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OPTIMUM BRIBING FOR QUEUE POSITION* 

Leonard Kleinrock 

University of California, Los Angeles, California 

(Received March 28, 1966) 

In this paper we consider that relative position in queue is determined ac- 
cording to the size of a customer's bribe (which is paid before the customer 
sees the queue length). Such a policy allows the customer himself to affect 
his own queue position, rather than the classical approach of assuming that 
a customer is preassigned to some (possibly continuous) priority class. 
For the case of Poisson arrivals, arbitrary service time distribution, and 
arbitrary distribution of customer bribe, we obtain the average waiting 
time for customers as a function of their bribe. We consider both preemp- 
tive and nonpreemptive disciplines. Examples are presented for various 
bribing distributions, which demonstrate that many well-known priority 
queuing systems are special cases of this bribing situation. Furthermore, 
a cost function is defined after we introduce the notion of an impatience 
factor (which converts seconds of wait into dollars). Conditions for op- 
timum bribing are then determined, where the optimization refers to mini- 
mizing the average cost subject to a mean bribe constraint. An example 
for exponential service and exponential bribing is carried out and the re- 
sults are plotted. 

A NUMBER of priority queuing disciplines have been studied in the 
past (for example: head of the line, COBHAM;t1] random ordering, 

VAULOT; [21 last-come first-served, WISHART;[31 delay dependent, KLEIN- 
ROCK;M41 head-of-the-line preemptive, WHITE AND CHRISTIE)5]). In these 
earlier studies, the relative priority given to any customer was completely 
out of his individual control; the customer, in effect, had no choice as to 
which priority group he must join. 

In this study, we shift the emphasis somewhat, and allow each entering 
unit to 'buy' his relative priority by means of a bribe. The size of the 
bribe will be determined, in general, from certain economic factors inherent 
in the population of customers; in particular, the greater the wealth of a 
customer, and the greater his dislike of waiting on queue, the greater will 
be his bribe. 

THE MODELS 

WE CONSIDER two models, the first of which is a nonpreemptive queuing 
model. We assume that we have Poisson arrivals at a mean rate of X 

* Research sponsored by Applied Mathematics Division, Office of Research, 
United States Air Force Grant No. AFOSR-700-65. 
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customers per second. The single-channel service facility has an arbi- 
trary cumulative service time distribution F(T) with a mean service time 
1/,u sec. Let the customer's bribe, x, be a random variable with an ar- 
bitrary cumulative distribution function B(x). We assume that the ar- 
rival time, the service time, and the bribe are all independent random 
variables for each customer and are independent of the values chosen for 
all other customers. 

The system operates as follows: A new arrival to the system offers a 
nonnegative bribe* x to the 'queue organizer.' This customer is then 
placed in position on the queue so that all those customers whose bribes 
x'I x are in front of him and all these with x" <x are behind him. Newly 
entering customers may therefore be placed in front of, or behind this 
customer, depending upon their bribe. Each time the service facility 
completes work on some customer (who then leaves the system), it then 
accepts into service the customer at the front of the queue. Once in serv- 
ice, a customer cannot be ejected until he is completely serviced. 

In the preemptive case (our second model), we restrict ourselves to a 
service time distribution F( T) =1- -e-T with a preemptive resume rule. 
In this mode, a customer will be ejected from service if a newly entering 
unit offers a bribe larger than the bribe he offered. 

In both cases, we have 
X =average arrival rate of customers (Poisson distribution). 

11A= average service time (arbitrary distribution in the nonpreemptive 
model, exponential distribution otherwise). 

B(x) =cumulative distribution (arbitrary) for bribes. 
Whenever customers give identical bribes, they are serviced in a first- 

come first-served order. 
We define, for e>0, the left and right limits of B(x) as 

B (x -) = lime lo B (x - c), 

B(x+) =limE-0 B(x+E). 

AVERAGE WAITING TIMES 

Case 1. Nonpreemptive rule: 
Let W(x) average waiting time (in queue) for a customer whose 

bribe is x. 
THEOREM 1. 

