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Abstract 

Kleinrock, L. and F. Mehovi6, Poisson winner queues, Performance Evaluation 14 (1992) 79-101. 

We study special types of queues, winner queues, in which all customers are served concurrently. A customer in a winner queue 
will successfully finish his service (i.e. "win")  and leave if no other customer leaves during his current service. Once a customer 
wins, all others in service at that time "lose"; thus we have a situation in which concurrent customers conflict, yielding a single 
"winner". There are four disciplines considered: silent-redraw, silent-noredraw, broadcast-redraw, and broadcast-noredraw. 

The winner queues considered have an infinite number of servers. We assume that service times consist of a deterministic 
part and an exponential part. This type of service time distribution includes pure deterministic and pure exponential service 
times as special cases. 

Using a one-dimensional imbedded Markov chain and a recursive formula for the state probabilities, we obtain numerical 
results for certain disciplines and distributions of requested and restarted service time. For some broadcast winner queues we 
show analytic results. In all cases we also give simulation results which indicate the correctness and accuracy of our numerical 
calculations. 

The results obtained are given in terms of the normalized average system time and the normalized power (defined as the 
system load divided by the normalized average system time). One application of this model is to study the performance of 
optimistic concurrency control schemes in databases. 

Keywords: multiuser queues, numerical procedures, optimistic concurrency control, queueing, special queues, transition 
probabilities, one-dimensional Markov chain. 

1. Introduction 

The goal of this article is to analyze special types of queues, which we call "winner  queues". Winner 
queues are designed to mimic the behavior of transactions in a database system. Here we consider simpler 
forms of these queues; more general winner queues are analyzed in [4]. Numerical results found for winner 
queues are used in [4] for performance evaluation of optimistic concurrency control (OCC) in databases. 
(For a discussion of OCC schemes, see, for example, [3,8].) Tsitsiklis, in [7], has looked at another type of 
queue which may be used for the analysis of concurrency control based on static locking, a nonoptimistic 
scheme. 

In the next section we define the model of winner queues. We describe and discuss simulation results in 
Section 3, and develop an analytical approach for winner queues in Section 4. Numerical  results for 
different winner queues are given in Section 5. 

2. Model  

Consider a regular G / G  queue with an arbitrary interarrival time density a(t), and an arbitrary service 
time density b(x). Assume now that each of the customers accesses the same resource. Let a given 
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customer  i start his service at t ime t i (i.e., at his arrival t ime to the system); with service t ime X. If dur ing  

the time interval  (ti, t i + X)  no other customers leave the system, then, at t ime ti + X, customer  i will 

finish his service successfully and  leave the system. In  this case we say that customer i wins. If, on the other 
hand,  some other customer j wins and  leaves the system in (ti, t~ + X), say at t ime tj  + X w, where 

t~ < tj  + X w < t+ + X,  then customer loses. In  the former case, customer  i is called a winner,  while in the 

latter case, customer  i is called a loser and  customer  j is a winner.  Every time a customer loses, he restarts 

his service, and  he does that over and over again unt i l  he finally wins. A queue with this discipline we call 

a winner queue. 

We differentiate between two types of queues, depending  on the behavior  of the system u p o n  the 
depar ture  of a winner .  Consider  again that customer i starts his service at time t~, with service t ime X, and  

that customer  j wins at t ime tj  + X w,  t~ < tj + X w < t~ + X. If, at t ime tj + X w, the system notifies all the 
other customers about  the depar ture  of winn ing  customer j ,  then, customer i immediate ly  learns that he 

lost, and  restarts his service at once, i.e., at t ime tj + X w. In  this case we say that the system broadcasts 

that a depar ture  took place. We call this queue a broadcast winner queue. If the system does no th ing  upon  

a depar ture  of a customer,  i.e., if it remains  silent, then all other customers do not  learn that they lost unt i l  
they finish their present  service. This means  that our loser i from the above example will restart  not  at t ime 

tj  + X w,  but  at t ime t i + X. A winner  queue with this behavior  we call a silent winner queue. 

In  addi t ion  to winner  queues being silent or broadcast ,  the properties of service times upon restart of 

losers divide all winner  queues in to  redraw and  noredraw winner  queues. In  the redraw queues the service 
t ime of each restart is redrawn independen t ly  from the same service t ime densi ty b ( x ) .  Our  loser, customer  

i, f rom the above example, will, then, be scheduled to finish his restarted service at time t / +  X w + X r, in 

the broadcast  case, or at time ti + X + X r, in the silent case, where X and  X r are drawn from the densi ty  
b ( x ) .  In  the noredraw queues, service times upon  each restart are equal to the init ial  service t ime (they are 

not r e d r a w n ) t .  So, the loser i, in such a system, will be rescheduled to finish his restart at t ime 

tj  + X w + X,  in the broadcast  case, or at t ime t~ + 2 X, in the silent case. 
The winner  queues described above have identical  requested and  restarted service t ime dis tr ibut ions.  

They are a special case of general winner  queues considered in [4] in  which the mean  and  d is t r ibut ion  of 

the restarted service times, in general, differ from the requested service t ime dis t r ibut ion.  

In general, we may allow restarted service times to be only a fraction of the initial service time, but in this article we make the 
restriction of the fraction being equal 1. 
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Fig. 1. DqM probability density. 

