e

Lt ol bod o

Raaand s B d & s & o S

PRACTICAL QUEUEING TECHNIQUES FOR EFFICIENT 1/0

L Kleinrock
Professor of Engineering

Department of Computer Science
University of California at Los Angeles

(© L Kleinrock 1975

Scanned by CamScanner

L

. ‘KLEINROCK is Professor of Engineering in the Computer Setence

Department of the University of California, Los Angeles. He is also

a econsultant in the fields of communication systems, queueing theory,
and computers for several national industrial firme as well as cert-

ain govermmental agencies. He was formerly a staff member of the

Systems Analysis group at Lincoln Laboratory at Massachusetts In-

stitute of Technology. Professor Kleinrock's main areae of interest

include: computer networks, modelling of computer systems, queueing

theory, priority queueing and its applications to time-shared facil-

ities, and communication theory. He has published over sixty papers

in these fields and is the author of Communication networks: stoch-

astic message flow and delay (McGraw-Hill, 1964) and Queueing systers:

Vol I: Theory (1974) and Vol II: Computer Applications (1975) (Wiley
Interscience). Ae principal investigator for an Advanced Fesearch
Projects Agency contract on Computer Networks, he directs efforts
involving matnematicel modeiling and analysis, measurement, and eirm-
ulation. The computer facility under his direction is part of tke
nationwide ARPA experimental computer network. Professor Kleinrock
was auarded a Guggenheim Fellowship for 1871-72 and wae recently

made a Felloy ¢cf tre IEFE,

192

Scanned by CamScanner

.arce

Kleinrock

PRACTICAL QUEUEING TECHNIQUES FOR EFFICIENT 1/0

There are some fairly sophisticated means for connecting devices to
computers and running these devices concurrently, in an zttempt to

share resources in computing machines and hopefully without too much
conflict,

When cenflicts do occur, there are two ways of resolving
therm. First, data may get lost (but hopefully that does not happen).
Seconcly, buffers may be inserted to smoothe the flow. In this pres-
entation I shall discuss some of the simple techniques that we have
for describing the behaviour of these buffers.

How full do they get?
How lcng does data remain in the buffer?

How can the modeis from
queueing theory be effectively used to predict the performance of
computer systems?

It is fzir to say that one of the few methods.we have for predicting
ar.d measuring the performance of data flow in computer systems is
gueueing theory.

There are few other performance evaluation tools
ir. cocputer science.

Consequently, we should be familiar with some
of the major results and some of the major applications that we have
seer. cver the past six or seven years, both for predicting perform—

eand for comparing these predictions to the measurement of real
CCMLUuZer systems.

TEE FUNDAMENTALS OF QUEUEING THEORY

Fi

o

ezsic terms, a queueing system is one in which arrivals meke their

ati
reter is to g

igure 1 illustrates a very simple model of a queueing system. 1In
d e

that system, remain there for a while, and finelly leave,

uily setisfied in some sense. The reason why they enter the

2in access to some resource. A computer system is a
193

Scanned by CamScanner

Kleinroek : e e e .

ol by g Py

ARRIVALS QUEUE SERVER DEPARTURES
—11ITT—— 11—
t = time Ny = number in X = service
between gqueue time
arrivals

(A
n

waiting time

N = number in system

L1
n

system time

Act) = plEse) , E[E] = = 3
Bx) = PLxexd , E0R) = % = 3
A/B/m
T number of servers)

M—> exponential
D—> deterministic
6— general

description of B(XW'

description of A(t)

Figure 1: Model of a simple queueing system

collection of resources, each with finite capacity for doing work, .
for example, the CPU, a data channel, a terminal, a disk, and so on.
Requests for these resources arrive at unpredictable times. One

may not know when characters are coming from the teletype or when .

an interrupt is to occur on an I/0 channel and, because they are un-

predictable arrivals, they mey arrive in bunches and so may tempor-
arily overload the server, the CPU, for example. To resolve these

overloads, jobs are placed in a gqueue.

The basic quantities

T should now like to define a few quantitieS. First, we must talk

about the time between arrivals, which is a very basic quantity.

For example, Dr Wiseman discusses the variability in that quantity

for different devices. Not only must we talk about the time between

194

Scanned by CamScanner

Ml B il bl 4 b atanate s sl L2 i o b s de b B an

 ghad e il pae

Kleinroek

arrivals but we have also to talk about how much attention each of
those arrivals demands of this resource; and that is called the ser-
vice time. I shall denote those two quantities by £ and ¥ respect-
ively. We shall also have to tzlk about how many items are in .the
queue (N¥_) and how long each spends in the queue, that is, the wait-
ing time (3).. For the whole system, which includes the queue plus
the server, there are similar quantities: the number in the system
(N) and the time in the system (¥). What we really want to know is
how long is spent in the queue; how long is spent in the system;
how large the queue gets; what fraction of the time the server is
being used; what fraction of the customers who come in find no space
in the queue (and are therefore perhaps lost). Those are the basic

‘questions.