W(x) = Wo/[l -p+pB(x+)][1-p+pB(x-)], (1) 
* This bribe may either be thought of as given before the customer sees the length 

of the queue [in which case the distribution B(x) reflects his measure of wealth and 
impatience] or as being chosen from B(x) independent of queue length. 
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where p = X/,u-utilization factor 
Wo =expected time to finish the customer found in service upon entry of a 

new customer to the system 

and Wo =f r2dF(r). (2) 
2 

At those x for which B(x) is continuous we see that equation (1) reduces to 

W(x) =: Wo/[l -p+pB(x)]'. (3? 
Proof. Let us consider a customer (say, the tagged customer) who 

gives a bribe of size x. The average waiting time in queue, W(x) for this 
customer, may be calculated as follows. The tagged customer must, on 
the average, wait a time Wo before the customer who is in service upon his 
arrival is finished.* In addition, he must wait until service is given to all 
those customers still in queue who arrived before he did and whose bribes 
equaled or exceeded his. The expected number of such customers whose 
bribes lie in the region (y, y+dy) is 

X(y) W(y) dy, (4) 

where X(y)== [dB(y)/dy]. (5) 

Each such unit causes the tagged unit to wait an average time of l/gO sec. 
Equation (4) follows from the observation (see LITTLE121) that the ex- 
pected number of units in a system is equal to the product of their arrival 
rate and the expected time they spend in the system. Furthermore, the 
tagged unit must wait until service is given to all those customers who 
enter the system while the tagged unit is on the queue and whose bribes 
exceed his. The expected number whose bribes lie in the interval (y, 
y+dy) and which arrive during his average wait W(x) is 

X(y) W(x) dy. (6) 

Each such unit adds 1/g sec to the tagged unit's average wait. Com- 
bining these three contributions to the tagged unit's average wait, we gett 

W() = wo+f X(y) (y) dy+dy (7) 

or W(x) = [WO+J fW(y) dB(y)] I[-f -dB(y)]. (8) 

* See for example, SAATY,(61 Sec. 11-21a. 
t The lower limits of x- and x+ come about since all ties are broken on a first- 

come first-served basis. 
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Since B( oo) = 1, we have 

W(x) = [Wo+p W(y) dB(y)]/ [1-p+p B(x+)]. (9) 

Replacing W(x) in this last equation by the expression given in equation 
(1), we find that the theorem will be established if we can prove the fol- 
lowing equality: 

1 00dB(y) 

1-p+pB(x-) - [1-p+pB(y+)][1-p+pB(y- )1 

Let us define 
A(y)=l-p+p B(y). (11) 

Let xk(k=1, 2, 3, *,K) be those values of x at which B(x) has its dis- 
continuities (at most a countable number), and let AB(xk) be the mag- 
nitude of these discontinuities. Further, let Bl(x) be the continuous 
portion of B(x). We may then express the integral I(x) in equation 
(10) as 

1() dB(y) =XK AB(Xk) 

I 
A(y+)A(y-) ik- o A(xk-)A(xk+) (12) 

XK: fXk+I X"(8 0X dB, (y) + E L~~dBI() +Lxo~ 
Xk==Xk o$, AI(y) Jr A28 

where xk -minx, ?x Xk and XK? =oo For any open interval (a, f) that 

contains no points of discontinuity of B(y), we see that B1(y) =B(y) 
thus, letting z-B1(y), we get 

f#dB,(y) fBi(s) dz B1(f3)-B1(a) 

JaA2Q(Y) IB(a) (1-p+pZ)2 A (f)A (a) 

For such an interval we observe that 

[B1(3)-BI(a)]/A(13)A(a)=[B(f3-)-B(a+)]/A(t-)A(a+); (14) 

thus, we get 

1 (x)-ZsK=kO {I[LB(Xk)/A(Xk-)A(xk+)] 

+[B(xk+l-) -B(xk+)]/A(xk+l- )A(Xk+)} (15) 

+[B(Xko-) -B(x-)I/A(XkO-)A(x-). 

Since AB(xk)=B(Xk+)-B(xk-), and since B(x) =(1/p)[A(x)-l+pI 
from equation (11), we have 
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+(1/p) [1/A (x-) ]-[1/A (xk0-)]} (16) 

(1/p){ [1/A(x-)]-[1/A(XK+tl-)]}. 