We define service t ime requi rements  in the winner  queues as the sum of  a de te rmin is t i c  and  an 
exponen t ia l  par t .  The  d i s t r ibu t ion  of  such r a n d o m  var iables  we call  DqM, where q represents  the f ract ion 
of  the  mean  service t ime which is determinis t ic .  The  p robab i l i t y  dens i ty  of such service t imes is shown in 
Fig. 1. Its ana ly t ica l  form is: 

O, O<~x<~qY 

b ( x )  = t~ e (~x-q)/p, x > q~, (1) 
P 

where  p = 1 - q and  # = 1/Y.  Pure exponent ia l  and  pure  de te rminis t ic  d i s t r ibu t ions  are  special  cases of 
the DqM d i s t r ibu t ion  (for  q =  0 and q =  1, respectively).  No te  that  DuM is a de layed  exponen t ia l  
d i s t r ibu t ion .  The  d i s t r ibu t ion  above  was used, under  a di f ferent  name,  by  Sevcik in [6], in the contex t  of  
concur rency  cont ro l  techniques.  

The  system load  p we def ine  as the ra t io  of  the average service t ime Y and the average in te rar r iva l  t ime 
t, p = ~ / t  = h / g ,  where  X is the average arr ival  rate, and  # the average service rate.  Let  T represent  the 
average system t ime (the t ime an average cus tomer  spends  in the system). W e  def ine  the no rma l i zed  
average system t ime as T n = T/Y ,  and  the normal i zed  power  P = o /T , ,  see [2]. Clearly,  we wish to 
maximize  power.  Whi le  there m a y  be interest  in o ther  forms of  power  funct ions,  such as P = pk/T, ,  for 
k ¢ 1, we choose  to look on ly  at  a s imple  one, for k = 1, as another  represen ta t ion  of  pe r fo rmance  of  the 
winner  queues, in add i t i on  to T,. [2] No te  that  for any P, the smal les t  no rmal i zed  average sys tem t ime is 1 
(no  wait ing);  thus an uppe r  b o u n d  on P is P ~< P, which cor responds  to a perfect system. A n  example  of  a 
per fec t  system is D / D / l ,  when P < 1. 

W e  are in teres ted  in eva lua t ing  the pe r fo rmance  of  winner  queues with Poisson arr ivals  and  the 
fol lowing four  discipl ines:  s i len t - redraw (denoted  as SR), s i l en t -noredraw (SN), b r o a d c a s t - r e d r a w  (BR), 
and  b r o a d c a s t - n o r e d r a w  (BN). The  pe r fo rmance  measures  we cons ider  are the normal i zed  sys tem t ime and  
the normal i zed  power,  as well as the d i s t r ibu t ion  of the n u m b e r  of  cus tomers  in the system. 

3. Simulation results 

Simula t ion  results  for the four types  of  winner  queues have been obta ined .  F o r  each of  the queues,  q 
was var ied f rom 0 to 1. 

F igures  2 and  4 show 2 that  r ed raw queues  with more  de te rminis t ic  service t imes, i.e., with h igher  q, 
pe r f o rm  worse  than  redraw queue with lower q. Red raw  queues with pure  exponen t ia l  service t imes give 

z We specify winner queues in the same form as any other queues, with the addition of discipline code, for example (SR). All winner 
queues considered have an infinite number of servers, and so we omit the ordinary specification of the number of servers. Note that 
for queues whose service time distribution is deterministic, redraw and noredraw cases are equivalent. Such is the queue M/D(S). 
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Fig. 2. Simulation results for the power (P) in M/Dq(M(SR). 

the highest power, while pure deterministic give the lowest power. Quite the opposite is the situation with 
noredraw queues, as illustrated in Figs. 3 and 5. Here, the worst performance is for queues with q = 0 
(pure exponential). The initial service times are independent of whether the queue is redraw or noredraw. 
It is the service times upon restarts that affects the performance differently. In redraw queues, service 
times upon restart tend to be smaller for smaller q due to the nature of service time probabili ty 
distribution. In noredraw queues, however, customers with long initial service times will negatively affect 
the average response time because they have a poor chance of winning and their service times upon restart 
will stay fixed at the initial high value. Furthermore, the smaller is q, the higher is the probabili ty of long 
service time. Thus, noredraw queues with less deterministic service times perform worse than noredraw 
queues with more deterministic service times. 

From Figs. 2 through 5 we see that redraw queues perform better than noredraw queues. Again, this is 
due to the nature of the service times. Figure 2 shows that redraw of service times will cause probabilistic 
shortening of service times and, thus, will result in better performance of redraw queues. 

Since in broadcast queues unsuccessful services are terminated even before their prescheduled comple- 
tion, these systems perform better than silent systems. Broadcast systems have superior performance 
compared to silent systems. 

It is interesting to note that for the M / M ( S R )  system(s) the normalized power does not drop with an 
increase in p; this is somewhat visible in Fig. 2, but can be seen more clearly in Fig. 11 below. In fact it 
seems that the power approaches a constant as p goes to infinity. Such behavior of the system is due to the 
redraw of service requests upon restart and to the memoryless nature of the service time distribution. 
Successful service times are shorter than the requested service times, and for high p they tend to zero. In 
all cases, the mean queue length settled down for finite p. From Fig. 11 below we will find that the average 
system time seems to grow linearly with p. 
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Fig. 3. Simulation results for the power in M / D q M ( S N ) .  