In order to describe the randomness in the time between arrivals,
vhat is known as the probability distribution function is introduced,
remely, the probability that the time between arrivals is less than
scme figure. The average of the time between arrivals is cenoted
either by E[f) or T or 1/A. In particular, if 1/A is the average
time between arrivals, then X is the average rate of arrivzls (say,
ir. characters per second,). E(Y2 describes the average time that
the customer will spend in the CPU and, in particular, the average

is written as %—or as i, and p is therefore the service rate (the
number of characters the processor can handle per second),

If there is one fundamental law of physics, it is that if a device

can do work at a certain rate, it should not be asked to do work at

z higher rate than that, since the device cannot handle it. 1In this
context, that means that the arrival rate of jobs shouid be smaller
thar the service rate of jobs, that is, X < u; otherwise the queue
vill grow to infinity and waiting times will become arbitrarily large.
Tnis does not mean that simulteneous arrivals cannot overlioad the

stem. Such arrivals will occur but, on the average, more work

should not be demanded thar the system can provide. Everybody knows
¢rat lzw but very few people have used it. Whenever someone intro-
cuces z new configuration of & computer system, I ask where the bottle-
recks are, that is, which device is most overloaded. Usuzlly, they

nzve no idez and they wonder what I mean.

.

Note that A is not permitted to equal p. Until a few years ago, in
mcst computer systems, people were quite happy to provide an input
rzte ecual to the rate at which the system could handle that flow.
They worked on the assumption that if they could handle 100 characters

195

el BTy veria 1 i ey
PSRN NeF 1 femnh R TR
0 e B OV i

TR

N

P
A

U T ooy BT
L

Scanned by CamScanner

hhbB LHLI'VCA

\per second, they would allow an input rate of 100 charécters per sec-
ond on average. Many time-sharing systems'fell into this trap and
they soon found that waiting times were becoming arbitrarily large
and the queues were becoming arbitrarily large, because they forgot
that there was variation in the time between arrivals, and variation
in the time required in service. It was those fluctuations, those

random quantities, that caused very large queues. Large queues will
also occur when X is close to yu.

To continue my brief description of the standard notation in queueing
theory, three other quantitiés are described in relation to a queue.
First, there is the number of servers, denoted by m. Then there is

a description of the nature of the time between arrivals, denoted

by A, and a description of the nature of the service time requirement,
denoted by B. The two descriptions, 4 and B, can each take on one

of many values (in fact, characters). The letter M, for example in-
dicates that the quantity can be described by the eprntial distrib-
ution. The letter D means it is deterministic; that is, the time
between arrivals, for example, is constant at, say, 3 a second between

every character. If there is nothing specific about the quantity,
then G, for general, is used.

Let me discuss some of these systems. I shall be talking mainly
about the exponential case, since it happens to be nice to handle
theoretically and it also turns out to be a fairly accurate descript-
ion based on some of the measured statistics that have been made.
That is the name of the game: people come in, join the queue, get
served, and leave. We want to know how long are the gueues and how
long are the waiting times.

"
=t

P, = P[N=k] s EILN]
Ww(y) = pl¥syl , EI¥] =W
S(y) = PLssy] , EIS] =71
TEW+Y
Utilization ' X/t = AX 6/6/1
factdr = B = ;(/mz -)\;(/m .
AT = N

Figure 2: Some measures of performance

196

———

S

—e
rraey

T TR S " A el B e e

-

et ettt bt LT T

e = -t

T TR v W e

——— e

Scanned by CamScanner

oy

E
|

Kleinrock '|

»

F
Figure 2 shows scme further notation for the quantities we wish to
find. I want to find the probability that there are k items in the
system, and typically that is denoted by Py» but, more important, I
want to know the average number in the system N. For example, on p
the average, how many characters are there in the buffer? I want 2‘42
to know the distribution of waiting time and, more importantly, for ,?2&%
a simple measure, what is ¥, the average time one spends waiting in the gégg

queue? Similarly, I want to know the distribution of time spent in
the system or average time spent in the system. The time in system
includes the service time; ¥ does not. So, in general, the average
time in system equals the average time in queue plus the average
time in service. That is generally true for any queueing system.

Another important definition is the utilization factor, p, which
indicates the fraction of time that the resource is busy. For ex-
ample, a utilization factor of 0.9 for a CPU would indicate that the
CPU was occupied for 90% of the time and idle for 10%. The value

of this factor is easily determined by multiplying the arrival rate 35'3.
by the average service time in an arbitrary single-server queueing %ap;:
system or, in a multiple server system with m servers, it is that . i%f
same quantity divided by the number of servers. What I am saying ﬁﬁg

is that a trivial calculation yields the fraction of time the server
is busy.

e o —

Given any two of T, N, and X, I can solve for the third by the very

important formula at the bottom of Figure 2: the average arrival

rate of characters in a system x the average time that those charact-
ers spend in the queueing system = the average number of jobs in the
system. This is a linear relationship between how long a job spends

in the system and how many there are in the system. This was a folk
theorem in queueing theory for many years, until it was finally pro-

ved in 1961. It is a very general result that applies to any queue
one is likely to encounter.

