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I. INTRODUCTION w HAT IS IT WE now  know  about  packet  communica- 
tions  that we did not know  a  decade ago?  What made 
the problem difficult, and why  were the solutions not 

immediately  apparent to us in the  late 1960’s? Whereas the 
answers to these  questions may entice the system designer (in- 
deed, I, for one, delight  in such investigations), why should 
the  network user care  a  whit? To most  users (and, alas, to 
many designers), communications is simply  a  nuisance  and  they 
would just as soon  ignore  those  problems  and get on with the 
“real” issues  of information processing! 

In this paper  (and in conjunction  with  the other papers in 
thisspecial Issue of  the PROCEEDINGS), we hope to answer 
some of these questions. We will identify the need for resource 
sharing, explain why the problem of efficient resource  sharing 
is hard,  and why it. must be understood, review some of the 
lessons we learned  (mostly  from  the  three ARPA packet net- 
works),  and  then, finally, state  some principles which have 
evolved from the  study and  extensive use  of packet  communica- 
tions. 

11. RESOURCE SHARING 
A privately owned  automobile is usually a waste  of money! 

Perhaps 90 percent of the  time  it is idly parked  and not in use. 
However, its “convenience” is so seductive that few  can resist 
the  temptation to  own  one. When the price of such  a  poorly 
utilized device is astronomically high, we do refuse the  temp- 
tation (how many  of us  own private jet aircraft?). On the 
other hand, when the cost is extremely  low, we are obliged to 
own  such  resources  (we all own idle pencils). 

An information processing system consists of  many poorly 
utilized resources. (A resource is simply a device  which  can 
perform work for us at  a f inte rate.) For example, in an in- 
formation processing system,  there is the CPU, the main  mem- 
ory, the disk, the  data  channels,  the terminals, the  printer, etc. 
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One of the major system advances of the early 1960’s was the 
development of multiaccess time-sharing systems in which 
computer  system  resources were made available to a large 
population of  users, each of whom  had relatively small demands 
(i.e., the  ratio of their  peak  demands to their average demands 
was very high) but  who collectively presented  a total demand 
profile which was relatively smooth and of  medium to high 
utilization. This was  an example of the advantages to  be 
gained through the smoothing effect of a large population 
(i.e., the “law of large numbers”) [ 1 1 .  The  need for resource 
sharing is present in many  many  systems (e.g., the shared  use 
of public jet aircraft among  a large population of users). 

In  computer  communication  systems we have a great  need 
for sharing expensive resources  among  a collection of high 
peak-to-average  (i.e., “bursty”) users [ 11. In Fig.1 we display 
the  structure of a  computer  network in which we can identify 
three  kinds of resources: 

1)  the terminals directly available to  the user and the com- 
munications  resources  required to connect  those  terminals to 
their HOST computers or directly into  the network (via TIPS 
in the ARPANET, for example-this is an  expensive portion of 
the  system  and it is generally difficult to employ  extensive 
resource sharing here  due to  the relative sparseness  of the  data 
sources; 

2) the HOST machines themselves  which provide the in- 
formation processing  services-here  multiaccess time  sharing 
provides the mechanism for efficient resource sharing; 

3) the communications  subnetwork, consisting of  com- 
munication  trunks  and  software  switches, whose function it is 
to provide the data  communication service for  the exchange of 
data  and  control  among  the  other devices. 

The HOST machines in 2) above  contain  hardware  and soft- 
ware resources  (in  the  form of application  programs  and  data 
files)  whose  sharing  comes under  the  topic of time sharing; we 
dwell no further  on  these resources. Rather, we shall focus 
attention  on  those  portions of the  computer  communications 
system where packet  communications has had an important 
impact. Perhaps the most visible component is that of the com- 
munications  subnetwork listed in item 3) above.  Here packet 
communications first demonstrated its enormous efficiencies in 
the form of the ARPANET in the early 1970’s (the decade of 
computer  networks).  The  communication  resources to  be 
shared in this case are storage mpacity at  the  nodal  switches 
(these switches are  called IMP’S in  the ARPANET), processing 
capacity in the nodal  switches,  and communications  capacity of 
the  trunks connecting  these switches. Packet  switching in this 
environment has  proven to be  a  major technological break- 
through in providing cost effective data  communications  among 
information processing systems. Deep in the backbone of such 
packet-switched  networks  there is a need for long-haul high- 
capacity  inexpensive  communications,  and it is here  where we 
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Fig. 1 .  The  structure of a computer-communication  network. 

see the second application of packet communications for re- 
source sharing in  the form of satellite packet switching; else- 
where in this PROCEEDINGS [2] you will fiid a description of 
the SATNET, an ARPA-sponsored  research network connected 
to the ARPANET. The  third application may  be found  in  the 
local access problem stated in item  1) above  which also lends 
itself t o  the use  of packet switching to  provide efficient com- 
munications resource sharing; this takes the form of the use  of 
a multiaccess broadcast channel in a local environment, com- 
monly known as ground radio packet switching.  Here too, 
ARPA  has sponsored an experimental system, and its descrip- 
tion may be found  in this PROCEEDINGS [3].  The  common 
element running through all these systems is the application of 
the  smoothing effect of a large population to provide efficient 
resource sharing, an exquisite example of  which is provided by 
packet communications. 

Having  described the environment and the resources  of in- 
terest, let us now discuss the performance measures  which 
permit us to  evaluate the  effort of resource sharing in a quan- 
titative way. Indeed, there are  basically four measures that 
both  the system designer  and network user apply in evaluating 
the service  provided in a communications environment. These 
are throughput, response time,  reliability, and cost. Before 
packet networks came into existence, the obvious solution  for 
providing communications between two devices was to lease or 
dial a line between the two. In such a case the user was able to  
associate  precise quantitative values to  the four measures listed 
above. On the  other hand when one  attaches to  a packet net- 
work, the user cannot get deterministic answers to  the same 
quantities as he has in  the past.  He must accept probabilistic 
statements regarding throughput, delay, and reliability (and 
alas, sometimes even  cost).  Moreover the  quantities so pre- 
scribed can seldom be  measured in a straightforward fashion. 
This is the  state of  affairs to  which we have  evolved today! It 
is to  the credit of those who  developed packet communica- 
tions  in  the last decade that  the system design  was carefully 
studied and wellanalyzed prior to  and during the systems 
implemention;  this certainly has not, in general, been the 
history in  the information processing industry. 

111. WHY THE PROBLEM Is HARD 

Back in 1967, when the concept of the ARPANET  was first 
taking form, we found ourselves entering the uncharted terrain 

of packet switching.  Let us trace  our initial confusion regard- 
ing that project briefly. Certainly, there existed at  that time 
some communication networks, but they were mostly highly 
specialized networks with restricted goals. In the early 1960's 
Paul  Baran had described some of the properties of data net- 
works  in a series of Rand Corporation papers [4 ] .  He focused 
on  the routing procedures and on  the survivability of distributed 
communication systems in a hostile environment, but did not 
concentrate on  the need for resource sharing in its  form as we 
now understand it; indeed,  the concept of a software switch 
was not present  in his work. In 1968 Donald  Davies at  the 
National  Physical Laboratories in England was beginning to 
write about packet-switched networks [ 5  I ; at around the same 
time, Lany Roberts at ARPA  pursued the use  of packet switch- 
ing in an experimental nationwide network [6]. For a more 
complete  history of the evolution of  packet communications, 
see [71. 

