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ABSTRACT

We consider the problem of multi-access control of a shared communication
channel in a multi-hop Packet Radio Network. A decentralized notion of
optimal channel-sharing is introduccd and necessary conditions for optimal
transmission policies are derived. These conditions possess an intuitively
simple yet powerful interprctation of a balance principle. The optimality
rules are very general and imply, as specific instances, a diverse class of
known rules such as Abramson's optimal Slotted-Aloha and the optimal Urn
scheme, previously introduccd by the authors. Moreover, the rules lend

themselves to a simple implementation of a class of decentralized hierarchical
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decision algorithms, which includes some Slotted-Aloha control algori
that have previously been explorcd as well as new, though still unexplored,
algorithms. The preposcd algorithms decompose the problem into &
short-term distributed decision probiem of adapling transmizzion rights to
local loads and the determination of lonf-renge centralized palicies to obtain

global goals (e.g., priorities).

*This research has becn supportcd by the Advanced Research Projects Agency
of the Department of Defense under contract number MDAS03-77-C-0272.
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INTRODUCTION
The environment and the model

In what follows we consider a multi-hop Packet Radio Network (PRNET) [1,2,3,4,5]
whose member Packet Radio Units (PRUs), PRy,PRj, ... PRy, all use a common radio
communication channel to communicate with each other. Data packets are passed
around the network in a hop-by-hop fashion until they reach their destinations. At
each hop, a data packet is stored and then forwarded using a broadcast transmission
over the common channel. Not all PRUs can hear each other due to range and
topography limitations. The topology of channel sharing is specified in terms of a
hearing graph H, whose i-th vertex represents PR; and whose edges represent the
existence of a communication link (i.c., a hop) between the respective PRUs. Note
that we implicitly assume the hearing relation between PRUs to be symmetric. This
assumption is not necessary for the analysis that we carry out, but it simplifies the
computational details.

We assume that the communication channel is time-slotted, i.e., transmissions are
synchronized to slots. The channel time slots may be slightly longer than a packet
transmission time and possibly of variable length (i.e., to account for propagation
delays and/or access control mechanisms) [5,6]. This assumption, while essential for
the analysis carried out in this paper, does not present a severe limitation upon our
approach and results, which can be generalized to non-siotted channels.

Packels arrive at the different PRUs from externai, bursty [7,8], sources. They are
stored and forwarded to their destinations, following some routing algorithm. For
simplicity we assume that all packets are destined to a single sink and that the
routing is fixed (at least over the time period of interest). Thus the routing is
completely described by specifying for each PRU, say PR;, its immediate next hop
destination PRd(i)- Again, the assumption of fixed routing may be easily replaced
with a model of dynamic routing (e.g., by replacing the single destination function
d(i) with a probability distribution over the immediate destinations [9]; this method
may also be used to account for multiple destinations); however, it simplifies the

computational model.

PR; is said to inter fere with PR; if PRy(j) hears PR;. Interference is a nonsymmetric
binary relation upon the nodes of the PRNET. We shall use the mnotation
1(J) = {1 | PRy(y) hears PR; } to denote the set of all PRUs that interfere with PR;.
We shall assume that when PRj transmits a packet, it succeeds iff all PRUs in I(J)
are silent. Again it is possible to include capture effects in the model at the price
of some extra computational dctails.

With the above model, the PRNET is a large distributed service facility that shares
the communication resource, i.e., channel slots. An access scheme is an algorithm to.
decide which busy PRUs (.., thosc having transmission-pending packets in their
buffer) should have the right to transmit during the coming slot. ;

Let us define the space of all possible randomized actions that the PRNET may
choose during each slot as 4 =[0,1)V where an  action (also transmission policy) peA,
r=(py.P2, ...pN) is a choicc of a probability O0gp;€1 for each PR;. The
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probability p; is that of PRy having a transmission right during the coming slot. A
busy PRU tosses a coin with a transmission-bias pj and transmits according to the

result.

The objective of the decision mechanism is to maximize the rate of successful
transmisstons (i.e., those not interfered with) by selecting a proper transmission
policy. Note that our model is general enough to describe any multi-access scheme
to a shared, time-slotted channel. One scheme and another differ only in the

method used for selecting a transmission policy.

Decentralization of the ob jective

The key constraint to the decision problem that the PRNET faces is the absence of a
centralized mechanism that is aware of the network state and that may decide and

enforce the decision upon the network members.

There are a few possible approaches to the problem of decentralization. One possible
approach is to retain the objective function, derive a centralized solution, and relax
the result to enable decentralized implementation. In what follows we assume a
dual epproach. Namely, we retain the decentralization but relax the objective to

enable a solution.