From Fig. 4 we see that the M / M ( B R )  queue gives performance values close to perfect. ( M / M ( B R )  is 
shown as the M/DqM(BR)  curve for q = 0.) In Section 5.3 we will see that M / M ( B R )  indeed gives perfect 

performance. 
N o w  that we have seen the simulation results (shown in Figs. 2 through 5) and understand the 

differences in the behavior of the four types of Poisson winner queues (with a DqM service time 
distribution), we proceed to analyze some of these systems below. 

4. Analysis 

In order to find the normalized power in Poisson winner queues, we use an imbedded Markov chain to 
calculate the distribution of the number in system left by departing customers. We define D(n) to be the 
number of customers left behind by the nth departing customer. D(n) is an imbedded Markov chain 
whose distribution we seek. We define d k to be the equilibrium probability that k customers are left in the 

def 
system by a departure, i.e., d k = lim,,~ooP[D(n)= k]. Since arrivals are Poisson and since we have unit 
changes in states, then d k also gives the equilibrium distribution for the number in system at all times. 
Thus, once we have calculated all the d k, k = 1, 2 . . . . .  we can find the average number in system, N, that 
is, N = Ekd k. 

Using Little's result, we have the normalized average system time 

N 
T, = - - ,  (2) 

O 
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Fig. 4. Simulation results for the power in M/DqM(BR) .  

where 0 = ),2. The normalized power  P is calculated as 

P _ P 2 
P -  T. N "  (3) 

Having defined the states of  the imbedded Markov  chain to be the number  of  customers  in the system 
left by  departures, we further define the transit ion probabilities between the states, Pi.j, as follows 
Pcj  = P[a departure  leaves j customers in the system, given the previous departure  left i customers in the 

system], i, j = 0 , 1 , 2  . . . .  
F r o m  the transit ion probabilities we can calculate the distribution of the number  of  customers in the 
system left by  departures f rom the following equation. 

d k =  ~ d i p i ,  k, k = 0 , 1 , 2  . . . .  (4) 
i = 0  

In the following section we show that Pi.k = O, i > k + 1; then, we get the recursive formula  

dk 1 d k _ , - -  diPi,k_ , , k =  1, 2 . . . .  (5) 
P k , k - I  i 

Below we find expressions for Pi,)  but  they are not  in a closed form and so we resort to numerical  
evaluation procedures.  

The numerical procedure  for finding the normalized response time and power  is as follows. We first 
t runcate the infinite chain d k by calculating only first M probabilities (0 ~< k-%< M) ,  where M is 
int roduced as an arbi t rary positive integer. We assume that all other probabilities (for k > M )  are equal to 
O. By using higher M, we will obtain more  accurate results. In fact, the results are asymptot ical ly  exact as 
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M approaches infinity, given the transition probabilities are exact. Thus, we will also refer to the number 
M below as the precision of the numerical solution. In order to obtain dk, 0 ~< k ~< M, we calculate all the 
transition probabilities Pi, j, 0 ~< i ~< M, 0 ~<j ~< M - 2. To preserve the conservation of the probability, we 
assign the following value to the pi, M-1, 0 ~< i ~< M. 

M - - 2  

Pi.M-1 = 1 -  Y'~ Pi.j, O <~ i <~ M. (6) 
j = 0  

We assign the value 1 to the probability do, and from the recursive formula (5) we find all the probabilities 
d , ,  1 ~< k ~< M. Let the sum of all the d k, 0 ~< k ~< M be C. We then divide every dk, 0 ~< k ~< M by C. 
From the d , s  we find the number of customers in the system N. Through equations (2) and (3) we use N 
to obtain the normalized average response time T n and normalized power P. 

In the sections below we find the transition probabilities. 

4.1. Finding the transition probabilities 

The imbedded Markov chain, D(n),  with arcs representing transition probabilities, is shown in Fig. 6. 
Since at most one customer may leave between two successive departures, we have 

Pi. j=O, j < i - 1  (7) 

and thus those transitions are not shown in Fig. 6 
We define the following joint probability for i, j = 0, 1, 2 . . . . .  v > 0 

Pi.j(v) d v = P[a departure leaves j customers in the system (given the previous departure left i customers 
in the system) and the interdeparture time, V, between these two departures lies in the 
interval v < V<  v + dvl. 
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Fig. 7. Poisson winner queue transition graphs, 

Once  we f ind the p robab i l i t y  p~,j(v), we may  f ind p~.j as 

Pi.j = fo°°Pi.j(v) dv. (8) 

Cons ide r  a depa r tu re  of  a cus tomer  f rom the system. Rela t ive  to that  depar tu re ,  we call  all the 
cus tomers  left in the sys tem at the depa r tu re  old customers, and  any cus tomers  tha t  arr ive af ter  the 
depa r tu r e  new customers. The first  fol lowing depa r tu re  can  be m a d e  by  ei ther  an old  cus tomer  or  by  a new 
cus tomer .  F igure  7 shows t rans i t ion  graphs  for  the two cases. 