In the initial conception of a packet network, we identified 
some problems and looked to  the technical literature  for solu- 
tions to  these problems. For example, how should one design 
the  topology of a network, and how should one select the 
bandwidth  for the various channels in  such a network, and in 
what fashion should one route  the data through the network, 
and what rules  of procedure should two communicating pro- 
cesses adopt, and how much storage did one need at the 
multiplexing nodes of the network? These and many other 
questions confronted us. Indeed the general problem was how 
to  achieve efficient resource  sharing among a set of incompatible 
devices in a geographically distributed environment where  ac- 
cess to  these devices  arose from asynchronous processes in a 
highly bursty fashion. Moreover, not only was the demand 
process bursty,  it was also highly unpredictable in  the sense 
that  the  instants when the demands arose  and the duration of 
the demands were unknown ahead  of time. Fortunately we 
were unaware of the enormity of the problems facing us and 
so we plunged ahead enthusiastically and with naive optimism. 
The remainder of this section describes  why the problem was 
difficult, and in following sections we describe the lessons we 
learned and the principles we established in  the development 
of packet communications. Our efforts have been well  re- 
warded  and the technology of packet communications has 
come of  age  and has proven  itself to  be a cost-effective 
technology. 
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We auicklv  found that many of our  old  techniaues  could not TABLE I 
be directly applied to packet  network design and that new 
techniques  had to be developed;  these new techniques  turned 
out  to be  of  great generality and have led to  principles and to 
understanding which  are sure to benefit us for many  years to 
come. One of our first tasks was to develop tools which  would 
allow us to analyze  the  performance of a given network. This 
involved  evaluating the delay-throughput profrle for networks. 
Basically, this is a  queueing  problem in a  network  environment. 
It  had earlier been recognized [81 that  the probabilistic com- 
plexities one  encounters in computer  networks are extremely 
difficult. One of the simplest analytical questions involving 
the  solution of two nodes in tandem was first posed at  that 
time in 1964  and has only  been satisfactorily answered (in the 
queueing  theoretic sense) within the past year [9] ; this, note, 
is for  the simplest problem.  Indeed we have come to realize 
that an exact  solution for  the delay-throughput profile is prob- 
ably  hopeless in a  complex  network  environment.  Fortunately 
suitable approximations [ 1 ] , [ 81 have  been  developed  which 
permit one to predict the performance of  given networks  with 
a high degree of accuracy. More than  that, these  approximate 
tools allow us to expose  and  understand the phenomenological 
behavior of networks. 

The astute reader will observe that  the resource  sharing  prob- 
lem stated above sounds very much like the problem  faced in 
the design  of time sharing systems. Surely, with  time sharing, 
we are faced  with the problem of sharing resources  among 
asynchronous processes which behave  in a  bursty fashion. The 
major difference  between the  two  problems, however, is that 
our problem exists in  a geographicully distributed environment 
which requires expensive communication resources in the  com- 
munications and coordination functions. The  implications 
here are strong. For  example, when communication is cheap, 
then wide-band communications can  be obtained  with ex- 
tremely small delays; such is the case, for  example,  within the 
resources  of a local operating  system  connected  together  by  a 
data bus. In a regional or nationwide  network  subject to  the 
relatively  expensive cost of telecommunications, we find  that 
typical bandwidths are many orders of magnitude less than  that 
in a local time-sharing environment, and the delays are  many 
orders of magnitude greater. Furthermore,  the  control of these 
processes in  the  time sharing environment can be very tightly 
coupled if desired or left loosely  coupled if there is sufficient 
reason; in the network  environment we typically find our pro- 
cesses are very loosely  coupled  due to  the difficulty of tighten- 
ing the  control  between  them  (indeed,  the  inherent  delay  due 
to  the  finite speed  of light is a  fundamental limitation on  the 
tight coupling of remote processes). The overhead in the  time 
sharing  system is variable and  may  be very high with  poor  system 
design (for  example,  thrashing)  but  may be made small with 
clever  design. In  the  network  environment,  for  a variety of 
reasons, we find that  the overhead  due to packet  headers, 
control  information  and  resource allocation tends to be 
relatively high. These  comparisons are summarized in Table I. 

Not  only  do we have extremes in communications cost 
between  these two systems, we also have a signifhnt difference 
in the reliability of that communications.  Indeed, in the local 
time  shared  system,  the process-to-process  cDmmunication is 
usually  assumed to be reliable and  therefore  the acknowledg- 
ment  procedure (if any exists) is simple and  tends to be invoked 
only  under  exceptional  circumstances. On the  other hand, in 
the distributed computer  network  environment,  communica- 
tions reliability is not assumed, and,  therefore, an elaborate 

ASYNCHRONOUS PROCESS-TC-PROCESS COMMUNICATION AND CONTROL 
COST  COMPARISON  BETWEEN  LOCAL PROCFSSES IN A TIME-SHARED 

SYSTEM AND DISTRIBUTED PROCESSFS IN A NETWORK - 
MUltiaCeSS Geographically 

Time-shared  Distributed 
Systems  Computer  Networks 

Typical bandwidth  megabyta/sec  kilobits/sec mcd communica- fractions of a micro- tens to hundreds of 

Process-process 
coupling  tight to loose typicany loose 

Overhead  due to variable (typicdy variable (typically 
system  control low) high) 

tions  delay  second milliseconds 

acknowledgment  procedure (often including  timeouts  and other 
defaults) is usually  invoked. We are here  reminded of the 
“two-army”  problem.  This is the problem where two blue 
armies are each poised on opposite hills preparing to attack  a 
single red  army in the valley. The red army can conquer  either 
of the blue armies separately  but will fall to  defeat if both blue 
armies attack  simultaneously.  The  blue armies communicate 
with  each other over  an unreliable communications  system. 
The  problem is to coordinate the  two blue armies so that  they 
will attack  simultaneously. Let us assume that Blue  Army 1 
(Bl) sends  a message to Blue Army  2  (B2) indicating that  they 
should  jointly  attack  at  noon  the  next  day. Clearly B1 must 
await a positive acknowledgment  from B2 that  the command 
was properly received;  were B1 to  attack without  such an 
acknowledgment,  then the possibility exists that B2 did not 
receive the message correctly, in which case B1 is subject t o  
the certain annihilation of his army. If  B2 properly receives 
the command  and  acknowledges it, then  he must  await an 
acknowledgment of the  acknowledgment  from B1, for if B1 
did not receive his acknowledgment then we know B1 will not 
attack  and B2’s attack will then be doomed to  failure. The 
argument  continues in a circular.-fashion where acks of  acks 
of acks . . . are  continually  transmitted  with no action ever 
being taken;  the  two  blue  armies can never get perfectly 
synchronized  with  certainty using this unreliable communica- 
tions system. 