The M/M/1 cueueing system

Figure 3 shows the behaviour of the simplest possible queueing system,
cre with a single -server but where the inter-arrival time is expon-

ential and the time required in the service facility is exponential. :g;
that is, an M/M/1 system. -

The equation at the top of Figure 3 gives the value for p and the

Scanned by CamScanner

T Kleinrock

P=A/u

Fy=(1-p) ok

=1

O

W
— V,/’ZTZ:::j::j:;(l-p)y

0 y—> pP——> 1

Figure 3: Theoretical values of an M/M/1 system

varicus curves give the performarce of the system. BEefore discuss—
irg this performenrce, let me point out that the techniques usec to

give these results are very speciazl, because the malhematics ars

ct

very simpie but the results themselves are rather Eereral., los

queueing systems exhibit behavicur of this type, as I skaii descrite
T 2

g0 this 6 mcre than just the study of = very special systerm. Trig
‘tehaviour holds feor zll typres cf syster Including ¢/6/3 nycsters., i
The curve at the top left of Figure 3 shows theat the prcbability of

finding % tasks in the syster is 2 geometrically decreasing furctior;

that is, it becomes less anc less likely to find more and more tasks

ir the system. Thet formule is specific to this system, pyt ihe ex-
prcssicr. feor is not. The curve at the top right shows that the
average rumber of jobs one is 1likely to fird in z systepm as 2 furct- .
icrn of the fraction of time that the systerm is bteing used, '

a very rasty way. It is given by o/(1-0).

grows in

138

Scanned by CamScanner

Sl Sl e

v 1Y T

Kleitnrock

So, I'cr example, with a utilization factor of 0.G, YOu get a value
of 9.0; that is, if the server is busy for 90% of the time, then

on average there will be riine customers within the system. If the
utilizaticn factor is increased to 0.99, then there will bte 99 cust-
ciiers. The utilizaticen factor canrnot be increased to the value 1.0
without creating a queue of infinite lergth on the average, which

is why I said ezrlier that X nust rnct equal L, but must be less than
u. The reascon for the large growth ir the queue length is the fluct-
uations in arrival times and service times. Every so often, the CPU
will be sitting idle for longer than it should on the average and,
since on the average it has to be tusy for, say, 997 of the time,
there will be a2 huge burst of characters to compensate for that rel-
ative idlerness, which is when the gueues get very long. It is the

‘fluctuations that cause those effects arnd we shall see later what

happens when we exceed saturation. The gueues that form in the
stable case (p<l) are due to the fluctuations in the arrival times
ancé service times. Even though, on the average, they can te handled,
large queues and large waiting times are encountered. The curve at
the bottom right of Figure 2 shows ihe behaviour of waitirg times.
Note that ¥ = ¥/u. he average time spent in the queue gets cut cf
hand very quickly if ore tries to érive the system close to saturat-
ion. There is a rule of thumb that suggests that 80% is a reasonable
figure for utilizaticn; with higher rates, the system begins to
suffer .very sericusly.

The firnal curve in Figure 3 shows the distribution of the time spert
in a gqueue. The only interesting point to cbserve is that it is so
simple. One can actually calculate the form for this waiting time
distribution. For example, we may calculate the probability that a
character spends more than i3 seconds in the queue, rather than merely
calculating the average time that the character spends in the queue.

The M/M/m queueing system

Figure 3 showed the simpliest kind of result for queueing theory.
Figure U4 gives the formulae for a slightly mere complex but much more
interesting system: one with & sirgle qucue but with multiple ser-
vers (multirle channels from the device to the computer, for example).
The expression for p gives the average number of servers that are
busy doing work. The figure also gives the expression for the prob-
ability of firding k people ir. the system.

199

Scanned by CamScanner

Kleinrock

1
) _ A
- - . L] p = I"au
m
k
By (I;:?) k<m
- : . 1-p
' o . o m=-1 %
(mp) m™ % (mp)~+(1-p) E (mp)
S kzm ! X!
°© me : k=o
P '
P = - _‘m
[must queuel c(m,A/u) e YT
w(y) = l-C(M,A/u)e_“m(l-p)y
. . €(m,A/y)
W= im(i-6)
)
Figure 4: Theoretical values of an M/M/m system

More important is the next item in the figure, which is the probab- '

ility that a task cannot find an unoccupied server on arrival and
so must join the queue.

Again we see the same form for the distribution of waiting time in

the next equation, which is exponential, and we see a simple form in

the azverage waiting time; the curve for T is shown in Figure €.

The important point in this case, once again, is the nasty behaviour :

evident in the denominator when an attempt is made to drive the util-

. izztion close to 1; then the average vaiting time blows up. That

always happens.

Let us see what the curves look like.
the probability of joining the queue.

