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ABSTRACT

In this paper, we study the behavior of a very fast bidirectional bus
system. The bidirectional bus has been investigated in the past
under the main assumption that the propagation delay incurred by a
packet is relatively small in comparison to its transmission time.
Under this assumption, it has been shown that if the packet
transmission time decreases, the performance of existing access
schemes (like CSMA) degrades. Recent technological develop-
ments in communication networks (such as fiber optics) have made
possible much faster bus networks. For these networks, it no longer
may be assumed that the propagation delay is relatively small in
comparison to the transmission time. This paper deals with analyz-
ing the very fast bidirectional bus system. In contrast to previous
studies, the assumption that the bus is very fast is inherently embed-
ded in the system model. The results derived in this paper show
that due to self synchronization properties observed in the system at
high loads, the system performance is not necessarily poor, as
implied from previous studies.

1. Introduction and Previous Work

In a local area network, a channel is shared among many stations
which are (relatively) close to each other. One of the common topo-
logies for such a network is the bidirectional bus (e.g., Ethernet),
and one of the most popular access schemes for this topology is
Carrier Sense Multiple Access (CSMA). In CSMA, a station senses
the channel before transmitting. If the channel is idle, the station
transmits right away; otherwise, it stays silent and postpones
transmission for a later time. (An improvement of CSMA is CSMA
with Collision Detection (CSMA-CD). In this scheme, in addition
to carrier sensing, a station can listen to the channel while it is
transmitting and therefore can detect if it is involved in a collision.
If a collision is detected, the station aborts its transmission and
repeats the scheme described above.) Both access schemes take
advantage of the very short end-to-end propagation delay (relative
to the transmission time). The ratio between the propagation delay
and the packet transmission time is denoted by a and can be thought
of as the number of packets "contained in" the bus:
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The performance of CSMA was studied by Kleinrock and Tobagi in
[Klei74, Klei75, Toba74]. The performance of CSMA-CD was stu-
died by Tobagi and Hunt [Toba79] and by Lam [Lam80]. These
studies were based on the underlying assumption that the parameter
a is small, so packets are heard simultaneously by all stations (i.e.,
a«l). Two important properties were observed with respect to
these access schemes: 1) The attained throughput, S, of both sys-
tems increases with the offered load, G, until it reaches its max-
imum. After this point (very high load), the throughput decreases.
2) The maximum attainable throughput, denoted by the system
capacity, decreases with a. It is observed that the performance of
these schemes is good as long as a <.05 (capacity of about 70%).
For larger values of a (like a = 1), the capacity of these systems
may go as low as 20%.

Technological developments (such as fiber optics) in communica-
tion networks have recently increased the speed of the communica-
tion channel, and future developments are likely to increase it even
further. Other technological improvements are likely to allow
future local area networks to use much longer cables. These trends
lead the communication industry to the building of systems where
the parameter a is larger and larger. One possibility for analyzing
these new systems is to follow the approach taken in [Klei74,
Klei75, Toba74, Toba79, Lam80] and use the throughput/capacity
expression derived there. Doing so, we soon realize that the capa-
city of these systems approaches zero as a increases, and thus the
use of CSMA or CSMA-CD may be very inefficient for these sys-
tems.

The goal of this paper is to challenge this "discouraging" result
which predicts that the throughput of CSMA on very fast networks
is very close to zero. We depart from the previous studies by dis-
carding the assumptions that a is small and that packets are instan-
taneously received by all stations. Instead, we use the fact that a is
large as an underlying assumption and create a model in which the
propagation process is inherently modeled (rather than being
assumed to be instantaneous). The main feature of the adopted
model is that different packets are heard at different times by
different stations. This creates a discrepancy among the stations
(rather than uniformity, as in the previous models), and thus causes
the system to have several positive (and quite surprising) properties:
1) The capacity of the system, under deterministic and scheduled
arrivals, is close to 2 (in contrast to a capacity of 1 in the previous
models). 2) Under stochastic arrivals, the system is stable: an
increase in the offered load leads to an increase in the throughput.