We see therefore that  the new culprit in resource  sharing in  a 
distributed environment is the  fact  that  the  resources are 
distributed and cannot easily be assigned to  the demands. In- 
deed, in previous resource allocation problems,  which  often 
come  under the name  of scheduling  algorithms, we made  a big 
assumption,  namely, that  the scheduling  information  could  be 
passed around for free. That is, the  competing  demands  could 
organize themselves into  a cooperating  queue at  no price. Un- 
fortunately, in the distributed environment, the cost of organiz- 
ing demands into  a cooperating  queue  may be  very  large, and 
in one  fashion  or  another  nature will make  you  pay  a price [ 101. 

The  problem of resource  sharing in  a distributed enivronment 
manifests itself in the routing  control  and  flow  control  prob- 
lems. The  problem of flow  control is to regulate the  rate  at 
which  data crosses the  boundary  of  the  communications  sub- 
network (both  into and out of the network).  The  problem of 
routing  control is to  efficiently transport  the  data (which has 
been admitted  by  the  flow  control  procedure) across the net- 
work to its destination. In 1967 we were  aware  of the sophis- 
tication needed  in the  routing  procedure,  but were relatively 
ignorant of the need for effective flow  control (see below). 
These two problems are difficult because  we are dealing with a 
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control  procedure in a distributed environment subject to 
random delays in passing that  control information  around 
in  order to control  the  random demands. The purpose of both 
procedures is to efficiently use the network resources (IMP 
storage, IMP  processing capacity, and communications ca- 
pacity). In  achieving this goal one  must attempt to control 
congestion, route  data  around busy or defective portions of 
the network,  and in general must adaptively assign capacity to 
the data  traffic  flow  in an efficient, dynamic way.  These are 
hard control problems and  represent a class  which  has not 
been adequately  studied up  to and including the present time. 
We have come to learn that distributed  control is a sophisticated 
problem. Below we return to the issues involved in  distributed 
resource allocation  and sharing. For  the moment let us in- 
troduce some of the  other sources of complexity in packet 
communications. 

In  any  distributed  communications system design one is faced 
with a topological design problem. The problem  basically is, 
given.a set of constraints to meet,  find  that topological design 
structure which meets these constraints at least cost.  The field 
of network flow theory addresses  itself to such problems and 
the salient feature of this theory is that most  of its problems 
cannot be  solved! To exhaustively search over all possible 
topological designs for a given problem is certainly not a solu- 
tion since the number of  possible alternatives to consider can 
easily exceed the  number of atoms in the universe  even for 
relatively  small problems. (For example, if at some stage you 
must consider all permutations of 20 objects,  then a computer 
would take  more  than 75 000 years to process all ZO! cases  even 
if it could examine  one million cases per second.)  Rather, a 
solution consists of  elegant search procedures which are com- 
putationally efficient and  which find the  optimal  topology 
for  the given problem. Very  few problems in network flow 
theory yield to such efficient algorithms. Rather,  one gets 
around  the  combinatorial  complexity  naturally  inherent in 
these problems by accepting suboptimal  solutions. (Beware! 
A suboptimal  solution to a problem  is simply the result of a 
procedure which examines a subset of  possible solutions and 
picks the best of those examined-this suboptimal  solution 
may or may not be  close to the optimal.)  The  trick here is to 
fiid efficient heuristic search procedures which come close to 
the optimal rapidly. Over the past decade, efficient procedures 
have  been  developed in many cases and new procedures are 
constantly  beinginvestigatedfor the topological design problem. 

Another  source of difficulty  in the resource sharing problem 
is in defining the  appropriate performance  measure. For ex- 
ample, what is the capacity of a network? It is well-known in 
network flow theory  that  one can  easily calculate the capacity 
(is.,  the throughput) between any  two pairs of points. What 
is not straightforward is to evaluate the total datacarrying 
capacity of a network where throughput is measured in  terms 
of messages  successfully  received at  their destination.  The dif- 
ficulty comes about because the capacity of the network 
strongly  depends  upon the traffic  matrix  one assumes for  the 
data flowing through  that network. For example, if the traffic 
matrix were such that traffic passes only  between  immediate 
neighbors in the topological  structure  and in an amount equal 
to the capacity of the line connecting  those two,  then  the  net- 
work capacity would approach a value equal to the sum of all 
channel capacities in the network. This is clearly an  upper 
bound to the capacity for  any  other traffic  matrix. Since in 
general we do  not  know  the traffic  matrix for a network to be 
designed for  future use, how is one to evaluate that capacity? 

Yet another source of difficulty in the network problem is 
that of interfacing terminals and HOSTS to networks as well as 
one  network to another  network.  For  example,  there is the 
general  issue of virtual  circuit  service as opposed to datagram 
service. A virtual circuit service presents to the user a com- 
munications environment in which all functions  appear as if 
she were directly connected between the two points com- 
municating (i.e.,  an orderly  and controlled flow is maintained 
whereby data is guaranteed to be correct  upon delivery to the 
destination, comes out of the network in the same order  in 
which it came in, and a flow control may  be  applied to  that 
transmission to maintain efficient use  of network resources 
and of  terminal-HOST resources). A datagram service ensures 
none of these things and simply sends blocks of data (packets) 
across the network, not guaranteeing correct delivery (or 
delivery, at all), not guaranteeing orderly flow in  terms of  se- 
quencing (packets may  arrive at the destination out of order), 
and not enforcing any flow control procedure at  the process- 
to-process  level.  Which  of those  two services is desirable has 
become an issue  of international  proportions discussed  else- 
where in these proceedings [ 71, [ 1 11.  Futhermore, the inter- 
connection of two networks presents an enormous  and rich 
variety of difficult problems. For  example, should one  apply 
flow control  at  the boundary of each network in a tandem 
chain of networks or should one  apply flow control from the 
source HOST to the destination HOST  across many networks 
simultaneously? If  we consider the  interconnection of networks 
with different  packet sizes, we have the general  problem  of 
fragmentation-whereby long packets get fragmented into smaller 
packets when  crossing network boundaries. A variety  of other 
very important issues  arise in internetting (see [ 271 for a more 
detailed discussion  of internetting). 

Many  of the problems we have just presented come  about 
due to  the distributed  nature of our message sources and system 
resources. The problems created by distributed sources are 
very  clearly  seen in  the  environment of  geographically  dispersed 
message sources which communicate with each other over a 
common broadcast channel; in this case,  access to the capacity 
of the channel must  be carefully coordinated. 

Thus  in answering the question,  ‘Why is the problem hard?” 
we have found  the following sources of difficulty: 

1)  the analytic  problems from queueing theory  and  the 
probabilistic complexity resulting therefrom; 

2) the topological design problems  from  network flow theory 
and  the combinatorial  complexity resulting therefrom; 

3) the price for  coordinating  and sharing resources in a 
geographically distributed  environment (the new culprit) 
leading to problems of resource allocation,  routing  con- 
trol, flow  control,  and general processto-process com- 
munication problems. 