Now, since B( oo )-1, 

A(XK+1-) = 1 -p+pB( co) = 1. 

Thus, equation (16) becomes 

I(x) = (1/p){ [1/A (x-)]- 1}. (17) 

Using equation (17) in equation (10), we get 

{[1/[1-p+pB(x-)] }-1=pI(x) = [1/A(x-)]-1. 

Thus, this last identity establishes that equation (1) is indeed the solution 
for W(x) as defined in equation (9). 
Case 2. Preemptive rule: 

In this case we require that F(r) =1- emt. Let 

T(x) =average time spent in the system (queue plus service) for a 

customer whose bribe is x. 
THEOREM 2. 

T(x) = (14)/[1 -p+pB(x+)ll -p+pB(x-)]. (18) 

At those x for which B (x) is continuous, we see that equation (18) reduces to 

T (x) = (I II) [I p +pB(x) ] * (19) 

Proof. The proof here is almost identical to that of Theorem 1. In- 
stead of equation (7), we get 

T(x) =!f+ X(y)T(y) dy+ fy(Y)T(x)d. (20) 

In this case, the expected additional time to service units that have been 
preempted is still 1/,4 due to the memoryless property of the exponential 
distribution F( r). From equation (20), we get 

T(x) = [!?pT T(y) dB(y)] [1 -p+pB(x+)]. (21) 

We now try the solution given in equation (18), which results in the fol- 
lowing equation 

1 1 ifpB(X+)1PL0 dB(y) 
1-p+pB(x+) MJX- [1-p+pB(y+)][1-p+pB(y-)]f 

But this is the same as equation (10) which we have already proven. 
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Thus, equation (18) is indeed the solution to equation (21), which com- 
pletes the proof of Theorem 2. 

We comment that in both cases studied above, we may make use of 
the expression given below, which relates the average wait in queue and the 
average wait in queue plus service: 

T(x) -W(x) +I/ pi. 

DISCUSSION AND EXAMPLES OF AVERAGE WAITING TIMES 

WE BEGIN by observing that in the special case 

B(x) = {O x < Xo, (22) 

we have 

Case 1: W(xo) -Wo/(1-p), (23) 

Case 2: T(xo)-(141,)/(1-p). (24) 

This B(x) corresponds to the classical first-come first-served queue 
since all bribes are the same resulting in no effective bribe at all. Thus 
equations (23) and (24) should correspond to the well-known results for 
M/G/1 which they do. 

In the case where B(x) is continuous at the origin, giving B(O) 0, 
we see that 

Case l: W(0) WWo/(1 _p)2, (25) 

Case 2: T(O) (1/A) /(1_ p)2. (26) 

The behavior at zero bribe should describe the waiting time for the lower 
priority group of a two-priority class head-of-the-line system where the 
arrival rate of this low priority group is negligible compared to the total 
arrival rate. Indeed, as can be seen from references 1 and 5, the equations 
above are consistent. 

When only a finite (countable) set of bribes are allowed (at the values 
Xk), then we have a discrete distribution that yields 

Case 1: 

IV(xk) = 1V0/[l -p~~4i-Ki AB(xi)][l -p=K AB(xi)], (27) 

Case 2: 

T(Xk)= (1#)/[1pat-~l ABx)][-PadK AB(xi)]. (28) 
These last two equations correspond respectively to the results for Cob- 
ham's"'1 head-of-the-line system, and the preemptive head-of-the-line sys- 
tem studied by White and Christie.[5] 
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When B(x) is a purely continuous distribution, then T(x) (Case 2) 
is similar to a model of continuous priorities studied by PHIPPS.[81 