First, let us take a look at
What is the probability that,

when a character comes in, it does not find that there are any chann-

els empty?
in Figure 5.

interesting effect here, namely, the way in which the systen

1 shall plot thet probability versus load on the system

p is the expected number of busy servers. There is an

degrades,

that is, the probability of finding no empty server degrades uniformly
with the load on the system in the single-server case, a little bit

200

Scanned by CamScanner

1. Servers
m=]
me2
—-m=3

/ - m=4
p / - m=5

- m=6
pino empty N 7, - m=7
channels) 0.

2 - =8

0.5 ' ‘ ‘f””f 1//’///(A;f? o
P77 =t
=

- /,//)///;//////7” i
o8 7 e
' = @VA’ oo

S (NSRS [—

Figure 5: Probability of queueing

siower with two servers, and, as the nunbef of servers increases,
~he system can be seen to get bad very slowly, and then to get worse
very gquickly. It hangs on in a fairly good way, and then has a
threshold effect to saturation.

This effect is evident in Figure 6, which plots not the probability
of finding no empty servers, but rather the average waiting time for
any task versus l1oad on the system., For one server, things grow pretty
rmuch as in Figure 5 but look at the behaviour as m increases. The

T il
NN /]
IR //_/,//w.

|
4 1

RS .,i ﬂ.zz%

5
m=10
=20
m=40
=60
=60
m=100

1.0

p=XA/mu

Figure 6: Average time in system (normalized)

201

Scanned by CamScanner

L1

Kleinroek

system performs beautifully, until it is very close to saturation:

then, bang!, it saturates in a nasty way.

certain point, then the queues get disastrously long.

This

This effect, as we shall see
.that is, the system behaves well up -

That means that the util-
Vization can be run way up when there are many servers without
ering very serious degradation.

occurs also in networks;

suff-
iater,
to a

is trerefore

a situation that can be accurately modelled by gueueing technicues.

Sc the queueing effect in a multiple-server system can be deseribed

ir terms of two parameters:

and the place where it gets terrible.
2 first approximation.

" The M/G/1 queueing system

3y generalizirg a little, instead of insisting on exponentisz

the performance value when it is good,

It is a very simple mcdel, as

al

service

times, permitting a general service time, we can obtair more results,
ir particular for the average rnumber cf

the system and the average waiting time.

can be seen in Figure T:

"y

‘\
w0y
%
"

4

p = AX , var(X) = ©
2
e* = i
(x)*
= p* (l+&%)
N =P ¥ Il-p
_ px(1+c?)
W= 2(1-n)
7: Theoretical values of an M/G/1

Khinechin formulae)

“cre importantly, note what is happening

£ is, the the larger

is the cuantity C? which happers tc

cessirg time for each charzcter or each t
is

the waitin

r the service time. How much varleal

]
(=%

o~

c

items waiting fer

serv.ce 1in

Once again the seme effect

&)
w
0
ot

4

em (Follaezer—

the numerztor cf ¥

as p gets close to 1, we get intc trcuble.

Scanned by CamScanner

"

tata e of

T —

-

when servicing char-=
gs if in fact the

variation in the service time, as for examplé,
acters, then ¢ = 0. There is a significant savin

variance of service times can be reduced. As I have already sald,
it is these fluctuations that cause queues to build up even when a

system is not saturated.

There are two sources of fiuctuations: first, the processing time,
(which is the c? term) and, secondly, the time between arrivals. If
there is a general distribution of inter-arrival time and the var-

jation is' driven down to O, then there is a saving.

You will find that the average waiting time when the service time
is constant is only half of the average waiting time when the service
time is exponentially distributed. Most people are unaware of this

:difference but, clearly, it is of great importance.

It might be thought that waiting times car be reduced by changing
the order in which tasks are processed, by processing the last arr-
ival first, or in some other arbitrary crder. In fact, if tasks are
selected to be processed in some arbitrary order, the mean waiting
time cannot be reduced unless the selection depends on the process-
ing time of the task itself, If, on the other hand, I have a set of
tasks to process and I know how long each oné of them will take,
then I can do something to reduce the mean waiting time. The best
thing is to take the shortest task first. But if I do not know how
long they will take to preocess, I cannot improve the mean waiting
time by changing the order in which they are processed. What I

might do is to introduce an increase in the 3tandard deviation of
the waiting time.

So, one might suppose that changing the order of service is benefic-
izl but there is no benefit in terms of the mean waiting time and

there may very well be some penalty in terms of the variation in the
waiting time,

The G/G/1 queueing system

??guré 8 shows the properties of a queueing system wifh an arbitrary
time %etween arrivgls, én arbitrary service time, and a single server
t?at 15,‘a G/G/1 system. The first equation defines the variance ’
of the time between arrivals. 1In fact, there is almost nothing we

can solve for in i a
n this case. We canrot even S8ay what the average

203

Scanned by CamScanner

Kleinroek

T\ - o2
var(t) = o

2,2
A(oa+cb)

3
W 2(1-p)
Heavy traffic approximation:

As p—>1, w(y)Zl-exp - —2(1-p) y
A(c: + o;)

Figure 8: Theoretical values of a G/G/1 system

_waiting time is, only what its upper bound is, the second item in
'Figure 8. The same effect was shown in Figure 2, namely that the

behaviour will be 1like 1/(1-p). In fact, as p gets close to 1, near

the critical point, the upper bound becomes a very excellent approx-

imztion. And, more interestingly, the distribuﬁion of the time spent

in queue is again exponentially distributed, just like in the M/M/1

case, the very simplest queue. The behaviour is easily described

in terms of an exponential distribution. This 1s called a heavy ,
traeffic approximation, because the traffic is close to saturation

point, and we can find the probability that the task will have to

wait more than so long in the queue.