IV. LESSONS LEARNED 
After a decade of experience with packet  communications it 

is fair that we ask  what  lessons  have we learned and what  have 
we come to know about  the needs of the user and the questions 
he would like to have answered. So far as the user is concerned 
we shall see as we step  through the lessons learned below that 
he cannot insulate himself completely  from the underlying 
technology of packet communications. Indeed the service he 
sees is quite different from  that which he has with leased  lines 
as mentioned above.  Moreover, certain decisions will either  be 
thrust  upon him or accepted by him due to the nature of the 
service offered; if he is unaware  of the consequence of setting 
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parameters in that decision-making  process then he may 
seriously  degrade the performance of the network  due to  his 
ignorance.  Let us now list some of the lessons we learned and 
return to  the principles in  the following section. 

A.  Deadlocks 

In [ l ] ,   [ 12 ] ,  and [13] we described  in detail some of  the 
deadlocks and degradations of which we have become aware. 
In this section we simply enumerate and sketch the details of 
the deadlocks.  Simply stated, a deadlock (also commonly 
referred to as a lockup) is the unpleasant situation  in which 
two  (or more) competing demands have each been assigned a 
subset of their necessary resources; neither can proceed until 
one of them collects some additional resources  which currently 
are  assigned to the  other and neither demand is willing to 
release any resource currently assigned to  him.  Deadlocks  are 
one of the most serious system malfunctions possible, and one 
must take great  care to  avoid them  or  fiid ways to  recover from 
them. It is ironic that flow control procedures by their very 
nature present constraints on  the flow  of data (e.g., the re- 
quirement for proper sequencing), and if the  situation ever 
arises  whereby the  constraint  cannot be met, then, by defiii- 
tion,  the flow will stop, and we will have a deadlock! This is 
the philosophical  reason  why flow control procedures have a 
natural tendency to introduce deadlocks.  In this section we 
briefly  discuss four ARPANET  deadlocks  which  have come 
to be known as: reassembly lockup; store-and-forward  dead- 
lock; Christmas lockup; and piggyback  lockup. 

Reassembly  lockup, the best known of the ARPANET dead- 
lock conditions (and one which was known to exist in the very 
early days of the ARPANET implementation), was due to a 
logical  flaw  in the original flowcontrol procedure. In the 
ARPANET, a string of bits to  be passed through the network 
is broken into “messages”  which  are at most approximately 
8000 bits in length. These  messages are themselves broken 
into packets which  are at most approximately 1000 bits in 
length. A message requiring more  than  one packet (up to  a 
maximum of eight) is termed a multipacket message and each 
of these packets traverses the network independently ; upon 
receipt at  the destination node, these packets are “reassembled” 
into  their original order and the message  itself is recomposed, 
at which time it is ready for delivery out of the network. (A 
more complete description of the ARPANET protocols may 
be found in [ 1 1 ,  [ 131 .) Reassembly lockup occurred when 
partially  reassembled  messages could not be completely reas- 
sembled since the network  through which the remaining packets 
had to  traverse was congested, thus preventing these packets 
from reaching the  destination;  that is, each of the destination’s 
neighbors  had  given all of their relay (store-and-forward)  buf- 
fers to additional packets (from messages other than  those 
being  reassembled)  heading for  that same destination and for 
which there were no unassigned  reassembly buffers available. 
Thus the destination was surrounded by a barrier of blocked 
IMP’S which  themselves could provide no storeand-forward 
buffers for  the needed outstanding packets, and which at  the 
same time were  prevented from releasing any of their store- 
and-forward buffers since the destination itself refused to  ac- 
cept these packets due to  a lack of  reassembly buffers at  the 
destination. The deadlock was simply that  the remaining 
packets could not reach the destination and complete the 
reassembly until some storeand-forward buffers became free, 

and the store-and-forward buffers could not be  released until  the 
remaining packets reached the destination. 

Store-and-forward deadlock is  another example of a lockup 
that can occur in a packet-switched network if no proper 
precautions are taken [ 11, [ 131.  The case of “direct” store- 
and-forward lockup is simply a “stand-off.” Let  us  assume 
that all  store-and-forward buffers in some IMP A are filled with 
packets headed toward some destination IMP C through a 
neighboring IMP B and that all store-and-forward buffers in 
IMP B are filled with packets headed toward some destination 
IMP D through IMP A .  Since there is no store-and-forward 
buffer space  available in  either IMP A or B ,  no packet can be 
successfully transmitted between these two IMP’s and a dead- 
lock situation results. One way to prevent the deadlock is to 
prohibit these packets in IMP A from occupying all those 
store-and-forward buffers which are needed  by the packets 
coming in  from IMP B (and vice  versa)  by the  introduction 
of “buffer classes” as in [ 141 . This is accomplished  by 
partitioning  the buffers in a switch into classes, say, B o ,   B 1 ,  
* * * , Bk, where k is the longest path length in  the network. 
A packet arriving at a switch from outside the  net has access 
only to class  BO buffers. When a packet arrives at a switch 
after having  made k hops so far, it has  access to  class Bo, 

* * , Bk buffers, etc. Thus, the closer a packet gets to  its final 
destination, the more access it has, and  therefore  the speedier 
its passage through the network. It can be proven [ 141 that 
this “buffer class” allocation will prevent direct storeand- 
forward lockup. “Indirect” store-and-forward lockup can 
occur when  all  store-and-forward buffers in a loop of IMP’s 
become filled with packets all of which travel in the same 
direction (clockwise or counterclockwise) and none of which 
are within one  hop of their destination. Both  storeand-forward 
lockup conditions are far less  likely if, as in  the ARPANET, 
more than  one  path exists between all  pairs  of communicating 
IMP’S. 

In December 1973, the dormant Christmas lockup condition 
was brought to life. This lockup was exposed by  collecting 
measurement messages at UCLA from all IMP’s simultaneously. 
The Christmas lockup occurred when these measurement mes- 
sages  arrived at  the UCLA  IMP for which  reassembly storage 
had been allocated but for which no reassembly  blocks  had 
been  given.  (A  reassembly block is a piece  of storage used in 
the  actual process  of  reassembling packets back to messages.) 
These  messages  had no way t o  locate  their allocated buffers 
since the  pointer to  an allocated buffer is part of the reassembly 
block; as a consequence, allocated buffers could  never  be  used 
and could never  be freed. The difficulty was caused by the 
system fmt allocating buffers before it was assured that a reas- 
sembly block was  available. To avoid this kind  of lockup, reas- 
sembly blocks are now allocated along with the reassembly 
buffers for each multipacket message in  the ARPANET. 