The idea is simple: if the community of PRUs is incapable of optimizing a
centralized performance index, let us replace the objective with local, decentralized,
objective functions. A natural choice for local performance measures is to let PRy
choose p; so as to maximize his individual throughput. Formally, let

Bt= (5}"{% .. ,“6}\,)' designate the occupancy process, that is,

1 if PR; has a packet ready for
transmission, at slot t.

ol
L= 3
(113

0 otherwise.

Let n'(b) designate the distribution of B'.

We define the throughput procecss

1 if PR; successfully delivers a packet
to his destination at slot t.

)
laad= 3
mn

0 otherwise.

*We use 3 and @ to denote a random variable end its mean, respectively.
Vectors are underlined and sets arc capitalized.
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We can express the mean throughput of PR;, conditioned upon :6_‘ = b, as follows:

. pi[](1-pp AT D=1
J'Gli(h)
(1) s}p) =EEHE=bl=1

0 if by=0

where

(2) 1(d)2{J | J#4, by=1 and PRy interferes with PR; )
The expected throughput of PRy at slot t, is given by

(3) 5H@ =D nd sidp
be{0,1}N

where nt (b) is the distribution of Bt

To simplify the notation we shall eliminate the time indexing t from all
expressions whenever there is no danger of confusion. Equation (3) defines a
continuous map S=S(p) of policies onto attainable throughputs at slot t (here
S=(354,35,...3y)). The hypercube of policies A=[O,13N is mapped onto a
compact domain S =S(4) of all attainable throughputs. We shall call the map
S = S(p): the Abramson throughput operator.

We shall consider 3j(p) as the payoff function that PR; attaches to the policy p.

The problem of centralized optimization 1is replaced with a decentralized
reconciliation of the individual objective functions of community members. This is
a typical problem of mathematical economics. We shall assume the standard tools
thereof to derive a solution [10,11].

A throughput vector S is called Parefo optimal iff
a) it is attainable, i.e., S=S(p) for some transmission policy p.

b) 1t is not dominated by any other throughput, i.e., there exists no attainable
S, such that §'>S. (Here §'>S means that Vi 5§y, with at least one
strict inequality.)

A policy p that obtains a Pareto-optimal throughput is called Pareto-optimal policy.
Pareto-optimal policies are precisely those policies for which we cannot improve .the
payoff of one PRU without decreasing the payoff of some fellow PRUs.

With the model of the previous scction and the decentralized notion of optimality
introduced in this section, we are now ready to solve the problem of optimal
decentralized policies. In the following scction we characterize Pareto-optimal
policies using some standard analysis. We then interpret the results in terms of a
surprisingly simple rule of optimalitye
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Let us reconsider the Abramson map of the previous section:

(1) §=D. n(d)sbp
be{0,1}N

Consider a Pareto optimal policy p° obtaining a throughput S°=5(p°). Let p be an
admissible transmission policy differing from p°® by a small perturbation Agég-go.
If S is the throughput obtained by p, then S differs from S° by a small

perturbation AS # 5-5°. The conditional throughput S(b,p), as given by equation (1)
of the previous section, is a smooth function of p. Therefore AS is related to &p
through a linear transformation

(2) b65=38S4Lp
described by the matrix

(3) 352> n(d)as(bp®) =
b o

=D n(b) 3s(b.p®)
b X

which we call the Jacobian matrix of the network. The transformation described by (2)
{s a linear approximation of the nonlinear Abramson map near the Pareto optimal

policy pC.

Let D(z®) denote the set of admissible perturbations of p°, i.e., those pe-turbations
corresponding to feasitle policies. Clearly, _QED(;QO). Moreover, if p°® is «n internal
point of the set of admissible polictes, then D(p°) contains a neighborhond of zero.
If the Jacobian matrix (3) is non-singular, then the image of D(p°) under the map
defined by the Jacobian matrix, i.e., the set of admissible perturbations of g%,
contains a neighborhood of zero. This contradicts the extremality of _S_°. Therefore
the Jacobian matrix of the network must be singular at P

What {f p° is not an internal point of A? If p°® is internal to any face of the
hypercube A, then it is possible to show that by properly restricting the Abramson
operator to a subnetwork, the recsulting operator must have a singular Jacobian
matrix. The demonstration involves some lengthy combinatorial arguments that are
of no interest for us. Therefore we shall proceed to derive necessary conditions for
Pareto optimality assuming that p® is an internal point of A. The conditicns that

we derive may be easily verified to hold when p® is not internal to A and even

when p° is an extreme point of A.
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We conclude: If p°® is a Pareto-optimal policy obtaining a throughput S°, then the
.ilacobian determinant of the network (or a proper subnetwork) must be zero. That
S,