We also note that the average waiting times given in Theorems 1 and 2 
obey the Conservation Law.!9' We show this for equation (1) only since 
equation (18) is of the same form. The Conservation Law (in its con- 
tinuous form) states that, for 0 < p < 1 

fp(x) W(x) dx= ' Wo. 
1-p 

Using equations (1), (11), (12), and (17) we have 
go 00 

~~~Wo dB (x) 
jp(x) W(x) dx= P [f-p+pB(x+)][1-p+pB(x-)] 

-PWof A(x+)A(x-) 

- pWoI(O) 

p _pA4(O-) ] 

But A(0-)-1-p+pB(0-) ==1-p. 

Thus fp(x) W(x) dx = Wo[ -1] 

-woP 
= wo I , 

which establishes the required conservation relation. 

OPTIMUM BRIBING 

As SOON AS we introduce the notion of a bribe, we must then consider other 
cost factors as well. In particular, we define an impatience factor a( ?0) 
that measures how many dollars* it costs a customer for each second that 
he spends in the system. We may use one of two definitions of the sys- 
tem, i.e., the system may be defined as the queue alone or it may be de- 
fined as the queue plus the service facility. 

Considering first, the case of waiting time in queue, we define the cost 
function C(a) as 

C(a) -xa+aW(xa3), (29) 
where, again, 

* This cost may be measured in terms of customer inconvenience or impatience, 
if you will. 
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a customer's impatience factor, 

xa =bribe offered by this customer (given a), and 

W(x,,) -average waiting time (in queue) for a customer whose bribe is xA. 

Thus, C(a) is the sum of the customer's bribe (in dollars) and his cost 
of waiting (in dollars). We assume that customers have (self-) assigned 
values of a before they enter the system, and that the population of cus- 
tomers, as a whole, produce a probability distribution P(a) on the random 
variable a, i.e., 

P(a) =Probability that an entering customer has an impatience 

factor a' <a. 

The queuing models here are the same as those considered earlier where 
now, the bribe xa is some (deterministic) function of the random variable 
a. We have thus shifted emphasis from the situation in which a cus- 
tomer offers a random bribe to a situation where the customer's bribe is 
functionally related to his (random) impatience factor a. 

We pose the following optimization problem: Find that function, 
XC, which minimizes the expected cost C, i.e., 

minimize[C-f c(a) dP(a)] (30) 

subject to an average bribe constraint equal to B, i.e., 

B=f Wac dP(a). (31) 

The solution to this problem is contained in the following theorem. 
THEOREM 3. For any P(a), the function xa, will be an optimum bribing 
function if and only if xa is a strictly increasing function of a (for all a out- 
side a set S having the property Is dP(a) = 0). 

Proof. We must choose xa to minimize 

C = j [xa+aW(xa)I dP(a). (32) 

Due to equation (31), this is equivalent to minimizing 

C-B= faW(xa) dP(a). 

Define 

p(a) = p[dP(a)/da]. (33) 

We may interpret the quantity p(a) da as the fraction of time that the 
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server is busy serving customers whose impatience factor lies in the inter- 
val (a, a+dcx). Using equation (33) we then find that for O<p, 

C-B == oap((a) W(xa) da. (34) 
P 

The Conservation Law[91 may be rewritten as follows 
go 

f p(a))W(x) da= 1 WO. (35) 
1-p 

We note that minimizing equation (34) involves finding that function xa! 
such that the product of the function p(a)W(xa) and a has a minimum 
area. However, equation (35) states that the first of these functions must 
itself have a constant area. Since p(a) is independent of xa, we must look 
for conditions on W(xa). Clearly, since W(xa) > Wo (since A(x+)Ax-) 
>0), a necessary* condition on W(xa) is that 

dW(xa)/dax<O (36) 

for all a o S. This last condition comes about since we must weight 
p(a)W(xa) by the strictly increasing function a. Condition (36) may be 
rewritten as 

[dW(x,)/dx]/(da/dx) <0. (37) 

Since B(x) is a nondecreasing function, dB(x)/dx > 0. Thus, from equa- 
tion (1) and equation (18) and since A(x+)A(x-)>O, we get that 

dW(xa)/dxa<O at those x for which dB(x)/dx>O, (38) 

=0 at those x for which dB(x)/dx=O. 

From equations (37) and (38) then, we have that our necessary condition 
on xa becomes 

dxa/da >O for ao eS. (39) 