Piggyback lockup is a deadlock condition which was identified 
by  examining the flow control code and has, as far as we know, 
never occurred. This lockup  condition comes about due to  an 
unfortunate combination of intuitively reasonable  goals  im- 
plemented in  the  flowcontrol procedure. One of these goals, 
which we have already mentioned, is to deliver  messages to  a 
destination in the same order that  the source received them. 
The other innocent  condition has to  do with the reservation  of 
reassembly storage space at  the destination. In order to  make 
this reservation procedure efficient, it is reasonable that only 
the first multipacket message  of a long file transfer be required 
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to make the reservation. The ARPANET  flow control proce- 
dure will then maintain that reservation for a given  file transfer 
as long  as  successive multipacket messages  from that file  are 
promptly received  in  succession at  the source IMP. We have 
now  laid the groundwork for piggyback lockup. Assume that 
there is a maximum of eight  reassembly buffers in each IMP; 
the choice of eight is for simplicity, but  the argument works 
for  any value.  Let IMP A continually transmit eight-packet 
messages (from some  long  file) to some destination IMP B 
such that all  eight  reassembly  buffers  in IMP B are used up by 
this transmission of multipacket messages. If now, in the stream 
of eight-packet messages, IMP A sends a single-packet  message 
(not  part of the file transfer) to  destination IMP B it will gen- 
erally not be accepted since there is no reassembly buffer space 
available. The single packet message will therefore be treated 
as a request for buffer allocation (these requests are the 
mechanism by which reservations are made). This request will 
not be  serviced before the RFNM (an end-to-end  acknowledg- 
ment from the destination to  source) for  the previous multi- 
packet  message  has  been sent. When the RFNM is generated, 
however, all the free reassembly buffers will immediately be 
allocated to  the next multipacket message in  the file transfer 
for efficient transmission as mentioned above; this allocation 
is said to  be  “piggybacked” on  the RFNM. In this case, the 
:ight-packet  message from IMP A that arrives later  at IMP B 
(and which is stored  in  the eight buffers) cannot be  delivered 
to its destination HOST  because it is out of order.  The single- 
packet  message that should be  delivered next, however, will 
never reach the destination IMP since there is no reassembly 
space  available, and, therefore,  its requested reservation can 
never be  serviced.  Deadlock! A minor modification removes 
the  piggyback lockup. 

These  various  deadlock conditions are  usually quite easy to 
?revent once  they are detected and understood.  The  trick, 
lowever, is to expurgate all  deadlocks from the  control 
nechanism ahead of time,  either by  careful  programming 
:a difficult task)  or by some automatic checking procedure 
:which may be as difficult as  proving the correctness of pro- 
yams). Those  deadlocks found  in the ARPANET  have, to 
$e best of our knowledge, been eliminated. 

B. Degradations 
A degradation is just  that, namely, a reduction  in the  net- 

work’s level  of performance. (Deadlocks are, of course, an ex- 
treme form of degradation which is why we discussed them in 
the separate section above.) For  our purposes, we shall measure 
performance in terms of delay and throughput. In this  section 
we discuss four sources of  ARPANET degradation, namely: 
!ooping in  the  routing  procedure; gaps in transmission; single- 
“cket  turbulence; and phasing. 

Looping comes about due to  independent  routing decisions 
made by separate nodes which cause traffic to  return to  a 
previously  visited node  (or,  in a more general definition, causes 
traffic to  make unnecessarily long excursions on  the way to  its 
destination). Of course any reasonable adaptive routing proce- 
lure will detect these loops  (through the build-up of queues 
md delays perhaps) acd will then break the  loop and guide 
the traffic directly on to  its destination. However, the occur- 
rence  of loops does cause  occasional  large  delays in the  traffic 
flow and in  some applications this is quite unacceptable. It is 
sonic  that a remedy which was introduced in the ARPANET 
to reduce the occurrence of loops, in fact made them worse in 

the sense that whereas they occurred less frequently, when 
they did occur, they persisted for a longer time. Some  loop-free 
algorithms have recently been  published [ 151, [ 161. 

The next degradation we  wish to  discuss is the occurrence 
of gaps in the message flow. These  gaps come about due to  a 
limitation on  the number of  messages in transit which the 
network will allow.  Assume that between any source and 
destination, the network will permit n messages in flight at a 
time. If n messages  are  in flight, then  the next  one may not 
proceed until an end-to-end acknowledgment is returned back 
at  the source for  any  one of the n outstanding messages. We 
now  observe that if the  round-trip delay (Le., the time required 
to send a message  across the network  in the forward direction 
and to return  its acknowledgment in  the reverse direction) is 
greater than  the time it takes to  feed the n messages into  the 
network, then  the source will be  blocked  awaiting  ack’s to  
release further messages. This clearly will introduce gaps in 
the message flow resulting in a reduced throughput which we 
might  classify as a mild form of degradation. 

We now come to  the issue of single packet  turbulence as 
observed in  the ARPANET. We note  that “regular”  single- 
packet messages in  the early  ARPANET  were not accepted by 
the destination if they arrived out of order. Rather,  they were 
then  treated as a request for  the allocation of one reassembly 
buffer. Therefore if, in a stream of  single-packet  messages, 
packet p arrived  out-of-order  (say it arrived after packet p + 3), 
then packets p t 1, p + 2, and p + 3 would  all  be  discarded at 
the destination, and only  after packet p arrived  would a single 
packet buffer be allocated to  message p + 1. This allocation 
piggybacked on  the end-to-end  ack for packet p ,  and when it 
arrived at  the source IMP, it  then caused a retransmission of 
the discarded packet p + 1 (which had been stored in the 
source). Of course any packets arrving at  the destination after 
packet p + 3,  but before p + 1 arrived in  order, would them- 
selves  be  discarded.  When packet p + 1 finally  arrived for  the 
second time at  the destination IMPit was then  in order  and  this 
caused an allocation of a single-packet buffer to packet p + 2, 
etc. The net result was that only  one packet would  be  deliver- 
able to  the destination per round-trip  time along this  path; 
had no packets been  received  out-of-order, then we would  have 
been pumping at a rate close to  n packets per round  trip  time 
(if the maximum number in transit n could fit  into  the pipe). 
Observe that once a single packet arrived  out-of-order in  this 
stream, then  the degradation from n to 1 packets per round- 
trip  time would  persist  forever until  either some supervisory 
action was taken or  until  the  traffic stream ceased and began 
again from a fresh start  in  the  future. We refer to  this effect 
as “single-packet turbulence,” and it was  observed in  the 
ARPANET as described in  [171. The need to handle a con- 
tinuous stream of traffic (e.g., packetized speech)  was 
recognized some time ago and resulted in  the definition of 
“irregular” packets known as type 3 packets (as contrasted 
to  “regular” type 0 packets); these packets are allowed to  
be  delivered out of order, receive no end-toend acknowledg- 
ment, and are generally handled in a much  more relaxed 
fashion. 

The last degradation we discuss is known as “phasing.” In a 
typical packet network, more than one resource is often re- 
quired before a mesage is allowed to  flow across that net- 
work. For example, some required resources  may be: a message 
number; storage space at  the source; storage space at  the 
destination, etc. Tokens move around the network passing out 
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these resources in some distributed fashion. Phasing is the 
phenomenon whereby enough  free  tokens  are available in the 
network to permit message flow,  but, the proper mix of  tokens 
is not available simultaneously  at the proper  location  in the 
net.  The delay in gathering these  tokens  represents  a degrada- 
tion i l l ,  1181. 

Fortunately, the degradations  here described have  been 
remedied in  the ARPANET and in  later  networks. 

C. Lessons of Distributed  Control 
We have had ‘lessons” in  two areas of distributed  control. 

The first has to do  with flow control, and it is simply the 
observation that flow control  procedures are rather  difficult 
to invent and extremely  difficult to analyze. The deadlocks 
and degradations referred to  the in previous subsections were 
principally due to flow  control failures (and occasionally rout- 
ing control failures). To data  there is no  satisfactory  theory or 
procedure  for designing efficient flow control  procedures,  much 
less evaluating their  performance, proving they  contain  no 
deadlocks, and proving that they  are  correct.  Attempts in this 
direction  are  currently  under way. 

