-
ing R = 12 and there are 44.4 slots in a second).
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5.1 AVERAGE FIRST EXIT TIMES (FET)

In Fig. 6 we have shown FET as a function of K
for the infinite population model and for fixed
values of the channel throughput rate S0 at the

channel operating point..
model results give us the
shown in Fig. 7. 1In Fig.
tion of Nm for K =10

The infinite population
worst case estimates, as
7, we show FET as a func-

and four values of So'
The channel FET increases as Nm decreases and
there is a critical Nm below which the channel is

always stable in the sense of Fig. 5(a).
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Fig. 7 FET as a Function of Nm

In Fig. 6 we see that the channel stability (FET
value) can be improved either by decreasing the
channel throughput rate or by increasing K (which



in turn increases the average packet delay). For
example, if we limit So below 0.25 and using

K = 10 the channel enters the unsafe region only
once every 2 days on the average.

5.2 STABILITY-THROUGHPUT-DELAY TRADEOFF

In Fig. 8 we show two sets of throughput-delay per-
formance curves with guaranteed FET values. (For
comparison we have also shown as a lower bound the
optimum performance curve which was obtained in [4]
without regard to channel stability.) The first
set consists of three solid curves corresponding to
an infinite population model with channel FET > 1
day, 1 hour, or 1 minute. The second set consists
of two dashed curves corresponding to a finite popu-
lation of 150 terminals with the channel FET 2 1
day or 1 hour. This figure displays the tradeoff
among channel stability, throughput, and delay.
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Fig. 8 Stability-Throughput-Delay Tradeoff

6. CONCLUSION

We have examined stability conditions for a packet
switched random multi-access broadcast channel sup-
porting a large number of terminals. For an un-
stable channel, any throughput-delay performance
results obtained under steady state assumptions
(1,2,3,4,5] will be achievable only for finite per-
iods of time. This observation has been quantified
here by the definition of FET as a measure of chan-
nel stability. Strategies are currently being
studied to control this phenomenon. Preliminary
results [7] show that the channel may be dynami-
cally controlled in order to achieve truly stable
throughput-delay performance close to the optimum.
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