That this last is achievable is obvious for a large family of functions (e.g., 
x, = a). From this family, however, we may use only those functions 
satisfying equation (31), but such functions clearly exist (e.g., see the ex- 
ample in the next section). 

Consider an interval al <a < a2 in which P (a) is constant. Clearly 
xa can be arbitrary in any such interval without affecting C; the same is 
true at any point a for which P(a) is continuous. But such regions are 
in the set S. However, for the sets S, defined by ai-e <_<aial and S2 

defined by a2aE: <5a2?+E (E>0), in which P(a) is assumed to be increasing, 

* We show below that condition (36) can be achieved. 
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we require that equation (36) holds in both Si and S2 and also that 

W (X.) < W (Xl) 

where a e Si and A e 82. This last is true for the same reasons leading 
up to equation (36), namely, that in order to minimize C - B, we must 
reduce W(xa) as a increases. 

To demonstrate that equation (39) is also sufficient may be seen from 
equation (32). The first term merely gives B, which is independent of 
xa and the second term depends only upon the relative size of the bribes 
and not upon the absolute bribe itself. However, equation (39) gives a 
complete description of the rank ordering of the bribes. Consequently 
the necessary and sufficient conditions for xa to be an optimum bribing 
function is merely that it satisfy equation (31) and equation (39). 

Thus the solution to the minimization problem set forth in equations 
(30) and (31) restricts xa to be a strictly increasing function of a for 
a 4 S. Having constrained only the mean bribe, we get only a condition 
on xa rather than an explicit functional form; indeed, the solution is inde- 
pendent of the exact form of xa, as long as it is strictly increasing with a. 
Thus, for the purposes of calculation and example we may choose some 
(simple) relation, such as the following linear one: 

Xa = Ka. (40) 

Applying the mean bribe constraint, we get 

oe 
B=KJ a dP (a). (41) 

Letting A be the average impatience factor, we get from the last two 
equations, 

Xa= (B/A)a. (42) 

This then is an optimal bribing function. 
Considering the second case of waiting time T(xa) in queue plus service 

facility, we note that 
T(xa) W(x.)+1/g. 

The solution here is therefore the same as above in Theorem 3 (see also 
equation 42). 

For the preemptive priority rule the same results also apply as can be 
seen by noting that equations (1) and (18) are of the same form. 

DISCUSSION AND EXAMPLE OF OPTIMUM BRIBING 

IN ORDER TO obtain some insight into the behavior of the optimum bribing 
procedure and the cost function, we offer the following example. We 
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consider a nonpreemptive system with an exponentially distributed bribe, 
viz., 

(x)-1eats. (S ) (43) 

As before, we have Poisson arrivals (mean rate X) and an arbitrary service 
time distribution F( r) (with mean l/,M see). We assume (for purposes of 
normalization) that the first two moments of r are chosen such that Wo p, 

6 

5- 

4 - 

W(x) 3 A 2.0 

Ip I -.. 

0 .5 1.0 1.5 2.0 2.5 3.0 

BRIBE, X 

Fig. 1. Waiting time as a function of bribe. 

where p- X/,g. Further, we choose to vary p by varying X at a fixed , 
so that the input traffic is described by a single independent variable p. 

For such a system, we may calculate W(x) from equation (1) of Theo- 
rem 1. We plot the results of these calculations in Fig. 1 where we show 
W(x) as a function of the bribe x with p as a parameter (p=0.l, 0.5, 0.9, 
1.0, 2.0) and where we have taken - ==1 (the horizontal axis may be scaled 
by 1/o- to yield results for other values of o-). As expected and as shown 
in equation (38), the average wait is a decreasing function of the bribe x 
and an increasing function of the utilization factor p. Observe that under 
saturated conditions (i.e., p h 1) we obtain finite average waits for all 
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those customers offering bribes greater than xcrit where 

Xcrit = 0o (p<1) (44) 
B'[(p-1)lp],(p ~l ) 

where B-'(z) is that value of x for which B(x) =z. This behavior is 