3) The system capacity, under stochastic arrivals and using the
CSMA capability, is 1 (and not close to zero, as previously may
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have been predicted). Thus we conclude that, due to asymmetry
between the stations, the performance of these networks is much
better than what would otherwise be predicted by the fully-
symmetric, "traditional” models.

The structure of this paper is as follows: in Section 2 the system
model is described. In Section 3, we study the theoretical limita-
tions of the very-fast shared bus system. The main goal in this sec-
tion is to calculate the maximum throughput which can be achieved
in the system, neglecting the randomized behavior of the system
inputs. The capacity of the system, defined to be the highest attain-
able throughput, is derived in this section under several assump-
tions. In Section 4, we investigate the system behavior under the
assumption of stochastic arrivals. The model used in this section is
similar to the models used in the analysis of slotted ALOHA and
CSMA; however, this model captures the correlation between
events occurring in the system. The main property discovered in
this analysis is that, in contrast to previously studied shared channel
systems, this system is very stable and the system throughput
always increases with the offered load.

Lastly, let us say a few words about recent, related work. In an
independent study, Sohraby, Molle and Venetsanopoulos [Sohr84,
Sohr85, Sohr86, Sohr87] studied the performance of CSMA in fast
bus systems. The similarity between that study and the present
analysis is in the explicit modeling of the packet propagation, and
in discovering the network asymmetry which implies good perfor-
mance. Their work is different from ours in some aspects of the
modeling and in dealing with systems with large a, which is they
bound to be a <1/2; in contrast, we deal with very large a
(a=0O(N), where N is the number of stations). The behavior of
fast bus systems has also been investigated in several other studies.
However, those studies concentrated on suggesting semi-organized
access schemes for these networks, and not on studying the
behavior of these networks under the CSMA scheme. The main
principle of those access schemes is to organize the packets
transmitted in the system to efficiently use the channel. Such stu-
dies are reported in [Frat81, Gerl83a, Gerl83b, Limb82].

2. Model Description

The system consists of N stations connected by a bidirectional bus
and numbered 1,2,+,N from left to right. It is assumed that the
stations are located on the bus such that the distance between every
two neighboring stations is exactly one distance unit. The length of
a fixed size packet, measured in terms of distance units, is assumed
to be smaller than or equal to the unit distance between two neigh-
boring stations. This implies that the parameter a of this system is
a 2N - 1. For simplicity, we assume that the packet size exactly
equals the distance between neighboring stations, i.e., a=N — 1.
Time is slotted, with the slot size equal to the time required to
transmit a packet. The time interval, starting at time ¢ and cnding at
time 7 + 1, is called the rth slot. Every packet transmission starts at
the beginning of a slot.

Due to these assumptions, it is not sufficient to characterize the sys-
tem events by their timing only; rather, a space-time characteriza-
tion of events is required. We therefore represent the system
behavior using a space-time domain where the horizontal axis
represents the location on the bus and the vertical axis represents
time (progressing down the page). The propagation of a packet is
represented by a band (see Figure 1, where station 2 transmits a
packet during slot ¢, and stations 1 and 3 hear it during slot £ + 1).

stations

time

Figure 1: Two Packets Pass Through Each Other

In contrast to the traditional model, packets which collide are not
assumed to destroy each other. Rather, they are assumed to "pass
through" each other. For example, consider the two packets dep-
icted in Figure 1. The packets are concurrently transmitted by sta-
tions 2 and 4 during slot ¢. During slot ¢+ 1, the packets collide at
station 3 and thus neither of them is heard properly by station 3.
However, the packets "pass through" each other, so during slot
t+2, one of them is heard correctly by station 2 and the other is
heard correctly by station 4. This assumption is valid, for example,
when the bidirectional channel is implemented by two one-
directional fiber buses.