An important lesson we  have learned with flow control is 
that  a  packet  communications system offers an opportunity 
for passing data  between  two devices of (very)  different speeds. 
We can effectively connect  a slow-speed teletype to an enor- 
mously high-speed memory channel over a packet network  and 
apply flow control  procedures which protect the  two devices 
from each other as well  as protecting the net from both. 
Specifically, we must not drown the  teletype  with  a  flood of 
high-speed input,  nor must we “nickel-and-dime”  a high per- 
formance HOST to death with incessant interrupts,  nor -must 
we use the network as a storage medium for megabytes of data. 
Flow control mechanisms provide the means to accomplish 
this; the trick is to do it well. 

The second area of distributed  control  in  packet  communica- 
tions has to do  with the routing  control.  The ARPANET, and 
many of  the  networks which have since based their design on 
the packet-switching technology which  emerged from the 
ARPANET experiment,  employ an adaptive  routing  procedure 
with  distributed  control. In such  a  procedure,  routes  for the 
data  traffic  are  not preassigned but  rather are dynamically as- 
signed  when they  are needed according to  the current  network 
status.  Control  packets (called routing  update  packets) which 
describe the  state of the network to some degree are passed 
back and forth between neighboring IMP’s in some fashion  and 
current  queue  lengths and congestion measures are added to 
these  updates by each IMP. The ARPANET employs  a  periodic 
update  routing  procedure whose rate  depends  upon  channel 
utilization  and line speed.  The  updates passing between IMP’s 
have no  priority  in  competing  for the processing capacity of 
the CPU at  the IMP’S but  do have priority  in the queue discip- 
line  feeding the  output modems  between IMP’s. An important 
lesson learned is that giving low priority to  the processing of 
routing  updates  appears to be advantageous since the processing 
load  on the CPU is rather large and prevents the  further dis- 
patching of  arriving packets to  output queues [ 191.  Another 
routing lesson we  have learned is that  frequent  updates cause 
background congestion in  a  network which may be intolerably 
high even in  the absence of other  data  traffic;  the  update  proce- 
dure  and  update  rate must be carefully chosen. A number of 
alternatives to periodic  updates have  been  suggested [ 1 ] in- 
cluding such things as aperiodic  updating (send updates  only 
when status  information has crossed certain  thresholds and 
then  send it immediately);  and  purely  local  information for 

routing decisions based on  queue  lengths within a given  node 
and knowledge of the current  topology.  Furthermore, unlem 
. w e  is taken,  there is a  tendency  for looping to occur  in thesc 
distributed  control  algorithms;  looping can be prevented  wit€ 
more sophisticated  algorithms [ 15 I . 

One of the lessons which is now beginning to emerge is tha 
the most important advantage of distributed  control adaptive 
routing is its  ability to automatically sense confi ia t ior  
changes in  the  network;  these  configuration changes may bc 
planned or  accidental as for  example the result of a  line 0: 

‘IMP failure. This is important  for  two reasons: first because 
configuration changes do  happen  often enough so that thr 
requirement  for  a  centralized  control evaluating new  routing 
tables based on the current  configuration would be an  enor 
mously complex task from an administrative  point of  view 
second because it is specifically at times of configuratio1 
changes  when drastic  network  action must be taken and o n l ~  
then is the adaptive routing  procedure really called upon t c  
do serious work (it is not  yet clear to what extent  the routing 
algorithm  should  adapt to statistical  fluctuations in traffic). 

Without diminishing the result of these lessons, it is fair t c  
say that  the most significant lesson learned regarding routing 
is that  it works at all. Perhaps  one of the greatest successe 
of the ARPANET experiment was to show that  a distributec 
control  adaptive  routing  algorithm would indeed converge or 
routes which  were sufficiently good. The  difficulty in proving 
this lies in  the  fact  that we are dealing with  a dynamic situa 
tion  in  a  distributed  control  environment  with delays in the 
feedback  paths  for  control  information  flow.  The  empirica 
proof that things do work  has had an important  impact or 
network design; indeed,  these  distributed algorithms a r t  
currently  operating successfully in a number of packet net 
works. 

D.  Lessons  from Broadcast  Channels 
As mentioned  earlier,  packet  communications has found im 

portant  applications  in the areas of satellite  packet  broadcast 
ing and in  ground  radio  packet switching. In both environ 
ments we  have a  situation  in which a common broadm 
channel is available to be shared by a  multiplicity of users 
Since these users demand access to  the channel at unpredict 
able times, we must introduce some access scheme tc 
coordinate  their use of the channel  in  a way which prevent! 
degradations and mutual  interference. In many of the schema 
described [ 101 we  have found that “burst”  communication! 
provides efficiencies over that of “trickle” transmission. B) 
this we mean that when a  data  source requires access to tht 
channel,  it  should be  given  access to  the full  capacity of  thal 
broadcast  channel and not be required to transmit at  a sloa 
speed using only  a  fraction of the available bandwidth (set 
Section V-A on principles regarding “bigger is better”). 

In examining the recent  literature, we find  that  a  number 01 

access schemes have been invented,  analyzed,  and published 
for  a  summary of many of these access schemes, see [ 101. Wt 
observe that these access schemes fall into  one of threr 
categories, each with  its own cost.  The first of these  involve 
random access contention schemes whereby little or no  contro 
is exerted  on the users in accessing the channel,  and this result! 
in the occasional collision of more than one  packet;  a collisior 
destroys the use of the channel  for that transmission. Suck 
schemes as pure ALOHA, slotted ALOHA, and (to a muck 
lesser extent) Carrier Sense Multiple Access fall into thi 
category. At the  opposite  extreme, we  have the  static reserva, 
tion access methods which preassign capacity to users thereb5 
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creating  “dedicated” as opposed to multiaccess channels. Here 
the problem is that  a  bursty user will often  not use his preas- 
signed capacity  in which  case it is wasted. Such schemes as 
Time Division Multiple Access and  Frequency Division Multiple 
Access fallin  this  category. Between these  two  extremes  are the 
dynamic reservation systems which only assign capacity to a 
user  when he has data to send.  The loss here is due to  the 
overhead of implementing the demand access. Such schemes 
as Polling (where  one waits to  be asked if he has data to send), 
active reservation schemes (where  one asks for  capacity when 
he needs it), and hiini-Slotted Alternatmg  Priority  (where  a 
token is passed among numbered users in  a prearranged se- 
quence, giving each permission to transmit as he receives a 
token) all fall in  this  category. Each of these schemes pays 
its  tribute to nature as shown in Table 11. 

Unfortunately, at this  point  in  time we are  unable to  evaluate 
the minimum price (i.e., a  degradation to throughput  and/or 
delay)  one must pay for  a given distributed multiaccess broad- 
cast environment. 