Now, that is the effect of queues when the system is not saturated

but what happens when the system is overloaded? Obviously, the

gueues will grow but how fast will they grow? Supposing I put in

twe jobs per second when the system can handle only one job per

Obviously, the queue will grow at the rate of one job per

If I put in ten jobs per second when the system can handle .

secor.d.

secord.
one iob per second, then it will grow at the rate of nine jobs per

secord. 1In other words, it will grow linearly in time.

Let us make an approximation. Let us forget the fluctuations in time

tetweer zrrivals and the service time, and let us consider a highway

thzt can carry traffic at a given rate: sO many cars a minute. When-’

rrival rate exceeds the rate at which traffic can exit, a back-

121 form. .

O
m
4

That is a very simple model of a2 queueing system but it contains
tasicalily all of the effects that occur when the system is overlozded.
If the system is overloaded, it is a fluid approximation that makes
serse. When the system is underloaded, the fluctuations must be

204

Scanned by CamScanner

Kleinrock

taken care of. One must think about them to predict how long the
queues get. When the system is overloaded, it is very easy to cal-
culate what happens. It gets bad very quickly, and in particular
notice that the peak backlog occurs when the rush hocur ends. 1In the
United States the rush hour is from about 4 to 6 pm but the freeways
are still busy until 7.30 pm. It is really slow, and people wonder
why. They say that nobody is coming on, but they are all there, on
the freeway, slowing each other down. The same thing happens with
computer systems, if they get overloaded. We have to look at things
that way, in a very simple fashion.

APPLICATIONS OF QUEUEING THEORY

Having described briefly what queueing theory is all about, I should
now like to apply it to some computer problems. The difficulty with
the models that we have been discussing is that they have been con-
cerned with a single resource. There was typically a single server,
or many servers doing the same thing. In a computer facility, there
are multiple resources: CPUs, disks, I/0 channels, terminals, and
so on. What we have to do is to try to model the flow of jobs through
this multiple-resource system and ask how long they spend at each
position, how long before they pass through the entire system, how
many jobs are queued up, and where gqueues are forming. In order to
do that, a network of queues will have to be considered. Figure 9
shows such a network of queues. Each circle represents a gqueueing

facility, for example, a terminal. Jobs arrive at that terminal
requesting service and, after they finish typing in whatever task
they have, we think of the task as moving, for example, to the CPU,
then to a disk, then to memory, then finally back to the terminal.
Tasks move around among these various resources, joining queues if
the resource is busy in some fashion. The question is whether we
can ereate a model of this, a mathematical model that will predict

performance ir & network. The answer is that we can.

Figure 9 also gives some notation to show what some of the results
are. Let us assume I nodes or N resources in the system. Let us
assume that the net traffic into the <¢th one of these resources is

a number, Ai. Now I have to talk about how tasks move around from
one centre tc another centre, and Yo will be a model of that, be-
cause s is the probability that a task will go next to resource j,
given that it is currently in resource i. We also need to consider

205

Scanned by CamScanner

Kleinrock

N nodes

Ai = traffic rate into node i

r..= P[j next | i now]

137

¥y F external traffic rate into node i
(Poisson)

n. = number of servers in node i

E[xiJ = l/ui

Figure 9: A network of queues

tasks coming into the system from outside. In each station there
is & way in which jobs can enter from outside this network. Let v,
be the rate at which jobs enter the ith node from external Sourcesr
For example, if there 1s an idle terminal, what is the rate at which
people approach that terminal? Let us assume that arrivals are dis-
tributed according to a Poisson process. Further, let m, parallel

- sepvers exist in each of the facilities; m, might be 1 if the re-
source is a CPU, 16 if it is a set of data channels, and so forth.

Then, for each device, we shall assume that the average service time

is unique to that device, and we shall call it “/u..
text, there are two kinds of systems. One kind of system 1s the

In this con-

kiné I have described, where jobs come in from outside the system,
get processed, and finally leave. Such systems are called open syst-
ers since there is a way in and & way- out, There are also closed
systers, in which there is no way in and no way out and jobs in such
systems stay there forever, just moving around among the stations,

We shalli look at both kirnds of system.