Let  us exp la in  the way  the t rans i t ion  g raph  (a) in Fig. 7 is cons t ruc ted .  The  g raph  represents  a t rans i t ion  
f rom state  i to state j .  We  d raw two rows of  boxes.  The  first row is associa ted  with  the s ta te  i. One  of  the  
boxes  represents  o ld  customers,  and  we wri te  " i "  in it. The  o ther  box  represents  new cus tomers  tha t  
a r r ived  before  the t rans i t ion  to the s ta te  j .  W e  leave tha t  box  e m p t y  for now. The  second  row of  boxes  is 
assoc ia ted  with the s ta te  j .  In  the box  that  represents  old  cus tomers  we wri te  " j " ,  and  in the  box  tha t  
represents  a winner  we wri te  ' T ' .  We  now d raw  arcs f rom the boxes  in the first row to the boxes  in the 
second  row. The  labels  on the arcs represent  the n u m b e r  of  cus tomers  that  are t ransfer red  f rom one  box  to 
another .  Since we know that  the winner  is an o ld  cus tomer  (for the case (a)) we d raw an arc  l abe led  "1"  
f rom the top  o ld  cus tomer  box to the winner  box.  W e  know that  all the  o ther  o ld  cus tomers  r ema ined  old,  
and  so we d raw an arc labe led  " i  - 1" f rom the top o ld  cus tomer  box  to the b o t t o m  old  cus tomer  box.  
Nex t  we know that  all o ther  j - i + 1 old  cus tomers  at  s ta te  j mus t  have newly arr ived,  and  so we d raw  
and  arc  labe led  " j  - i + 1" f rom the new cus tomer  box  to the b o t t o m  old  cus tomer  box.  W e  have now 
comple t ed  d rawing  arcs since the sum of  the labels  on the arcs equals  the sum of  the b o t t o m  row of  boxes.  
N o w  we take the sum of  the labels  of  all the arcs tha t  leave the new cus tomer  box,  and  we wri te  that  
n u m b e r  in the box,  i.e., we write " j  - i + 1". In  a s imilar  way  we d raw  the t rans i t ion  g raph  for the case (b) 
in Fig.  7. 
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Let us consider again a departure of a customer from the system. Let that customer leave i customers in 
the system and let that departure occur at time t = 0. We define 3 the following four probabilities, POL, 

Pow, PNL, and PNw: 
POL(i, O) = P[none of the i old customers finish their service in the interval (0, v) (given i old 

customers in the system at t = 0)], 
Pow(i,  v ) d v  = P [ i -  1 out of the i old customers finish their next service after time v, and one old 

customer finishes his next service in the interval (v, v + do)  (given i old customers in 
the system at t = 0)], 

PNL(k, V) = P[k new customers arrive in (0, o) and none of them finish their service before time v], 
PNw(k,  v) do=  P[k new customers arrive in (0, v), k - 1 of them finish service after time v, and one of 

them finishes in the interval (v, v + do)]. 
The interdeparture time probability density, given all new customers lost, is simply Pow(i,  o). 

Multiplying that by the probabili ty that all new customers lost, gives us the interdeparture time probabili ty 
density for an old customer winner: Pow(i, V)PNL(J -- i + 1, O) as can be clearly observed from part  (a) 
of Fig. 7. From part  (b) of the same figure, we see that the interdeparture time density, given all old 
customers lost, is PNw(J  -- i + 1, V). Unconditioning with POL(i, V), we obtain the interdeparture time 
density for a new customer winner: POL(i, V)PNw(J -- i + 1, O). We can now write 

p ; , j ( v ) = P o w ( i ,  V ) P N L ( j - - i +  I, o ) +  PoL(i , V ) P N w ( j - - i +  I, V), i, j>~O. (9) 

4.2. Finding PoL(i, V) and Pow(i, o) 

Consider an old customer left in the system by a departure at time zero. We define Uoi d to be a random 
variable representing the time until the end of his present (unsuccessful) service, and Voi d -- Uol d + X r to be 
a random variable representing the time until the end of his restarted service. X, is the restarted service 
time. We here assume the redraw case and so X (the service time) and X r are both drawn independently 
from b(x) .  (This approach would also be applicable for the noredraw case if we knew the distribution of 
Vol d for the noredraw systems.) Let O~/old(/.)) represent the probabili ty distribution function of the random 
variable Uol d. Let ~oid(V) represent probabili ty distribution function of the random variable Voi d. The 
following holds 4: 

e[Void .< 0] %':oid(O) 
= q/did (v )  @ b ( v )  

= f fq lo id(U)b(o  - u) du, (10) 

PoL(i,  v) = (P[Voi d > v]) ~= [1 - Woid(O)]~, (11) 

d P  [ Void O] ~< 
(V [ Vo, d > o ] ) ' - '  Pow(i ,  o ) =  i do = - POL(i, v).  (12) 

The service time probabili ty density function b ( x )  is assumed to be known. Let B ( x )  be the 
corresponding probabili ty distribution function. We now only need to find q/did(U) in order to find 
POL(i, V)- 

For broadcast systems Uoi d = O, and thus we have 

q / o i d ( U ) = l ,  U>~0, 

which gives us, in the broadcast case 

POL(i, v) = (P[X> v]);= [1 - B(o)]; (13) 