(4) 0= ] > n(b)3s;(b,p°) |
b 3p;

The generic elements of the Jacobian are easily computed to be

e
l-pi
(5) Si524
Sy
L 1-py

where

E; 22 n(d)X1-py) [](1-p)
{biv;=1} Jel;(b)

is the expected number of slots that are empty at the destination of PR; given that it.is
busy, and

-~

ST n@op; [] (1-px)  if jinterferes with {
{blby=by=1} kel;(b)

B

Si/5*

_ O if jdoes not interfere with i

is the expected number of successful packets that PR; delivers given that PRj is busy and
that PRy interferes with PRy it is O otherwise.

Let us consider a typical one-hop network (in which all PRUs hear each other). In
this case the optimality condition (4) may be expressed as

.
by -8172 =S1/3---51/N

'52/1 Ez ’szla ...... ‘SZ/N
. -S371 -S3/2 Eg-ee-emS3/N
LBV DI MIBREE | s varsas pe i v xe
-51/1 -Si/z ...... El ..... ‘SI/N

..........................................
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APPLICATIONS

The ecology of channcl sharing

The optimality conditions of the previous section represent the rational behavior of
a resource-sharing network community. If the users are too rude, the common
resource may be polluted with collisions. If the users are too polite, they may
leave much of the resource under-utilized. Pareto-optimal policies make the best
expected use of the channel in the sense that every slot wasted in silence by one
PRU is, on the average, utilized by another. The pollution of the channel by
collisions or its under-utilization during some slots is not the result of imprudent
network behavior but rather the consequence of the statistical fluctuations of the
service demands. Pareto-optimality thus represents maximal prudence in the face of
lady luck. :

The optimality conditions are expressed in terms of a set of Lagrangian multipliers
that we interprcted in the precvious scction as throughput prices. For each
Pareto-optimal policy there exists a price vector ¢ for which "silence" equals
*throughput" at each network node. Looked at in another way, it is possible to
select a price vector and consider Pareto-optimal policies corresponding to that
pricing policy. By properly choosing a pricing policy for the network, we may
approximate global objectives through the decentralized optimization mechanism.

For instance, let us consider an extreme case of dynamic price adjustment whereby
a set of PRUs is selected during each slot to have infinite cost, while all other PRUs
are assigned a zero cost. By properly sclecting the PRUs whose cost is infinite, a
perfect slot-by-slot scheduling of transmissions 1is obtained. This merely:
hypothetical scheme is meant only to illustrate the potential power of dymamic
pricing. :

In the absence of a centralized scheduling mecchanism, it is still possible to adapt
the pricing to the long-range statistics of the network state and/or global priorities.
The decomposition of the decision mechanism to local individual decisions (i.e.,
adjustment of individual transmission policies to balance ‘“silence" with
“throughput") and to a global pricing mechanism generates a useful control
hicrarchy. Short-term decisions requiring rapid adaptation are arrived at by local
PRUs, while long-range, global adaptation is decided by higher (more coordinated)
mechanisms (e.g., through pricing).

Optimal Slotted-ALOHA policies

Let us consider the case of a one-hop PINLT where the transmission policy is fixed.
If the queuing system is to bc stable, then it should be able to properly handle a
heavy traf fic condition We shall employ our general optimality conditions to
derive the heavy-traffic results of Abramson [3]. The heavy-traffic condition may
be expressed in terms of the occupancy distribution. Namely, n(b) =8(b,1), where 1
is the vector all of whose coordinates are 1 and §(b,1) is Dirac’'s delta distribution,
concentrated on the occupancy-state 1.

If all PRUs are identical, then wc may apply the optimality condition expressed by
equation (7) of the previous scction. That is, "silence" is equal to (l—p)N and
"throughput" equals (N_—l)p(l-p)N‘l. The two expressions are equal to each other
iff p=1/N, which is an instancc of Abramson’s optimality conditions. If the PRUs
arc not {dentical, the morec general condition py+ps+...Pxy =1 may be obtained if
we note that the Jacobian determinant of the network reduces to the Jacobian
determinant obtained by Abramson [3] (Abramson's Gy correspond under heavy

traffic to p;).



In particular, consider the symmetric case when "all PRUs are identical; the
determinant becomes (after some easy algebra)

95| = (E-(N-1)S] [E+5IN~1

where E:EI =Es;=...=Ey and §25“3 for all 1 and § (1#J).