From the above description, it is implied that the terms idle slot,
successful slot and collision slot are not global properties of the sys-
tem, but rather, are local properties of a given station. Therefore,
all references to a particular slot will include both a time and loca-
tion reference. For example, we say in Figure 1 that slot ¢ + 1is an
idle slot at stations 2 and 4, a successful slot at station 1 and a colli-
sion slot at station 3.

It is important in the context of this model to accurately define the
notion of successful reception. Although the transmission medium
is a broadcast medium (i.e., a single packet may be heard by all sta-
tions), we assume that the messages themselves are not of the
broadcast type, but rather, of the point-to-point (PTP) type. This
means that every packet is targeted for a single destination, and
only that destination needs to receive it properly. Following this
assumption, we define the successful hearing and successful recep-
tion of a packet as follows. A packet is said to be successfully
heard by station i in slot ¢ if the packet is heard by i in slot ¢, and
t is a successful slot at i. A packet is said to be successfully
received by station i in slot ¢ if it is destined for station i and is
successfully heard by i in slot ¢.

Politeness and Fairness

Two important properties of multiple access algorithms are to be
discussed in this paper: politeness and fairness. A station is said to
be polite if it does not transmit when it hears a transmission ori-
ginated from another station. Note that politeness is a desired pro-
perty which is utilized in CSMA algorithms using the Carrier Sense
mechanism of the stations. Nevertheless, Carrier Sense in its tradi-
tional form will not be very effective in this slotted environment,
and needs to be slightly enhanced. This issue can be best explained
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using Figure 1, where we consider the action taken by station 2 in
slot ¢+ 2. In order to prevent station 2 from interfering with the
currently passing packet (transmitted from station 4 during slot 7), it
is required that station 2 will be polite during this slot. To enforce
this politeness, station 2 needs to make a decision at the very begin-
ning of slot ¢ +2 as to whether to transmit or not, based on what
appears on the channel at that moment. This can be done only if
the station has some "look-ahead" mechanism by which it can tell at
time ¢t~ what will be the channel status at time ¢. This "look-ahead"
mechanism can be easily constructed by bending the bus in the
neighborhood of the station in an Q shape, and having the station
tapped to the Q leg for "look-ahead" sensing, and to the Q head for
transmission or reception.

In addition to this general politeness, we define directional polite-
ness. A station is said to be polite to the left (right) if it does not
transmit when it hears a transmission originated from a lower
(higher) index station (i.e., a transmission that arrives from the left
(right), according to our representation).

A transmission policy is called fair if for every two stations i and j,
station j is allowed to transmit a packet between any two consecu-
tive transmissions of station i. A transmission policy is called
strictly fair if for every four stations i, j, k and /, station i is allowed
to transmit to station j between any two consecutive transmissions
from station k to station /.

3. On the Capacity of the System

In this section, we study the capacity of the system under various
conditions. The goal is to determine the maximum system
throughput which can be achieved when perfect scheduling is used.
The importance in deriving this measure is to understand the system
limitations, and to compare the system potential to that of other sys-
tems.

To define system throughput, recall that a packet is considered to be
successful if it is heard successfully by its destination station. Let
P (f) be the number of packets that have been successfully received
by time #; then the system throughput, denoted by S, is defined to be

S A lim P (¢)/t. The system capacity is defined to be the highest
t—o0

throughput which can be achieved by using a perfect scheduling
algorithm (which can perfectly schedule the transmissions of every

station).

For most communication systems, it is straightforward to derive the
system capacity. For example, the capacity of a system consisting
of two stations connected by a point-to-point link is 1, since at most
one packet of information can be transmitted in that system per
packet transmission time. Similarly, the capacity of a fully con-
nected N-node network (where each of the links is a point-to-point
link and N is even) is N/2, since this is the number of conversa-
tions that can be concurrently held in the system. The capacity of
the bidirectional bus system, as considered above but under the
assumption that the parameter a is small, is 1, since at most one sta-
tion can transmit at a time.

In contrast to all these systems, the dependency of events in our
system upon both time and location requires a more careful analysis
of the capacity. In the following, we derive both upper and lower
bounds on the system capacity.