3 The letters O, N, W, and L stand for "old", "new", "win", and "lose", respectively. 
4 ® represents convolution. 
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We now assume that the service time for the redraw systems has a DqM distribution as defined in 
equation (1); we then have: 

POL(i, V) = { 1, V ~< qX (14) 
e - i ( t~v-q) /p ,  V > q~, 

def 
where/~ is defined as tt = 1 /~  and p = 1 - q. Using equation (12) we get 

0~ v ~< q~ 

Pow(i ,  v)  = i e -i(lav-q)/p, U > q~. (15) 

For silent redraw systems with memoryless service times we have 

q/old(U) = 1 -- e - ' "  = B ( u ) .  (16) 

Using equations (1) and (10) we get 

f0 ~old(v) = ~ e - " ' [ 1  -- e - " ( v - ' )  1 du  = 1 - (1 + try) e -"v. 

Thus, using equation (11) 

PoL(i, o) = (1 + t ,o) '  e - '"°,  ~ >/0 (17) 

and from equation (12) 

Pow(i ,  v) = itt2v(1 + # v )  i-~ e - i"° ,  0 >~ O. (18) 

For the silent winner queues with deterministic service times (equal to ~) we make an approximation by 
assuming that the arrivals of old customers are memoryless within the time interval [0, ~], i.e., they are 
exponentially distributed but also forced to arrive in [0, ~]. This gives us the following approximate 
expression for q/old (u)" 

1 - e - ' u  

q/old(U)--= 1 - - 1 / e '  O~<u~<~ (19) 

1, u > ~ .  

For deterministic service times we have 

B(x)= {0,  x ~  
1, x > 2  

and thus, from equations (10) and (11) we have 

l(, ', 0 ~ v ~ < ~  or i = 0  

e I -~v _ 1 / e  ) (20) 
POL(i' V ) = / ~  T--]-/-e , ~ < v ~ < 2 . r ,  i>~l 

~,0, v > 2 ~ , i > ~ l .  

F r o m  the last equation and equation (12) and we get 

~ i l ~ e l - . v ( e l - ~ ' ~ - - l / e )  i-1 

Pow(i ,  v ) = ~  1 - 1 / e  ] - 1 - ~  , ~ < v ~ 2 ~  (21) 

0, otherwise. 

In this section we found the exact values for the probabilities PoL(i ,  v )  and Pow(i,  v) for M/DqM(BR)  
and M/M(SR) ,  and an approximation for M/D(S)  5. We point out that for M/DqM(SR)  with q > 0, we 

5 See footnote 2. 
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Fig. 8. New arrivals. 

have not yet found the probability distribution of the random variable Uo~ 0, and so we are unable to find 
POE(i, 0). For noredraw, except for the approximation M/D(S),  we do not have the distribution of Uol 0. 

4.3. Finding PNL(k, t)) 

Figure 8 shows the time axis with k new customers arriving in the interval (0, v). Interarrival times of 
the customers are: o-y~, ya-Y2 . . . . .  Yk-1--Yk" From the definition of PNL(k,  V) and defining 

def 
fl(x) = P[X > x] = 1 - B(x), we may write 

PyE(k, V)= fo°X e-XU'-Y')fl(y,)foY'X e-X'Y'-Y~fl(y2) 

If we define 

x fY:.., fY*-'~.e-X,y,-,-y,)fl(yk)e-XY, dyk...dyEdy ' 
"0  ~0 

= Xk e_XOfo fl( y, Y2... Cy,-, . . .  v yl)f0 fl(y2)fo Jo fl(Yk)dYk dY2 dYl" 

y(c) de-J fo°fl(z) dz= foV[1- B(z)] dz, 

then we have 

v(o) = o 

f0 ° Y"+ l ( v )  - 7"+1(0) ~"+l (u)  
V"(z) d7(z )  = n + 1 -- n + 1 

PNE(k, o)= ~.k e-X°fo°foY'--, f j '  2foYk-' d.y(yk)dT(yk_,)dy(yk-2)"'" dy(yl) 

--',' ° ' r o t  Jo y (yk_ , )  d y ( y k _ , )  d y ( y , _ 2 ) " "  d y ( y , )  

=X* e-XOfoV~'.., fY*-3"yE(yk-2) "0 2 dv(Yk-z )"""  dr(Y1) 

. o . 

and finally 

PNL(J,, V) -- [X~(V)]* k! e-X°" 

(22) 

(23) 

(24) 

(25) 
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For the case of a DqM service time probability distribution we have 

1, x<~q~ 
f l ( X )  = e_(~x_q) /p  ' x > qY, {Xq 

= P [ 1  - y(x) + 
x ~< q~ 

(26) 

(27) e - ( ~ x - q ) / P ] ,  x > q x ,  

PNL(k, V)=  Ok[ 1 - - P  e_ Otv _ q , /P l k  (28) 
k! e -x°, v>qY,  

p def~k X where = - = X//~. For q = 0 (memoryless service times) equation (28) reduces to 

PNL(k, v ) =  Ok(1 --e-"V)k e -xo, k! v >/0. (29) 

For q = 1 (deterministic service times) equation (28) reduces to {~ e -xv, v~<.~ 
PNL(k, V)= O h (30) 

~ .  e-X% v > ~ .  