This expression i{s zero {ff
(7) E=(N-1)5

The left-hand side represents the expected number of slots that a busy PRU leaves
empty at his destination; we shall call this expression silence. The right-hand side
represents the amount of throughput, procduced by the rest of the network, that a
busy PRU sees. We shall call this last expression tAroughput. Thus, @ necessary
condition for an optimal selection of transmission policies is that each PRU equate "silence” with

“throughput”.

We conclude for the symmetric one-hop PRNET that if a policy is Pareto-optimal,
then each busy PRU trades the slots that he wastes in silence for an equal number
of slots successfully used by all these PRUs that may be harmed by his

transmission.

Let us return to the determinant of the general network (4). If it is to be zero,
there should be a linear combination of its rows that yields a zero vector. Let us
denote the coefficients of such a linear combination g¢=(cy,cp,...cy). The

optimality condition

ciEg =D €55i/1
{J] 1€1(§))

c2Ez= Q. c1Sy/2
{4] 2€1(})}

.
-

.

eNEn =D c5Sy/N
{3 Nel(d))

may be interpreted as follows. Each PRU PRi is endowed with a slot dollar cost cy

reflecting his relative significance in the network. The left-hand side of each
expression represents the value of silence of the respective PRy. The right-hand side

represents the value of success for the busy PRUs whose transmission PRy may
harm, given that PRi is busy. Thc optimality condition requires that eack PRU, once busy,

should consider the needs of his fellow PRUs. He should be ready to trade his silence for en
equivalent dollar-worth amount of their throughput, by selecting his transmission policy to balance the

two quantities.
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Equating the two guantities we find that k should satisfy

1 k

n-1 N-k-n+1

from which follows

This is precisely the optimal choice of Xk for the urn scheme as given by egquation
(14) of section 2.2.2 in [12]. Thereforc, a busy PRU should select k so as to equate
his expected silence with the throughput of others.

DECENTRALIZED ALGORITHMS TO OPTIMIZE TRANSMISSION POLICIES

The characterization of optimal transmission policies, obtained in the previous
section, may serve as a basis for a sct of distributed access control algorithms. The
algorithms are quasi-static in the scnse of [14]. The decision making is completely
decentralized. The information required for a decision is available to each PRU, at
no extra cost, through the acknowledgment mechanism.

The algorithms consist of a decentralized jterative process that tries to balance
“throughput" and ‘"silence". The problem is essentially that of solving a large
stochastic system of balance equations through gradient iterations. The details of

The algorithms consist of a deccentralized iterative process that tries to balance
"throughput" and "silence". The problem 1is essentially that of solving a large
stochastic system of balance eguations through gradient iterations. The details of
the algorithms, as well as the problems of convergence, are beyond the scope of this
paper and will be presented in the future.

Let us recall the optimality rule: For each PR;

A

where ’}\11 is the expected dollar-value of empty slots at the destination of PRy,
A

when FR; is busy. §; is the expected dollar-value of the throughput of those PRUs

with which PR; may interfere when it is busy.

The algorithm to implement the rule (1) consists of

1. Estimation Each PRU gathers acknowlegments statistics during his busy
periods. We assume that both successful packet deliveries and collisions are
acknowledged. PRy can monitor the acknowledgments sent by all PRUs that

he may hear. Therefore PR; obscrves '33 for all PRJ such that i€l(j), from
which he may compute 7::‘:2 c%”’j where the summation extefxds
over all PRJ with which IR, may interfere (i€l(j)). The conditional

expectation of S} given that FPR; is busy, is precisely the “throughput"



The optimal URN-Scheme

Let us consider the optimal Urn-scheme developed in [12,13]. We consider a
one-hop PRNET in which each mcmber is aware, at each slot, of the total number n
of busy PRUs (or an estimate of n). Of all the PRUs, k are selected tc have
transmission rights, while the rest kcep quiet. Each PRU selects the same k lucky
PRUs by drawing k numbers from a pscudo-random number generator. All PRUs use
the same generator and the same secd (which may be a simple time function), thus
deciding on identical k "lucky" T'RUs. Therefore, the selection of the kK PRUs is
decentralized and randomized, yet coordinated. The urn-scheme provides for a
smooth adaptivity to the load by adjusting the value of k as 2 function of n.

The name "urn-scheme" derives from the analogy to the problem of sampling k
balls from an urn containing n black (for busy) balls and N-n white (for idle)
balls. The objective is to choosc k to maximize the probability that the sample
contains exactly one black ball. Thc optimal Urn-scheme selects the value of k to
be |[N/n).” For instance, when n=1, all k=N PRUs are given the right of transmission
(but only one will actually transmit); when n approaches N (i.e., heavy-traffic), k
approaches 1, l.e., only onc PRU is given the right of transmission (due to the
heavy load, it is very likely to be a busy PRU). It was shown in [12,13] that the
urn-scheme converges to optimal Slotted-ALOHA for light traffic and to
Time-Division-Multiple-Access for heavy traffic, while outperforming both for a
medium load.