We have found that contention schemes are  fundamentally 
unstable  in that  they have a  tendency to drift into a congested 
state where the  throughput decreases significantly at  the same 
time the delay increases. Fortunately, however, we  have been 
able to design and  implement amazingly effective control 
schemes which stabilize  these  contention schemes [20]. An- 
other lesson we  have learned is that certain  tempting ways  of 
mixing two access schemes (e.g., taking  a  fraction of the  traffic 
and  a  fraction of the capacity assigned to one access scheme, 
and using that capacity to handle that traffic using a  second 
access scheme)  does  not give an improvement  in the overall 
throughputdelay  performance [ lo] .  Furthermore we have 
found that certain  capture  effects  exist  in some of the con- 
tention schemes (e.g., a  group of terminals may temporarily 
hog the system capacity  and  thereby “lock out”  other groups 
for  extended  periods of time)  and  one must be  wary  of such 
phenomena [ 20 I . 

We have also found that  in a  ground  radio  broadcast environ- 
ment,  a few buffers  in  each  packet  radio  unit  appear to  be 
sufficient to handle the storage  requirements [21 I ; this comes 
about largely due to  the fact that  our transceivers are half- 
duplex (i.e., they can either  transmit  or receive, but  not both, 
at  a given time). We can show (see Section IV-E) that dedicated 
broadcast  channels have an  inherent advantage over dedicated 
wire networks  in  a large (many-user) bursty  storeand-forward 
environment  [221. Moreover, we have investigated the optimal 
transmission range for ALOHA networks  and have found that 
those  broadcast  networks can be made quite  effective when 
the traffic is not bursty;  indeed  this  optimal range is chosen so 
that the channel  utilization  in the resulting  local ALOHA system 
is 1  /2e  and  then  those  networks need only  more  capacity 
than the corresponding M/M/l network [ 221. 

Lastly we point out  that perhaps  one of the fmt applications 
of  broadcast  radio access schemes will be to  implement  these 
access schemes on wire networks  (for  example, coaxial cables 
or fiber-optics  channels) in a  local  environment;  an  example of 
such  an  implementation is the Ethernet [23]. 

E. Hierarchical Design 
As N (the  number of nodes in a  network) grows, the  cost of 

creating the topological design of  such  a  network behaves like 
N E  where E is typically  in the range from 3 to  6. Thus we 
see that topological design quickly becomes unmanageable. 
Secondly, we note  that as Ngrows, the size of the routing  table 
in  each IMP in  the network grows linearly  with N and this too 

TABLE I1 
THE COST OF DISTRIBUTED  RESOURCE^ 

Access  Control  Idle 
Method Collisions Overhead Capacity 

Random access  contention Yes No No 
Dynamic reservation No Yes No 
Fixed allocation No No Yes 

places an unacceptable  burden on the storage requirements 
within an IMP. In addition, the transmission and processing 
costs for  updating  such large tables is prohibitive.  Third, even 
were the design possible, the cost of the lines connecting this 
huge number of nodes  together grows very quickly unless 
extreme care is taken  in that design.  In all three cases just 
mentioned,  one  finds that  the use  of hierarchical structures 
saves the day. . I n  the design  case, one may decompose the net- 
work into clusters of nodes,  superclusters of clusters, etc., 
designing each level cluster  separately. This significantly reduces 
the number of nodes involved in each subdesign, thereby 
reducing the overall design cost significantly. For  example,  a 
1 OO-node net would have a  cost  on  the  order of loo4 = 10’ 
(for E = 4), whereas a 2-level hierarchical design with 5 clusters 
would cost on  the  order of 5(20)4 + 5(4) < 1 Os , yielding an 
improvement of three  orders of magnitude! The same approach 
may  be  used in  routing, where  names of distant  clusters,  rather 
than names of distant  nodes, are used in each routing  table, 
thereby reducing the table  length down from N to a  number as 
small as  e In N giving a  significant  reduction [ 241. For example, 
a  1000-node  net would give a SO-fold reduction  in  the  routing 
table  length when hierarchical routing is used. 

In [221 we discuss the overall effect  and gain to be had  in 
the use of hierarchically designed  wire networks  and  broadcast 
networks. For  example, we can show that in a  bursty  dedicated 
broadcast environment, the use of hierarchical network  struc- 
tures (even with  fixed  allocation schemes) yields a system cost 
which is proportional to [log MI 2 ,  where M is the number 
of users. Comparing this to  the case of wire networks where 
the  cost is proportional to the a, we see the  signifkant  ad- 
vantages that broadcast channels have over wire networks in 
a  bursty  environment when hierarchical  structures are allowed. 
We can see this intuitively  since we assume that  the cost of a 
broadcast channels is proportional  only to  capacity,  but is 
independent of distance; if we properly select the transmission 
range, then  the  broadcast  capacity can be reused spatially (i.e., 
it can be used independently  and  simultaneously in more  than 
one area). Further, it can be shown that a 2-level hierarchy 
using random access in  the lower level and  dedicated  channels 
in  the  upper level can be quite  efficient  in  a  broadcast environ- 
ment; this is true since the  lower level has gathered  together 
enough traffic so that  it is no longer bursty when  delivered to 
the  upper level (recall  that  dedicated  channels  do well with 
nonbursty  traffic) 

V. PRINCIPLES ESTABLISHED 
This section is really a  continuation of the last since there is 

a somewhat fuzzy  boundary  between lessons and principles. 
Indeed,  one might accept the pragmatic  definition  that  a 
principle is a lesson you had to learn  twice. 

A.  Bigger is Better 
The law  of large numbers  states that a large collection of 

demands presents  a total demand which is far more predictable 
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than are the  individual demands. We are thus led to the con- allocating it to a  demand, the more likely we are to run  into a 
sideration of  large shared resources (large in  the sence that we in- deadlock or degradation. With an ample resource, we can be 
crease both  the  number of users-or  the load presented by each  more cavalier in assignment and even  renege on  the assignment 
user-and the capacity of the resources). Furthermore  it is if necessary, assuming that a  backup  facility  (in the form of an 
easy to show that  the performance improves significantly as ample resource elsewhere in the network) is provided. 
we make our  systems larger. In particular we can show that 
a small system whose capacity is C operations  per second and 
whose throughput is .I jobs per second (with each job  requir-  The Principle here is that  one must Pay a Price to nature for 
ing an average of K operations  per job) performs A t ima as Organizing a  collection  of  distributed  resourcesinto  a  cooperat- 
slowly  (i.e., the response time is A times longer) as a system ing DOUP. We have not Yet e s t a b W ~ d  what that minimum 
whose capacity is AC and whose throughput is AJ.  n e  lesson price is, but we  have  classified the Price in the  form  of calli- 
here is very clear, namely that bigger systems  perform  far  better sions, control overhead, and  idle  capacity. 
than smaller ones [ 25 1 .  This is a  statement  about  performance E. ‘mow Control 
and not one about  cost. Indeed if one is talking  about com- 
munication  channel  capacity,  then  one usually also gains The  “principle” here is that flow  control is a  critical  func- 

through  an  economy of scale due to  the tariff pricing structure tion  in packet communications  and we are  still naive in the 

as presented by the common carriers. All the more reason, invention  and analysis of flow control  procedures.  Hopefully, 

therefore, to concentrate  more  and more traffic  on ever larger cleaner code and cleaner concepts will simplify our  ability to  

channels to gain both  cost and efficiency in performance; of design and evaluate flow control  procedures  in the future. 