The probability PsL(k,  v) above can be used for the Poisson winner queues with any service time 
distribution and any discipline. We gave explicit expressions for the DqM service time distribution. 

4.4. Finding P N w ( k ,  v) 

We define the probability PNw.i(k, v), i = 1, 2 . . . . .  k in the same way as PNw(k, v) with the restriction 
that the ith customer is the one that wins. We can now write 

Pr~w'i(k' v)=~ke- Jo fl(Y')Jo fl(YE)Jo "" f ,Y ' - 'b  

X fo yi'' ' foYk-lfl(yk) d y , . . ,  dy= dy,, (31) 

where b(x) is the probability density of the service times. From this we may then find Psw(k, v) from 
k 

PNw(k,  v ) =  • eNw.,(k, v). (32) 
i=l  

Equations (31) and (32) are as far as we can go for a general Poisson queue. For M/DqM(G),  a Poisson 
winner queue with any discipline, we can derive an explicit expression for PNw(k, v) as follows. Recall 
that 

0~ x ~< q~ 

b(x) = e -(~x-q)/', x > q~. (33) 

From equations (26) and (33) we have the following relation between b(x) and fl(x): 

{Op x<~q~ 
b(x) = fl(x), x > q~. (34) 
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From equations (31) and (34) we see that PNw.i(k, v )  = 0 for  0 ~< v ~< qE. Thus, for v > qE we have 

PNw.i(k. v )=  X '~ e-X" P'p f q~ f l (Y l ) f q ; ' f l (Y2 )~ ' " f q : ' - ' f l (Y , ) f ~ ' f l (Y ,+ : )_  _ _ 

X fY'÷''" fo'k-'B(Yk) o>qE. 

The k - i innermost integrals from the above equation may be found successively using equation (24) (in 
the same way we solved the k integrals for the PNL(k, V)), to obtain: 

_ ° r , - , # ,  , Y  ( y , )  PNw,i(k,v)=)~ke_Xol~ fqfl(yl)fq~,fl(y2)fq~2.. " y k - i  p _ _ Jq~ tyi)-~z-~)l, d Y i ' " d y 2 d y l ,  

u > q x .  

We now define 

)def [0 ,  x<~q2 
B°(x = ~fl(x), x>qE, 

def  f x  . 

Y°(x) = Jo fl°( z) dz. 

The following holds for x > qE 

y(x)  = --f0q~fl(z) dz + yo(X) = y(q~) + ~,o(X) 

and from equation (27) we get 

y ( x )  = q~ + Yo(X). 

PNw,i(k, o) now becomes, for v > q~ 

fofy, re,, [qE + yo(y,)] '~-i 
PNw.,(k, o) =)~k e-  PJo  "10 -1o "o (-/~---/-'~. d'y°(Y') " '"  dy°(Y')  

k - i  
_ # )t k e_XO ~ (km i)(qE)k-i-m 

p (k - i)! 
m = 0  

× "ofVfY'fY:"'Jo'-~Y~'(Yi)"o "o  d'y°(Yi)""" d'y°(Yl)' /)> qE. 

The i integrals from the above equation can be found successively using equation (24) to obtain: 

# Xk e-XO ~ k i PNw,i(k, v)= P ( k -  i)! ~n (qElk-i-" v) 
m=0 ( m + l l ( m + 2 1 - - - ( m + i )  

k - i  (q~)k-i-,,yg+i(v) 

m = O  

If we now replace m + i by n, we get: 

k (q2)k-,yg(v) 
PNw,,(k, v)= P 

n=i  

which gives us 
k 

PNw,,(k, o ) =  ~ . .  ~ (q.~)k-n3'g(v), v>q7~. 
n = i  

(351 

(36) 
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Using equation (32) we find Psw(k ,  v) as follows. 
k 

k /~ Xk e -x° (k)(q~)k_nT~(v) .)= E E 
i=1 n=i 

_ # X* e_X. k *-"~'g v 
p k! E n q'~) ( ) 

n = l  i ~ l  

k 

' "  e-" (*) 
n=O 

p k (. e - X " ' r o ( V ) ~ [ q x + ' r o ( V ) ]  , 

Thus, 

v > q~. 

PNw(k, v) = /x, ,  , , 3'k-'(V) e_X, ' -~,X To( V) -(--~)t. v > q~. (37) 

Finally, using the expressions for ~,(v) and %(v) from equations (27) and (35), we get 

v ) = t ~ [ l _ e _ ( ~ o _ q ) / p ] p k - l [ 1 - - p  e-(~v-q)/P] k-1 e_XV ' 
( k -  1)! v > q~, k >/1 (38) PNw ( k , 

I 
k 0, otherwise. 

For memoryless service times (q = 0), equation (38) becomes 

tX -pk-l(1 - e-~")* e -x", >~ 0, k >~ 1 
PNw ( k, U) = (k - 1)! v (39) 

/ 
0, otherwise. 

For deterministic service times (q = 1), equation (38) becomes 

ok_1 e_XV ' 

PNw(k,  v ) =  k ( k - 1 ) !  v > ~ ,  k>~l  (40) 

0, otherwise. 