3.1 Two Upper Bounds on the System Capacity

Before deriving the bounds, some additional notation is required. A
point (i,¢) in the space-time domain is called a transmission point if
station  transmits a packet in slot ¢ (i.e., starts transmitting at time
f). A point (i,f) in the space-time domain is called a reception
point if station i successfully receives a packet during slot ¢. A line
which contains the points (¢, 1), (¢ +1,2), (¢+2,3), =, ¢(+N—1, N)
is called a left diagonal (a diagonal that starts from top left and goes
to bottom right). Similarly, a right diagonal is defined. Next, let us
derive two upper bounds for the system capacity.

THEOREM 1: For any scheduling policy the system throughput
obeys: § <N/2.

Proof: Let T (t) and R (1) be, respectively, the sets of transmission
points and reception points (i, t°) such that "<t Let (i, ;) be a
reception point in R (¢); then there exists a transmission point
(Js t2) € T(t) which uniquely corresponds to (i, t;). This is the
transmission point which corresponds to the transmission of the
packet successfully received at (i, ¢,). For this reason, we conclude
that 17(t)1 2 IR(¢)1. In addition, the two sets T'(¢) and R () must
be disjoint since a station cannot transmit and receive concurrently,
so the number of points in the joint set cannot exceed the number of
points in the N x¢ rectangle, namely IR(t)| + IT(¢)| <Nt. Thus,
from the two incqualities: |R(¢)!/t <N/2, and the claim follows
since IR(¢)| is the number of packets, P(1), successfully received
by time . W

THEOREM 2: For any scheduling policy the system throughput
obeys: S <2.

Proof: To prove the claim, first consider a system (called SYS1)
consisting of a single unidirectional bus. Assuming that the
transmission direction is from left to right, we examine the space-
time domain and observe that on every left diagonal there may be
at most one reception point. For this reason, the number of recep-
tion points in the N x ¢ rectangle must obey IR (1)] <t +N - 1, and
the unidirectional bus throughput is therefore bounded from above
by 1.

Next, consider a system (called SYS2) consisting of N stations and
two unidirectional buses: one is used to transmit packets from right
to left, and the other used to transmit packets in the reverse direc-
tion. The activity of a station on one bus is independent of its
activity on the other bus. Thus, for example, a station may transmit
on one bus while receiving on the other. Now, it is obvious that the
capacity of SYS2 is bounded by twice the capacity of SYS1. Also,
the capacity of the bidirectional bus system must be bounded from
above by the capacity of SYS2 (simply because the stations in
SYS2 are less restricted), and thus the claim follows. B

We therefore conclude that the throughput of any scheduling policy
is bounded by:

S <min (N/2, 2).

3.2 Lower Bounds on the System Capacity

In this section, we present lower bounds for the system capacity
under various constraints. First we look at an unconstrained sys-
tem. It is relatively simple to construct a schedule under which the
system throughput is 2 — 2/N. This schedule is depicted in Figure
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2, where a transmission point is represented by a solid dot and a
reception point by a hollow square.

stations

stations

time

Figure 3: Strictly Fair
Throughput of Value
30/20 is Attainable on a
Six Station System

Figure 2: Throughput of
Value 10/6 is Attainable
on a Six Station System

For clarity, a packet propagation is rcpresented only by a line
(representing the "front” part of the packet), and not by a band.
Note that this schedule does not obey the fairness restriction, since
most of the traffic is originated from and destined for the end sta-
tions (1 and N ).