Flgure 10 gives the major results for open nefworks. First, the
3

206

Scanned by CamScanner

Kleinroek

pProbability that a job leaves the network after it finishes at sta-

tion 7 is just 1 minus the probability that it goes somewhere else

within the network. The next equation one has to solve, and it ig

a trivial equation, is to determine what the traffic is into each

of the nodes of the network, which is the sum of traffic coming into

that node from outside sources ang the traffic coming from
stations within the network.

other

P [leave network after node il

N
Ai= Y+ 2: Ajrji
Jj=i

P[k;,kz, cee s kN] = P,[lk,] Palk,l ... PN[kN]

where

M & s Rrmor u/M/m, node

with Ai s M

Figure 10: Theoretical values for an open network

The final equation means that the probability of finding kl jobs
Gueteing up for resocurce 1, k2 for resource 25

and kN for resource N,
ecuals the probability of finding k

1 at node 1 times the prcbability ;
1

cf k2 &t node 2, and so forth. Therefore, each of these nodes can

te extracted from the network and studied by itself,

In faet, each
ore will look 1like an M/Y mi,system and we have already seen the sol-
uticn for such systems.

The only thing that one needs to know is
the zrrival rate: vwhat is the parameter associated with the arrivail
That is given by ’.. The network part cf the probler is trivy-

<. L¢]

“%-e ICL JUsSt have tc sclive fep trhe traffic,

That is a very irportart result. It reans that one carn decorpcse

the statistical assumptions without worry-

ut interplay among devices, just to know what the average
fiov is between devices,

wwerss if one wilil accept
c

207
e e o T ——

Scanned by CamScanner

Figure 11 gives the corresponding results for clqsed networks. Here
we have X tasks in the system, and there will be no external arrivals,

K = constant number of customers in network

o M B
j=1
. N k.
. X
plk k oo = 1 1
b K e Ry T 20y
G(x) it
i=1
where
P
] <
k! k;<m,
Bi(ki) =4
m.! m ki-m.t ’
4% 4 k.2m
\ 1 2

Figure 11: Theoretical values of a closed network

The set of equations we now have to solve is the same as for open
networks without external arrivals. In fact we can give an explicit
form for the distribution of number at various stations. One can
_see that it is roughly of the same type as in Figure 10, namely,
that it seems to be a product of a set of terms, each of which dep-
ends only upon what is happening in the <th station. Again, it al-
most decomposes. |

Terminal polling

We shzll study scme applications using these network tooils. Figure
12 shows the first application, terminal polling. If there is a
collection of M terminals from which data has to be transferred to
the CPU, we should like to know how long it takes from when a char-

208

Scanned by CamScanner

" acter is typed in until it is accepted by the CFU.

CASE 1: DIFFUSION APPROXIMATE

0.2 02
0'2 = - + =
2 (8)® (x)°

=1
1]
NlQ

31
31
"
[\S]
O™
]
1|
S~

CASE 2: EXACT ANALYSIS

t M(t=1)
2(t=M) 2t (t-M)

2]
n

var (number of arrivals/unit time)
Figure 12: Terminal polling emptying each terminal in eyeclie poll

There are two cases, depending on how much we know about the statist-
ics of character generation, The first case applies to situations
where we can make almost no assumptions about the nature of the stat-
istics and the expression given in Figure 12 is an approximation to
the behaviour of the system. It tells the average number of char-
acters buffered in a terminal at any point in time. This is an im-
portant quantity because from it we can find, by the folk theorem I
discussed earlier, how long each character spends in the buffer.

The second case is different because it is possible to obtain an
exact analysis rather than an approximaetion. Once again, it is crit-
ical that the input rate should be less than the resource rate.

e can see from the denominator of the two expressions that as t,
the average time between characters, approaches M, the number of
terminals, the average number of buffered characters grows without

200

Scanned by CamScanner

Kleinrock

bound.

It is important to see that these very

some rather elegant results to terminal polling.

Time-sharing systems

simplie queueirg modeis give

l —t

.y SYSTEM
OF QUEUES
‘ wix)=gl@ | X =x
! UPPER
BOUND
FB
FB = Feedback
RR = Round robin RR
SRR = Selfish round robin
ML = Multi-=level ML
FCFS = First comz first
served SRR
"FCFS
WX
X —>
Figure 13: Time-sharing system algorithms

Figure 13 shows another application for
We

there is a singie resource available in

ple model of a time-sharing system.

of jots coming in and gaining access ic

sharing system, a job does not retain the resource.
shareé between various jobs by time slicing or some other means. &

: % 4
job ccmes in and joins a system of queues and eventually gains access

to the CPU. If it is given enough, the
not erough, the time slice may end, and

into the gueues tc await another time slice.

210

a network of gueues, a sim-
are once again assuming that
this case, a CPU. We think
the CPU but, in the time-
Instead, it is

job will leave. 1If it is
the job gets thrown back
The jobs will rur

Scanned by CamScanner

b . g

around that loop until they finally leave. What we want to know is
the effect of the different scheduling algorithms.

First of all, we should 1like to solve for the average time that a
Jjob spends in this system, or in the syster of queues. We are talk-
irg about the waiting time, so it is a system of queues. We know
how long the job will spend in service so we should like to find the
average waiting time depending or how many seconds, or milliseconds,
the job will spend in the CPU. One of the objectives of time sharing,
apart from resource sharing, is tc give rapid response to short jobs.
If I want to see how that rapid response is given to short jobs, I
need to solve the quantity above as a functiorn: of job length.