The probability Psw(k,  v) above can be used for Poisson winner queues with DqM service time 
distribution and any discipline. For other service time probability distributions it may also be possible to 
find Psw(k,  v), starting from equations (31) and (32), and using a technique similar to the one used here. 

5. Applications 

5.1. M/M(SR):  exact pijs 

As our first application of the results from Section 4, we study the M/M(SR)  queue. We substitute 
equations (17), (18), (29) and (39) into equation (9) to get the following expressions for M/M(SR).  

[p(1 - e-"O)] j+ '  
j !  e -x°, i = 0 ,  j>~0, v>~O 

PiJ ( v ) =  / ~ [ ( j + l ) l ~ v + j - - i + l ] ( l + l x v )  '-1 [p(l(j--e-~")] j - i + l _ i + l ) !  e-(X+iu)"' (41) 

i>~l, j>~i--1, v>~O 
• 0, otherwise, 



L. Kleinrock, F. Mehovi6 / Poisson winner queues 93 

1 

P 

0.8 

0.6 

0.4 

0.2 

I 

M/M(SR) 

Exact Pid 'S 

- - - Perfect System 
o o o Simulation Results 
- -  Numerical Results 

M =  10 

I I 

J 
/ 

f 

I s" 
i 

z 

i 

s 
s 

s 
s 

s 
s 

I 

s "  
/ • 

s z 

z •  I 

• z I / •  

/ 

/ s  

i i  • s  

0.2 0.4 0.6 0.8 p 

Fig. 9. Normalized power for M/M(SR) .  

which,  after integration according to equation (8), gives 

j+l (_l)m j + l  i=0,  j>~0 
0 j+l E m[( j~-~_Sm)!  0.4- ~ , 

m = 0  

j - , + ,  ( _ l ) m  ,-1 ( i - 1 ) !  1 (42) 
P"J= °J-'+' m=0 ( 0 + i + m )  k+2 

X [ ( j + l ) ( k + l ) + ( p + i + m ) ( j - i + l ) ] ,  i>~1, j>~i-1 
,0 ,  otherwise.  

Fo l lowing  the numerical  calculation procedure depicted in Section 4, we  obtain  results for the 
normal ized  power  P and normal ized response t ime T, which we  plot  versus the load # in Figs. 9 and 10. 
In the same figures we  also show s imulat ion results for M / M ( S R ) .  The numerical  results co inc ide  so well  
with the s imulat ion results that the two curves are indistinguishable.  Moreover,  we  show the behavior of 
the "perfect" system defined as one  with T n = 1 and P = #. For high #, power  for M / M ( S R )  seems  to be 
approaching a constant.  In fact, we obtain finite response t ime for all # < oc in this system.  (See, for 
example ,  Fig. 11). This unusual behavior is due to the fact that the winner among  a group of  customers  
will  be that cus tomer  who  finishes service first; thus the mean service t ime of  successful  customers  is 
smaller than 1 / # ,  and, in fact, will approach zero as # ---* oo. Those  customers  with "large" service t imes 
will  be kil led and al lowed to reselect their service t imes until they are successful.  Figure 11 shows  
numerical  calculat ions for different values of  the precis ion parameter M and the dotted curve is our 
es t imate  of  the power  shown approaching a constant value. The explanat ion for this fact, i.e., that the 
power  does  not  fall off  at high load (even for # >> 1), is that successful service t imes approach zero for high 
p. 

A two-dimens ional  Markov  chain used to mode l  M / M ( S R )  is given in [4]. 
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5.2. M / D(S): approximate pijs 

A second application is to the M/D(S)  queue. We substitute equations (20), (21), (30) and (40) into 
equation (9) to get the following expressions for M/D(S) :  

P) e-;~v X-f-( i=O, j>~O, v>~Y 

p, j ( ~ )  = ~ [ ( j  + a) e 1-"~ - ( j  - i + 1 ) / e ]  ( e ' - " °  - 1 / e ) ' - 1  
(1 - 1 / e ) '  

i>~l, j > ~ i - l , ~ < v < ~ 2 2  
0, otherwise, 

which, after integration according to equation (8), gives 

pJ 
e -O, 

Pi,j= ( j - - ~ i ~ i ) !  ( l ~ e e )  ik=O k 

X { [ e _  ,~-(o+k)l 2+__ 1 
" J p + k + l  

O, 

p.j--i+] 
e -x~, (43) 

( j - / + l ) !  

i=0 ,  j>~o 

-- + k ) - j - i +  l }, 
[ 1 - e  ~o 1 -~_~ i>~1, j > ~ i - 1  

otherwise. 

(44) 
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Fig. 11. N o r m a l i z e d  power  for M / M ( S R )  with  high 0- 

Following the numerical calculation procedure depicted in Section 4, we plot the normalized power P and 
normalized response time T n versus the load p in Figs. 12 and 13. In the same figures we also show the 
simulation results for M / D ( S )  given previously ( M / D ( S R )  is equivalent to the M / D ( S N )  due to the 
deterministic service times). 

Note  the two tails of  the power plotted in Fig. 12. The lower tail is the power calculated with higher 
precision, i.e., M is higher. These tails are due to errors caused by the numerical calculations. The exact 
power for M / D ( S )  should drop to zero for p = 1. It is interesting that the shape of the normalized power 
for the queue M / M / l ,  given a s  P M / M / !  = p(1 - p)! At this point we conjecture, but have not proven, that 
it actually is the same as for M / M / 1 .  