In [13] we have described onc possible implementation of the urn-scheme. We shall
now sec that the optimal valuc of k, sclected by the urn-scheme, is the very value
of k that satisfies the optimality conditions of the previous section.

We consider the decision making proccss from the point of view of a given busy
PRU. “Silence" occurs if all k owners of transmission rights happen to be other
nonbusy PRUs. The probability that this occurs, given that our PRU is busy, is

N-k-1
n-1
N-1
n-1

The probability of a successful usc of a slot by another PRU, given that our
designated PRU is busy, is given by

()0

E1=

*Here |x] is the intcger part of x.



that we wish to estimate. Thc estimation of the last parameter can follow
standard methods for ecstimating point processes [15].

Similarly, "silence” can be estimated by monitoring the acknowledgements
sent by FRy(y) (in fact, by monitoring slots in which d(i) does not

acknowledge anything). Again the problem is that of estimating the
conditional expected valuc of an obscrved point process.

If only -successful packets arc to be acknowledged, then E; may be

estimated from the unconditional cxpected silence at PRd(i) to be monitored

by the latter. If the acknowledsement mechanism is not collision free,
further sophistication must bc introduced into the estimation mechanism.

A
2. Adaptation Here the rule is simple: if ﬁi>si. then PR; knows that he
" wastes too many slots, which nobody else uses anyway, in silence. PR;

A A
will increase p;. If E; <S; then, by the same token, PR; knows that he is
talking too much, preventing fcllow PRUs from getting a fair portion of

the channel. PRi should dccrcasc p;-

There is only one problem: the rule (1) is nccessary but insufficient. For example,
the rude policy p=(1,1,...1) satisfics the rule independently of the input structure
giving E; = S; =0. Clearly, our alrorithm may lead the network to choose this
policy even when the results are disastrous. We have to design some precautionary
measures to prevent our algorithm from converging to the rude policy when it
should not.

The required modifications arc simple: Tach PRU monitors his own throughput. If,
as a result of an increase in p;, PR; watches his throughput dropping, he Knows
that he may have increased it bcyond the optimal value. The natural response is to
decrease the value of p;.

The above control mechanism may be implemented in a similar fashion to the
control mechanisms presented by IL. Kleinrock and M. Gerla in {16,17]. Moreover,
when the traffic becomes heavy the algorithm will be an implementation of
Abramson's optimality criteria. Thus, it will become identical to the mechanisms of

[16,17].

In a similar fashion we may use the optimality rule to implement a version of the
Urn scheme. Indeed, as demonstrated in the previous section, the optim=1 selection
of k (the number of PRUs posscssing a transmission right) satisfies the optimality
rule. Therefore, k may be adjusted using the information acquired from the
acknowledgment traffic only. The algorithm to implement the scheme consists of
two parts similar to those above

1. Estimation same a: before.

A A
2. Adaptation If /ﬁi(’S\j. then using the expressions for E; and S;, given in
the previous scction, we find that

N-n+1
{k

n

That is, k 1is too large; T should lower his estimate of K. Simiiarly, if
ﬁ, > gi' PRy should incrcase his estimate of k.



Y. YEMINI and L. KLEINROCK

By combining the above decentralized decision mechanism with a higher-order
pricing mechanism, it is possible to establish priority mechanisms over the network.
This possibility of establishing a fomily of hicrarchical resource-sharing mechanisms
is an appealing subject for further rescarch and experiments. Further work is also
required to develop the details of the estimation and adaptation mechanisms, prove
the convergence of the algorithms, compare their performance in the context of
one-hop systems with that of known control schemes [4, 12, 13, 16, 17, 18, 18,],
and test them in a multi-hop environment.

CONCLUSIONS

We have seen that Pareto-optimality provides an excellent norm for rational
decentralized resource-sharing. Using this criterion, we have derived an intuitively
simple, yet powerful, rule-of-thumb for optimal, decentralized, multi-access control.
Not only does the optimality rule cncompass previous results (e.g., optimal
Slotted-ALOHA and the optimal Urn Scheme), but it also enhances our understanding
of proper hierarchical, decentralized, channel-allocation policies. Moreover, it yields
a class of simple distributed decision mechanisms to implement the optimal policies.
Further research is required to cxplore the stability of the proposed access-control
mechanisms and to apply our mcthods to solve other problems of decentralized
resource-sharing in computer communication networks.
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