The curves at the bottom of Figure 13 show the performances of a
variety of algorithms. For example, in a batch processihg system,
where jobs are tazken from the queue to the CPU and left till they
finish, in first-come-first-served fashion, the performance is re-
presented by the horizortal line. In other words, the waiting time,
as a function of the job length, is a constant; there is no discrim-
inetion in favour of short jobs. 1t is therefore a lousy time-shar-
ing system. A round-robtin algorithm gives a linear discrimiration;
if the job is twice as long as another, it .will spend twice as long,
orr the average, in the system. The FE algorithm gives the CPU next
to that job that has so far had it least, which gives very short
jobs the opportunity to get in and get out very quickly. It is thus
most discriminatory ir. favour cf the shortest jobs.

I éo nct want to go irtc detail about these various algorithms ex-
cept teo say that marny schemes have been developed and we krnow exactly
hcw they behave. For example, there exists a lower bound and an
upper bound tc k(x).

It is ar. interesting fact that the batch prccessing algorithm is the
worst for short jobs tut it is the best for long jobs. One would
expect that; since uc discrimiration has been made irn favour of short
jobs, the iorg jobs have rot teen hurt. Conversely, the FB scheme,
the orie which gives éccess rext tc the jcb which so far has had leasp
access, is the best fcr the short jobs ard, as might be expected,

it is the worst fcr the lor.g jobs. In between these two is the round-

robin, a very commorn scheme.

Figure 14 shows what is haprening outside the time-sharing system,
It contains part of the last diagram, the CPU and the system of queues,

211

Scanned by CamScanner

Kleinrock

but also shows how jobs arise as entries to the system., If there
are M consoles with people sitting at them typing requests for acc~-

ess to the time-sharing system, how does this system behave? If we
define 1/y as the average thinking time, the average time that it
takes to compose a character or line at the terminal, and p,, a
quantity which I can solve for, as the probability that there is no-

body in the-.queue or CPU (shown in the box), then the average time,
7, from when one enters until one leaves this box, under some stat-

istical assumptions, is given simply by the formula in the Figure.

4

Y

queues @

Think time

System
— time
Elthink time) = % %=k ,
Ps" plsystem is empty)
M/u 1
T = - -
1 P, ‘Y»
uT
1
1 2 3

Figure 14: Average waiting versus number pf users

Before discussing the rest of Figu;e 14, let me point out that this

ecuztion was compared favourably to some measurements many years ago
oé an MIT system, the CTSS compatible time-sharing system.
It might be thought that it is possible to produce an infinite ‘back-

log in that system but it is impossible. There can be at the most

M people in the system since this is an example of a closed network.
People cannot enter and they cannot leave. If I consider this to

212

e

Scanned by CamScanner

be a network, there are M + 1 stations essentlally, and people keep
circulating around, so that the

the behaviour. There can be at
possible to saturate the CPU if

earlier network equations describe
most M people waiting so it is im-

by saturation one means that the
delays and queues are driven to infinity.

On the other hand, we know that a time-sharing system is supposed

Now, a system is efficiently shar-
ing resources if, when a new user is brought into the system, the

other users of the system.do not feel his presence in a very strong
way.

to share resources efficiently.

If that is true, then the system absorbed him gracefully.
on the other hand, when he comes in, everybody gets delayed by an

amount equal to how much time he needs on the CPU, then he was not
absorbed gracefully;

uration.

If,

this is what I should 1like to define as sat-
Figure 14 gives an equation for M*, the saturation number
of the system, which is equal to the average time that the users

need the CPU plus the average time spent in thinking, divided by the

average time that the users need the CPU. For example, if users spend,

on average, 18 seconds thinking and twec seconds processing, the system
can handle ten users, nine people thirnking and one working.

This
is a very important measure of this kind of system.

In Figure 14,
we plot T, the time that a job spends waiting and gaining service,

and the critical number, M*, is just about where that curve begins

to rise in a nasty way. After this critical point, the curve becomes

linear and every Jjob will be delayed by an amount equal to any new
job's processing time and the system will not be absorbing them grace-
fully any more. Below that point, we see the effect of time-sharing;
there is no increase in delay, as more and more users come in, until
the number approaches that saturation point and the curve begins to
climb, eventually becoming linear.

Figure iS is a2 model of a multiprogramming system with a fixed number,
K, of partitions. The model says that a job is either in the CPU

or in some external I/0 device; typically accessing memory, a card
reader, and so on., After it gets its data, it goes back, and re-
quires service on the CPU again, and so there are XK jobs circulating

around that loop. It is a closed network of the kind that I descri-

bed earlier and the solution here is a special case of that more

general network. This is a very special network and we understand
exactly how it works.