5.3. M/DqM(BR)." exact pi0s 

Our last application is to the M / D q M ( B R )  queue. We substitute equations (14), (15), (28) and (38) into 
equation (9) to get the following expressions for M/DqM(BR) .  

X[1 - e-<"v-o>/P l 0j [1  - P  e-(~v-q)/P]J j !  e -xv, v >1 qY, i = O, j >~ 0 

Ps.j(v) = e - . . o -q , / p  X p j - i [ 1 - p  e-("v-q)/P] j - '  (45) 
j - i +  l ( j - i ) t  

x ( i q / p + ( j + l ) [ 1 - e - < " o - q ) / P ] }  e -xv, v>~qY, i>~l,  j > ~ i - 1  

0, otherwise, 
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Fig.  12. N o r m a l i z e d  p o w e r  for  M / D ( S ) .  

which, after integration according to equation (8), gives 

P i , j  = 

J (-p)m [ 1 1 ] 
p j + l  e-qp E m~.(7~.[m)! p + m/p p + (m-+ 1)/p ' 

m = 0  

i=0, j>~O 
pj-i+l e_qp~i (-p)m [ j + l + i q / p  j + l  ] 

j - i + l  , , = 0 m ! ( - j - - - - 7 7 m ) !  p + ( i + m ) 7  p - p+( iT-m-+l) /p  ' 
i>jl, j>~i-1 

,0, otherwise. 

(46) 

Fol lowing the numerical calculation procedure depicted in Section 4, we plot the normalized power P and 
normalized response time T n versus the load p in Figs. 14 and 15. In the same figures we also show the 
simulation results for M / D q M ( B R ) .  

Let us now consider M / M ( B R )  by setting q = 0. When there are k customers in the system, the rate out 
is k#,  while the rate in is always )~. This is also the behavior of  M / M / o o .  Indeed, M / M ( B R )  is equivalent 
to M / M / o o ,  which is why Fig. 14 shows that M / M ( B R )  gives "perfect" performance, that is, 

P = p. (47) 

When we set q = 1 we get M / D ( B ) ,  which is simply an ordinary M / D / 1  queue. Thus we get the same 
normalized power as for M / D / 1 .  In M / D ( B ) ,  service time is never wasted (i.e., the service for exactly one 
customer is always useful, given at least one customer in the system). As  soon as a customer leaves, the 
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Fig. 15. Normalized average response time for M/DqM(BR). 

customers left in the system will restart. It is obvious that the system behaves as an M / D / 1  queue. Thus 
we get 

P = 2p(1 - p ) / ( 2 -  p) (48) 

for q = 1, and this is plotted as the dashed curve in Fig. 14. 
Figures 16 and 17 show the normalized power and the average response system time, respectively, for 

M/DqM(BR)  as functions of p and q. 

6 .  C o n c l u s i o n  

We have studied special types of queues, which we call winner queues. One obvious application ot 
winner queues is the performance evaluation of optimistic concurrency control schemes in databases. The 
winner queues studied are special cases of the winner queues considered in [4]. 

For these systems we investigated the average system time of customers. The results obtained by 
simulation and analysis were shown in terms of the normalized average system time and the normalized 
power. The analysis also gave the distribution of the number of customers in the system. 

We obtained simulation results for four different classes of winner queues: silent-redraw (SR), 
silent-noredraw (SN), broadcast-redraw (BR), and broadcast-noredraw (BN). The results showed powei 
curves with q varying from 0 to 1. We found that redraw queues perform better than noredraw queues, 
broadcast queues perform better than silent queues, and that queues with smaller q perform better fol 
redraw queues, while for noredraw queues higher q gives better results. These observations are summarized 
in Table 1. 
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Table 1 
Effect of system parameters to the performance 

Systems compared Better Worse 

Silent 
VS. 

Broadcast 

Redraw ~/ 
VS. 

Noredraw 

Redraw/Memoryless ~/ 
VS. 

Redraw/Deterministic 

Noredraw/Memoryless 
VS. 

Noredraw/Deterministic v / 

( 
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1 

P 

We obtained numerical results using exact expressions for the transition probabilities for the winner 
queues M/M(SR) and M/DqM(BR). Using approximate expressions for the transition probabilities, we 
numerically solved the winner queue M/D(S). Analytic results were found for the winner queues 
M/M(BR) and M/D(B). Figure 18 gives an overview of these results. 

More general winner queues, in which restarts differ from the original service time distribution, are 
analyzed in [4]. In [4] we consider cases in which concurrent customers do not necessarily conflict. These 
cases correspond to transaction processing in database systems. 

We know that both numerical calculations and analytic expressions for M/M(BR)  and M/D(B)  in 
Section 5.3 are valid. Suppose that we could mathematically derive the analytic expressions given in 
equations (47) and (48) from the transition probabilities given in equation (46). Then, we might also be 
able to find analytic expressions for the winner queues M/M(SR), M/D(B), and M/DqM(BR), 0 < q < 1, 
from the transition probabilities given in equations (42), (44) and (46), respectively. This mathematical 
derivation is an area of further research. Further studies of noredraw winner queues would also be fruitful. 
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