Next we consider fair policies and strictly fair policics. Obviously,
the capacity of these systems is bounded by the capacity of the
unconstrained system. Surprisingly, we find that even the strictly
fair system may achicve a throughput which is very close to 2. In
(Levy84], we constructed a strictly fair policy which achicves a
throughput of
3 2
N+2 (N+2)(N-2)

$=2

A more efficient transmission pattern for the strictly fair system has
been suggested by C. Ferguson [Ferg83]. This pattern is depicted
in Figure 3. The throughput attained by this pattern can be calcu-
lated by observing that the time to complete the pattern is given by
2+ 3+ +N=(N+2)(N-1)/2. The number of packcts transmit-
ted in the pattern is N (N — 1) (from every station to every other sta-
tion), and thus the throughput is:

4
=2———
3 N+2

While faimess does not impose a serious capacity degradation, pol-
iteness does. To understand why politeness decreases capacity, one
should examine Figures 2 and 3 (where the schedules shown do not
obey the politeness restriction). As a matter of fact, it is evident
that these schedules "benefit" from letting a station transmit while
hearing a packet which is not destined for itself. This degradation
is stated in the next theorem.

THEOREM 3: The capacity of a polite system is exactly 1.

Proof: First we show that the system capacity is upper bounded by
1. This can be shown by examining the space-time domain and
observing that on any left diagonal there can be at most one
transmission point, or else the system does not obey politeness.
Therefore, the number of transmission points on the N x ¢ rectan-
gle is bounded by T(¢) <t+N —1. Thus, since the number of pack-
cts successfully received by time ¢ is bounded from above by T'(¢),
the system capacity is bounded from above by 1. Now, it is easy to
sce that a throughput of value 1 is attainable in the system. This
can be achieved by having station 1 transmitting all the time, with
all the other stations silent. Thus, we conclude that the capacity of
the system is exactly 1.

Having calculated the capacity of a polite system, we next discuss
the capacity of a unidirectional polite system. We claim that if the
direction of politeness can be chosen for every station indepen-
dently of the politeness direction chosen for the other stations, then
the capacity of the system can approach 2. To verify this claim,
observe Figure 2: Let station 1 be polite to the left and station 6 be
polite to the right (which actually implies no politeness for these
stations). Let station 2 be polite to the left and station 5 be polite to
the right, and let stations 3 and 4 be either polite to the right or pol-
ite to the left. Under this politeness rule, the transmission policy
depicted in Figure 2 is still valid and the system throughput can get
as highas 2 —2/N.

On the other hand, if the politeness direction is chosen to be uni-
form (i.e., either all stations are polite to the left or all stations are
polite to the right), then the system capacity remains 1. This claim
may casily be proved along the same lines as Theorem 3.

3.3 Discussion

From this analysis, it is evident that the potential of the fast bidirec-
tional bus system is relatively high. The capacity of similar single
shared-channel systems, like the one-hop packet radio network or
the relatively-slow bidirectional bus system, is known to be 1. In
comparison, we showed above that the space-time event separation
observed in the very-fast bus system allows the throughput of this
system to get as high as 2. This is shown to hold even if (strict)
fairness is requirced in the system.

Surprisingly, however, we realize that forcing the politeness pro-
perty, which often increases the throughput of a bus system under

stochastic arrivals (as in the CSMA access scheme), actually
decreases the system capacity down to 1. Nevertheless, applying
dircctional politeness does not necessarily degrade the system capa-
city.
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4. The System Throughput Under Stochastic Arrivals

The system model is the one given in Section 2, above. The arrival
process is modeled according to the "traditional” model of packet
radio networks used in the literature (see, for example, [Abra73]).
According to this model, the packet transmissions of each station
are modeled as a sequence of independent Bernoulli trials. This
sequence represents the combined stream of old, retransmitted

packets and newly arriving packets. Thus we have:

G; = Pr [ ith station transmits a packet in any givenslot]
i=12,,N

Since, in our model, there is importance in the packet destination”,
we identify the destination of each packet sent:

rij = Pr [ station i ’s packet is destined for station j ] , j#i

This definition obviously requires: ' r;;=1 for i =1,2,~, N.