similar to that described in references 1 and 5 for the head-of-the-line 
priority system. We further note that, in general, 

limbo W(x)=Wo. (45) 

25 - 

20 - 

a 20 

1 5 

5 - 

Ca( x) 

10 

0 .5 1.0 1.5 2.0 2.5 3.0 
BRIBE, X 

Fig. 2. Cost as a function of bribe at various impatience factors (p 0.5). 

For any given value of impatience factor, a, we can determine the cost 
C(oa) as in equation (29), viz., 

C(a) =xa+aW(xOVa). (29) 

This cost is plotted in Fig. 2 with a as a parameter (a =0, 1, 2, 4, 6, 8, 10, 
15, 20) and for p=0.5. We plot C(a) versus x, taking the view that the 
bribe itself is the random variable. We observe in Fig. 2, the occurrence 
of a minimum of C(a) at some x for each fixed a. 
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The optimum bribing procedure for this example is obtained as follows. 
First, we alter our point of view and consider a to be the random variable 
with x = xa a deterministic function of a. For example, let us take the 
form chosen in equation (42), viz., 

Xa = (B/A)a, (42) 
where B = average bribe, 

A -average impatience factor. 

Of course, the distribution on a is also exponential, in particular 

P(a) = 1 -e-(B/A)oa. (46) 

20 - 

15 -/ B = 20 

Ca(X) 10 / 

0 .5 1.0 1.5 2.0 2.5 3.0 

BRIBE, X 

Fig. 3. Cost as a function of bribe for optimum bribing (p = 0.5). 

Using the relation in equation (42) we can plot the cost C(a) versus x 
as shown in Fig. 3 with A/B as a parameter (recall A -average impatience 
factor, B average bribe). Note that as the average impatience factor 
increases, so does the cost. As the average bribe, B, increases, it appears 
that the cost decreases, but of course this is only an illusion since we are 
plotting versus bribe x; thus as B varies, so does the weighting on the vari- 
ous values of x. In order to see the effect of changing B, we plot C versus 
the impatience factor a in Fig. 4. In this figure we again consider A/B 
as a parameter, with p = 0.5. The curves in the approximate range 0?< a 
20 come from Fig. 2. For a>20, we observe the following: 
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limao W(xa) -.Wo 

Thus C(a) --(B/A) +Wola. (47) 

This asymptotic linear form for C(x) is shown in Fig. 4. The region be- 
tween the measured values from Fig. 3 (for ae<20) and the asymptotic 
values given by equation (47) (shown as straight lines) has been filled in 
(by eye) as dashed lines. 

Of further interest to this discussion is the value of the expected cost C 
as defined in equation (30), viz., 

50 - REF. 
A/B -2 

RER. 

40- 
REF. 

300 - 10// 

c (a) 

0 i<:) 20 30 40 50 60 70 
a 

Fig. 4. Cost as a function of impatience factor for optimum bribing (p = 0.5). 

C- C(a) dP(a). 

Applying equation (29) to this, we obtain [using equations (42) and (3) 
as well]: 

A f'xWodB x) 
C=B+B J [1-p+pB(xj12 (48) 

Unfortunately, no more explicit expression for C has been found for gen- 
eral distributions B(x). However, as examples, we calculate below the 
form that C takes for (i) exponentially and for (ii) uniformly distributed 
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bribes: For O< p < 1, and 

(i) For dB(x)/dx=o- rx, C0 (11/o)+Alnl[1/(1-p)], (49) 

(ii) ForB~xldxf1/M 0<x<!M7 
(ii) For dB(x)/dx=={ol0 otherwise, (50) 

C-(M/2)-2A+2A(1/p)lnfl/(1-p)I. 

It is interesting to note from equations (49) and (50) that the factor 
ln[l/(1-p)] appears in the average cost C; such a factor seems rather 
unusual in queuing problems. 

CONCLUSION 

IN THIS paper, an analysis has been carried out that views priority queuing 
as a customer bribing mechanism. The average waiting times were cal- 
culated for Poisson input and arbitrary service distributions, both with 
and without preemption. The notion of an 'impatience' factor was then 
introduced, which allowed a cost function to be defined. We found that 
the only condition necessary for an optimum (in the sense of minimizing 
the average cost subject to a mean bribe constraint) bribing function was 
that it be monotonically increasing with the impatience factor. It was 
shown that many well-known priority disciplines may be viewed as bribing 
mechanisms. 
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