course one must be careful not  to abuse any “resale” restric- There is a  “miniprinciple,” which seems to be emerging from our 
tions. Moreover, our lesson about burst  communications tells preliminary studies 1261 which states that if one wants to  
us that in sharing this large channel dynamically, one should maximize the power in  a  network at fured cost, where power 
provide the full  capacity to  a single  user on  demand,  rather is defined as throughput divided by response time,  then  under 
than to preallocate fractions of the  capacity  on  a  permanent simple statistical  assumptions on  the flow,  one  should  operate 

basis (omitting  consideration of such  channelsharing schemes at a  point where the  throughput delivered is half the maximum 

as spread-spectrum). possible and the response time is then twice the minimum (no- 
The “bigger is better” principle may not  apply to  the case load) response time. 

of stream  traffic  (defined as real-time traffic which requires a F. stale  f iotocoh 

D.  Dirtnbuted  Control 

low delay and  moderately large throughput  requirement-an 
example being packetized  speech).  Indeed,  an unresolved 
issue recently raised by Dr. Robert E. Kahn (Editor of this 
Special Issue) is how effective it would be to handle  stream 
traffic by  dividing each trunk into a  multiplicity of medium- 
capacity channels which may then be linked together to form 
a  stream  traffic  path. We are  currently  looking at this issue. 

B. The Switch 
Our second principle has to do  with the use  of a  software 

switch  at the nodes of a  network.  The principle here is that 
it pays to place intelligence at  the switching nodes of a  net- 
work since the cost of that intelligence is decreasing far more 
rapidly than the cost of the communications  resource to which 
it is attached.  The  idea is to invest some cost  in  an  intelligent 
switch so as to save yet  greater  cost  in the expensive com- 
munications resource. The ability to introduce new programs, 
new functions, new topologies, new nodes,  etc.,  are all enhanced 
by the programmable features of a clever communications pro- 
cessor/multiplexer at  the software  node. 

C.  Constraints 
The principle here is simply, “constraints are necessary and 

often  are evil.” Indeed some of  the constraints we have seen 
are sequencing, storage management, capacity  allocation,  speed 
matching, and other flow and routing  control  functions. These 
“natural”  constraints  render us vulnerable to dangerous dead- 
locks and degradations. As mentioned above, if the constraint 
cannot be met  due to some possibly unfortunate  accident, 
than the system will stop all flow. If one is slow in  meeting 
the constraints,  then that represents  a  delay-throughput 
degradation. As a  result of this  principle, we see that  it be- 
hooves us to provide sufficient resources in the network which 
then allow us to be more relaxed about assigning them.  That 
is, the more precious is a given resource, the tighter we are  in 

In our  experiments  in the ARPANET, the SATNET, and the 
packet  radio  network, we have occasionally attempted to  adopt 
a  protocol  from  one  network  directly over into a new network. 
We have found that this is a dangerous procedure  and must 
be carefully analyzed  and measured before- one  adopts  such  a 
procedure.  Indeed, the use of old  protocols  in  a new environ- 
ment is dangerous. For  example, we found that the use of the 
ARPANET-like RFNM end-toend protocol was extremely 
wasteful of channel  capacity and resulted in a  capture  effect 
between pairs of users  when  used in the SATNET. In a 2-user 
Time  Division Multiple Access scheme (in which odd-numbered 
slots  are  permanently assigned to user A and even-numbered 
slots to user B),  user A could prevent B from sending any data 
if he simply started  transmitting first in  each of his slots since 
this would require B to devote al l  of his slots to returning 
RFNM’s to A .  Time in  the SATNETis divided into  Tied length 
slots (of 30-ms duration). A slot is used for a single packet 
transmission even if the packet itself is tiny, as is the case  of a 
RFNM. This inefficiency does not exist in the ARPANET 
since no  extra  bits  are  stuffed into ARPANET packets to  
artificially increase their size. Indeed, gateways have been in- 
troduced  between the ARPANET and SATNET which renders 
these  nets  independent of each other’s  protocols  and  formats 
[21. 

G. Inexperienced Designers 
It is important that users recognize the difference  in  func- 

tion,  performance,  and  operation of a packet network as 
opposed to a leased line. Certain decisions regarding the 
parameter  settings  in  any process-to-process communication 
are  often  left  up to  the user of a packet network;  for  example 
the  buffer  allocation  he provides in his HOST to accept  data 
from  another process communicating  through the network 
with his HOST is a decision often  left to the system user. If his 
buffer  allocation is too small, he may degrade the  apparent 
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performance of the network to an  unacceptably low degree; 
this comes about,  not because the network is slow,  but  rather 
because his allocation was too small. The principle  here is that 
if one leaves  design decisions in  the hands of the users (or even 
network designers) then  those individuals must be informed as 
to  the effect of their decisions regarding these  parameter  set- 
tings;  they  cannot be expected to  understand the consequence 
of their  actions  without being so informed. 

VI. CONCLUSIONS 
The  purpose of this  paper has been to boil down  a  decade of 

experience  with  packet  communications  and  from this to ex- 
tract some lessons and  principles we have established. We have 
succeeded  only in part  in  this  endeavor; the field is st i l l  moving 
rapidly  and we are learning new things  each  day.  Indeed,  in 
addition to  lessons and principles, we  have identified  a  number 
of open issues  which require  further  study. Aside from the 
meager principles we stated  in  the preceding section, we feel it 
is necessary to make some concluding  statements.  First we 
feel that  one must view packet  communications as a system 
rather  than as a trivial leased line  substitute.  The use of packet 
communications  offers  opportunities to  the informed user on 
the  one hand  and  sets  traps  for the naive  user on  the  other. It 
is necessary that  the overriding principles which we  have 
established and  others which we  have yet to establish be well 
understood by the practitioners  in the field. We must continue 
to learn  from  our  experience, and alas, that experience is often 
gained through mistakes observed rather than through clever 
prediction. In all of our design procedures we must constantly 
be aware of the  opportunity to share large resources among 
large populations of competing demands. We must further be 
prepared to incorporate new technologies and new applications 
as they  arise; we cannot  depend  upon  “principles” as these 
principles become invalid in the face of  changing technologies 
and applications. 

Lastly, we must point out  that  the  true sharing of processing 
facilities in the network (Le., the HOSTS)  has not  yet been 
realized in  modem day networks. One would dearly love to 
submit  a  task to a  network, ask that  it be accomplished in  the 
most efficient  fashion, and expect  the  network to find the 
most suitable resources on which to perform that  task. Cur- 
rently,  one  must specify on which  HOST his program should be 
stored, where his job  should be executed, where to store his 
results, at which location his results  should be printed, and 
specify when all this must happen.  The  next phase of network- 
ing must address this general question of automatic  resource 
sharing among HOSTS in  a  distributed processing environment. 
Perhaps in the next special issue on  packet  communications we 
will be in a position to identify lessons and principles for true 
resource sharing of this  type. 
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