J#i

Two important parameters are considered in this model: the aver-
age traffic (per slot) (also called the offered load), and the
throughput. The offered load of station i is the expected number
of packets (per slot) transmitted by this station. This is denoted
above by G;. Similarly, the offered load from station i to station j,
denoted by G;;, is the expected number of packets transmitted from
station i to station j. The total offered load of the system, denoted
by G, is the expected number of packets transmitted (per slot) in

N
the system. Obviously, we have Gij=G;rj and G = 3,G,.

i=1

In a similar way, we define the system throughput. The throughput
of station 7, denoted by §;, is the expected number of packets (per
slot) originated at station i and successfully reccived at their desti-
nation. Similarly, the throughput from station / to station j, denoted
by S;j, and the total system throughput, denoted by S, are defined.
Note that this definition of throughput is consistent with the
definition given in Section 3, above.

4.1 Exact Throughput Analysis of a Non-Polite System

We start the throughput analysis of the system by studying the
non-polite scheme. In this scheme, the behavior of one station is
independent of the transmissions of the other stations; thus, the
throughput from station i to station j can easily be shown to be:

N
Sij=Giry [1(1-Gy) i#j, 3.1)

k=i

and the total throughput originated at station 1 is:

$i=3 8 =GJI(1-Gy

Jj®i ki

i=1,2,,N. 3.2

It is important to emphasize that the model considered here is
significantly different from the one considered by [Abra73].
Nevertheless, the basic assumption that the stations’ behaviors are
independent of each other (by the assumption that no politeness is

*The destination information is not important in the traditional
model of a slow bus network, since the successful reception of a
packet does not depend on its destination.

used) leads both models to the same results. Thus, the throughput
of our system is identical to that of the Slotted Aloha system, and
we refer the reader to the literature (see, e.g., [Klei76]) for further
analysis of its performance.

4.2. Polite System: An Exact Analysis

For the analysis of the polite systems, we must change our assump-
tion on the arrival process. Rather than using the previous Ber-
noulli assumption, according to which station i is assumed to
transmit a packet with probability G; during every slot, we use a
modified assumption according to which station i transmits with
probability G; in each slot in which it is not forced to be silent by
the politeness rule. Thus, if we observe the slots in which station i
is allowed to transmit by the politeness rule, the packets transmitted
from station i behave like a stream of Bernoulli trials.

Under these assumptions, it is possible to represent the system
behavior by a Markov chain. However, note that the stations’
status is not sufficient to represent the system. Rather, in order to
form a Markov chain, we need to include the status of the channel
during the rth slot in this representation. A state in this Markov
chain can be described by the channel status at each of its N -1
scgments, where a segment is the channel section between two
neighboring stations. During slot ¢, each of these segments may be
in one of four states: a) no transmission propagates on the segment,
b) transmission from left to right propagates along the segment, c)
transmission from right to left propagates along the segment, and d)
two concurrent transmissions (from left and from right) propagate
along the segment. Since the number of segments is N —1, the
state space contains 47 states.

For very small values of N (N <5), it is possible to solve this Mar-
kov chain by calculating the (finite) transition matrix and numeri-
cally solving for the steady state probabilities of the system states.
To demonstrate the method, consider a two station system. During
cach slot, the channel may be in any one of four siates: a) only sta-
tion 1 transmits, 2) only station 2 transmits, 3) both stations transmit
and 4) ncither of the stations transmit. We denote the probability
that the system is in these states during slot ¢ by 7, (1), 7, (¢), 7,,(2),
and mo(r), respectively. These probabilities obey:

mo(t+1)=(1-G)(1=-Gme(t) + (1 -G )y (1) + (1 - G )my(0)
+1 x my,(1)

T (+1)=G(1-G)my(t) + Gmy (1)

U+ 1)=(1-G)Gm(t) + Gomy(t)

Tt +1) =G Gam(1)

Under steady state, we may drop the time reference from these
cquations and solve the resulting equation set for the steady state
probabilities (denoted by m;, m,, m;, and 1,) in terms of the system
parameters (G, G,). From this solution, we then get the system
lhl'OUghpU[S: 512 =1 + mw,, 521 =M, + M. Note that the
throughput must obey S, + S5, <1, due to Theorem 3.