213

Scanned by CamScanner

Kleinrock

> I/0 units
a Hy P 1
1 154
ky,k SiE % =
Pk, s)t ey T (=
i=2 N
.
G(k-1)/6(k) i=1
Ai= Plnode i busyl= 4
B, P,
'IA, i=2, ..., N
\ Hi
Balanced system:
9 3
I APy = 4/ A,u,p,
LT auj

Figure 15: A mﬁltiprogramming model

Computer networks

Fineally, I should like to make a brief mention of computer networks.
Perhaps the ultimate in input/output is to separate not only the two
terminals from the computer but to separate computers from each other
and to let them communicate with each other, with terminzls connected:
to the cohputers themselves. In such & case, we would crezte some-
thing called a message service, whereby computers throw messages into
the communication network, and the network delivers these resszges to
other computers. The question is how long does it take the nessages
tc propagate through that network. This is no different than throw-
ing messages into a single facility between two devices, except that
it is or a geographically distributed scale.

Scanned by CamScanner

o T

' be a network, there are M + 1 stations essentially, and people keep

circulating around, so that the earlier network equations describe

the behaviour. There can be at most M people waiting so it is im-

possible to saturate the CPU if by saturation one means that the
delays and queues are driven to infinity.

On the other hénd, we know that a time-sharing system is supposed

to share resources efficiently. Now, a system is efficiently shar-

ing rescurces if, when a new user is brought into the system, the
other users of the system do not feel his presence in a very strong
way. If that is true, then the system absorbed him gracefully. If,
on the other hand, when he comes in, everybody gets delayed by an
amount equal to how much time he needs on the CPU, then he was not

absorbed gracefully; this is what I should like to define as sat-
‘uration.

Figure 14 gives an equation for M*, the saturation number
of the system, which is equal to the average time that the users
need the CPU plus the average time spent in thinking, divided by the

average time that the users need the CPU. For example, if users spend,

on average, 18 seconds thinking and twc seconds processing, the system
can handle ten users, nine people thinking and one working. This

is a very important measure of this kind of system. In Figure 14, i
we plot T, the time that a job spends waiting and gaining service,

and the critical number, M*, is just zbout where that curve begins

to rise in a nasty way. After this critical point, the curve becomes
linear and every job will be delayed by an amount equal to any new

job's processing time and the system will not be absorbing them grace-
fully any more. Below that point, we see the effect of time-sharing;
there is no increase in delay, as more and more users come in, until

the number approaches that saturation point and the curve begins to

climb, eventually becoming linear.

Figure i5 is a model of a multiprogramming system with a fixed number,
¥, of partitions. The model says that a job is either in the CFU

or in some external 1/0 device; typically accessing memory, a card
reader, and so on. After it gets its data, it goes back, and re-
quires service on the CPU again, and so there are X jobs circulating
around that loop. It is a closed network of the kind that I descri-
bed earlier and the solution here is a special case of that more
general network. This is a very special network and we understand
exactly how it works.

213

Scanned by CamScanner

Kleinrock

I/0 units
. Hy P 1
1 1 F7
ki, k . e =
p(1952 s kN) m H u
i=2 *
7
G(x-1)/6(K) Fe |
A;s Plnode 1 busy]=+
B, P,
= o, i22, wuu, N
\ i
Balanced system:
2)
3;; APy o A, M,P,

J
Figure 15: A mﬁltiprogramming model

Computer networks

Finally, I should like to make a brief mention of computer networks,
Perhaps the ultimate in input/output is to separate not only the two
terminals from the computer but to separate computers from each other

ard tc let them communicate with each other, with terminals connected-

to the computers themselves. In such & case, we would create some-
thing called a message service, whqreby computers throv messages into
the communication network, and the network delivers these resszges to
other computers. The_Question is how long does it teake the messages
tc propagate through that network. This is no different than throw-
%ng.messages into a'Single facility between two devices, except that
it is on a geographlcally distributed scale.

Scanned by CamScanner

- s —

If:one attempts to create a model of that, a queueing model, one can
find one that works pretty well, a model that describes what the del-
2ys are to message traffic in computer networks. If we compare

theory with simulation, we see that the delay is quite acceptable up
until a critical throughput, at which point the delay blows up. It

is not the slow degradation that one might expect. It is a very crit-
icel threshold which occurs in networks. Just like in the multiple
cerver case we saw before, when there were 50 or 100 sefvers, things
were fine, and we had that model which I said behaved this way, with
2 critical load. The same with networks. A very simple model seems
to suffice in predicting and estimating the queuing delays in networks.
4Agein it comes right out of the queueing theory models.

CONCLUSION

In conclusion, I should like to say that, although queueing theory

is tough and hard to work with, the results that we have give a
feirly good description and provide a very good model of systems.

For many'terminal—oriented input/output computer systems, the flow
of data between devices and finite-capacity resources in the computer
system can be accurately modelled. A lot of work is going on and

the models that people have come up with seem to work fairly well.
The queueing theory .part is hard but, if one is willing to accept
approximations, either in the modélling or in the calculations, one
can find some results that predict quite accurately how the Jobs are
going to queue up, how long they spend waiting, where the bottle-
rnecks are, how to tune up systems, and where one should put additional
capacity.

215

Scanned by CamScanner