To demonstrate the system behavior, we next analyze a three sta-
tion system. Two symmetry assumptions are used in this
analysis: 1) The transmission rate G; for two symmetrically posi-
tioned stations is assumed to be identical, and thus we assume that
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G1=G3=p and G,=g¢; 2) The destination of a packet transmitted
from station i is equally likely to be any of the other N — 1 stations,
ie., rj=1/(N-1) for j#i and r;=0.

Using the method described above, we construct the Markov chain
(consisting of sixteen states) representing the system (see
[Levy84]), solve it numerically and calculate the system
throughputs. The results of this analysis are depicted in Figures 4
and 5. Figure 4 is a three dimensional plot of the throughput ori-
ginated at a side node and destined for the other side node (the sum
of §13 and §3;) as a function of p and q. Figure 5 depicts the total
throughput (S) in the system as a function of p and ¢. A discussion
of the system behavior as observed in these figures is given in Sec-
tion 4.4.

Sia*Syy

O.S-P

0.4+

0.34

0.2+

0.1+

Figure 5: The Total Throughput in a Three Station System

4.3 Polite System: An Approximation for an N Station System

Since the exact method described in the previous section may not
be applied for systems with large N (due to the exponential number
of equations -- 4¥~1), we next propose an alternative approximation
method.

Let the triple (RS,k,t) (the triple (LS,k,t)) denote the event that dur-
ing slot ¢, station k hears a packet arriving from the right (left).
Let the triple (Q,k,t) denote the event that station k is quiet (does
not transmit) during slot z. To derive the system throughput, we
first calculate the probability that the event (LS,k,t) occurs. This
event occurs if and only if for every station j, such that 1< <k,
station j does not transmit at time ¢+ j—k. Thus

Pr((LS,k,t)] = Pr{(Q.k—1,t-1),

4.1)
Q.k=2,t-2),~,(Q, 1,t —k+1)]
This can be calculated as:
Pri(LS,k,0)] = Pri(Q.k—1,t=1) | (Q.k=2,1-2),,(Q, 1,1 —k+1)]
4.2)

x Pr{(Q.k-2,t-2),~,(0Q, 1,t —k +1)]

The conditional probability given above can be calculated as fol-
lows:

Pri(Q.k—1,t-1) | (Qk=2,6-2),,(Q, 1,t—k+1)] = 1= Gj_;

4.3)
x Prl(RS,k—1,t=1) | (Q,k=2,6-2),,(Q, 1,1 =k +1)]

Now, to calculate the expression
PriRS,k-1,t-1) | (Q.k-2,t-2),~,(Q, 1,t =k +1)]

we make the following independence assumption.

INDEPENDENCE ASSUMPTION: The event (RS,k,t) is indepen-
dent of the events (Q,k —1,t—1),,(Q, 1,1 —k+1).

This assumption means that the event: {station k hears a transmis-
sion arriving from the right at time ¢}, is independent of the event:
{stations k—1,k—2,, 1 are quiet at times {—1,¢—2,, t—k+1,
respectively}. Obviously, this is not a true property of our system,
since these events are correlated to each other. However, it is easy
to see that the dependency between these events is relatively weak,
and thus we assume full independence.

We now assume that the system is at steady state, and denote

Ry & Pr((RS,k,1)], L, & Pr[(LS,k,t)). Then, from the indepen-
dence assumption and from Equations (4.2) and (4.3), we may con-
clude:

Ly=(1-Rig-y Gg-1) (1-Re_3 Gy _2)*(1-R, G,) ;

4.4
k=12, N-1 ey
In a symmetric way, we calculate R, :
Rp=(1=Lis1 Grs1) (1 =Lgyg Gryp)(1-Ly Gy) ;
4.5

k=23, N

The values of R; and Ly are obviously 1. Now Equations (4.4)
and (4.5) form a set of 2N -2 equations in 2N —2 variables, a set
which can be solved by numerical methods.

Using the independence assumption and assuming steady state (see
[Levy84]), we may now calculate the system throughput as a func-
tior of the parameters R, and L,:

Sj,‘=Gjr,-,‘L,-R,»Rk s j<k

(4.6a)

. (4.6b)
Sj,‘=Gjrj,‘Rle-L,, ’ j>k
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From these equations and from (4.4) and (4.5), one can calculate
the total system throughput as a function of the transmission param-
eters.

Next we examine the quality of the approximation. We do so by
computing the throughput for systems where the offered load is
identical for all stations (G; = p). For the three station system, the
approximation results are compared to the exact results (derived in
Section 4.2) and depicted in Figure 6. For a ten station system, the
approximation results are compared to simulation. Figure 7 depicts
the throughput in a ten station system; shaded dots represent simu-
lation, and each curve represents the sum of the throughput for two
symmetric stations (e.g., 1 and 10).
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0 2 4 6 .8 1

Figure 6: The Throughput in a Fully Symmetric
Three Station System

From these comparisons, we observe that the approximation
predicts the individual station throughput quite accurately for low
offered loads (p < 0.6) and not so accurately for higher offered
loads. The reason is that at high loads, the dependency between
events increases and thus the independence assumption does not
reflect the system behavior properly. Note, however, that the accu-
racy increases with the system size, so that for large systems the
approximation may be quite accurate. In light of the discrepancies
in predicting the individual station throughput, the predictions for
the total system throughput are, surprisingly, very accurate. It
seems that the errors in predicting the individual station throughput,
using the independence assumption, compensate for each other,
yielding a very good approximation for the total throughput.

4.4. Discussion of the Results

The analysis of this section reveals the important properties of the
very-fast bus system. These properties are discussed below.

From the analysis of the three station system, we see how the sys-
tem throughput is affected by the offered load of the individual sta-
tions. At the level of individual stations we recognize that when a
given station increases its load, the throughput originated at this sta-
tion will increase, while the throughput originated at the other sta-
tions will decrease. This behavior is quite common for shared
channel communication networks; for example, the slotted ALOHA
system and the non-polite system described in Section 4.1, above,
behave the same way (see Equation (3.2)).

S

1.0r

0.0 0.2 0.4 0.6 08 10

Figure 7: The Throughput in a Fully Symmetric Ten Station
System: Simulation vs. Approximation

While at the individual station level, the polite system behaves very
much like other shared channel systems; the advantages of this sys-
tem are revealed by examining the behavior of its total throughput.
From Figure 5 we observe that any increase in the offered load,
either of the side stations or of the middle station, causes an incre-
ment in the total throughput. The importance of this property is that
the system is very stable; whenever the system load increases, the
throughput also increases. This property is not very common in
shared channel communication networks. For example, in slotted
ALOHA, which is unstable (see, e.g., [Klei76]), an increase in the
offered load may cause the total throughput to decrease.

The importance of the stability property is that no special mechan-
isms are required for controlling the system stability. In non-stable
systems, such as slotted ALOHA, one must control the offered load
to prevent the system from getting into unstable situations (situa-
tions in which the system blocks itself); here these mechanisms are
not required, since the system controls itself in a natural way.

The explanation for this stability property can be given by observ-
ing that, unlike other shared channel systems, the stations in this
system are not all alike. Rather, at every moment, ¢, some stations
get transmission priority over others. More specifically, we may
note that if station i successfully transmitted at time ¢—1, it has
full transmission priority at time ¢ (due to the politeness), and thus,
if it does transmit at this time, the transmission will be successful as
well. This type of behavior leads the system to behave in an
"exhaustive" fashion, in which a station that grabs the channel will
hold it for quite a while, while the other stations remain polite.

When the system is fully symmetric, its behavior is very similar.
Figures 6 and 7 show that at low load the throughput of every sta-
tion increases, while at high load the middle stations become more
and more dominant because the side stations become more quiet.
The total throughput, nonetheless, monotonically increases with the
offered load.

While these properties have been observed with regard to the
several systems we studied, it remains as an open question whether
or not the properties hold for any size system.
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