
1320 PROCEEDINGS OF THE IEEE, VOL. 66, NO. 11, NOVEMBER 1978

Principles and Lessons in Packet Communications
LEONARD KLEINROCK, F E L ~ W , IEEE

Invited Paper

Abrtroct-After neady a decade of -, we reflect on the
priaciplesnad~~whichhrveemergedmthefieldofpocLetann-
municrtions. We be@n by iden- the need for efficient resource
s b r r i n g d r e v i e w t h e o r i g h u l a n d ~ d i t f i c P l t i e s w e M m
rhievingthisgorlmprclretnetworka. Webendiscussmiowlesmna
l e r m c d i n t b e r n r s o k ~ b ; * ;dbtdboted control;
~ r d c u t ~ r a d h * m r h i f . l ~ p ~ w h * h w e
discuss have to do with: the efiiciency of large system; the switching
annputer; network constrrints; distriited control, flow control; stale
protocols; and deignem not yet experienced in packet communications
Throoghmt the paper, we identify virions open issues which remain to
be solved in packet communicrtiona

I. INTRODUCTION w HAT IS IT WE now know about packet communica-
tions that we did not know a decade ago? What made
the problem difficult, and why were the solutions not

immediately apparent to us in the late 1960’s? Whereas the
answers to these questions may entice the system designer (in-
deed, I, for one, delight in such investigations), why should
the network user care a whit? To most users (and, alas, to
many designers), communications is simply a nuisance and they
would just as soon ignore those problems and get on with the
“real” issues of information processing!

In this paper (and in conjunction with the other papers in
thisspecial Issue of the PROCEEDINGS), we hope to answer
some of these questions. We will identify the need for resource
sharing, explain why the problem of efficient resource sharing
is hard, and why it. must be understood, review some of the
lessons we learned (mostly from the three ARPA packet net-
works), and then, finally, state some principles which have
evolved from the study and extensive use of packet communica-
tions.

11. RESOURCE SHARING
A privately owned automobile is usually a waste of money!

Perhaps 90 percent of the time it is idly parked and not in use.
However, its “convenience” is so seductive that few can resist
the temptation to own one. When the price of such a poorly
utilized device is astronomically high, we do refuse the temp-
tation (how many of us own private jet aircraft?). On the
other hand, when the cost is extremely low, we are obliged to
own such resources (we all own idle pencils).

An information processing system consists of many poorly
utilized resources. (A resource is simply a device which can
perform work for us at a f inte rate.) For example, in an in-
formation processing system, there is the CPU, the main mem-
ory, the disk, the data channels, the terminals, the printer, etc.

Manuauipt received March 24, 1978; revised June 16, 1978. This
mearch wua supported by the Advanced Research Projects Agency of
the Department of Defesme under Contract MDA 903-774-0273.

of California, Los Angeles, CA 90024.
The author is with the Computer Science Department, University

One of the major system advances of the early 1960’s was the
development of multiaccess time-sharing systems in which
computer system resources were made available to a large
population of users, each of whom had relatively small demands
(i.e., the ratio of their peak demands to their average demands
was very high) but who collectively presented a total demand
profile which was relatively smooth and of medium to high
utilization. This was an example of the advantages to be
gained through the smoothing effect of a large population
(i.e., the “law of large numbers”) [1 1 . The need for resource
sharing is present in many many systems (e.g., the shared use
of public jet aircraft among a large population of users).

In computer communication systems we have a great need
for sharing expensive resources among a collection of high
peak-to-average (i.e., “bursty”) users [11. In Fig.1 we display
the structure of a computer network in which we can identify
three kinds of resources:

1) the terminals directly available to the user and the com-
munications resources required to connect those terminals to
their HOST computers or directly into the network (via TIPS
in the ARPANET, for example-this is an expensive portion of
the system and it is generally difficult to employ extensive
resource sharing here due to the relative sparseness of the data
sources;

2) the HOST machines themselves which provide the in-
formation processing services-here multiaccess time sharing
provides the mechanism for efficient resource sharing;

3) the communications subnetwork, consisting of com-
munication trunks and software switches, whose function it is
to provide the data communication service for the exchange of
data and control among the other devices.

The HOST machines in 2) above contain hardware and soft-
ware resources (in the form of application programs and data
files) whose sharing comes under the topic of time sharing; we
dwell no further on these resources. Rather, we shall focus
attention on those portions of the computer communications
system where packet communications has had an important
impact. Perhaps the most visible component is that of the com-
munications subnetwork listed in item 3) above. Here packet
communications first demonstrated its enormous efficiencies in
the form of the ARPANET in the early 1970’s (the decade of
computer networks). The communication resources to be
shared in this case are storage mpacity at the nodal switches
(these switches are called IMP’S in the ARPANET), processing
capacity in the nodal switches, and communications capacity of
the trunks connecting these switches. Packet switching in this
environment has proven to be a major technological break-
through in providing cost effective data communications among
information processing systems. Deep in the backbone of such
packet-switched networks there is a need for long-haul high-
capacity inexpensive communications, and it is here where we

0018-9219/78/1100-1320500.75 0 1978 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 17:13 from IEEE Xplore. Restrictions apply.

KLEINROCK: PRINCIPLES AND LESSONS IN PACKET COMMUNICATIONS 1321

Communications

frillty

'Remote" Urmiful

Fig. 1 . The structure of a computer-communication network.

see the second application of packet communications for re-
source sharing in the form of satellite packet switching; else-
where in this PROCEEDINGS [2] you will fiid a description of
the SATNET, an ARPA-sponsored research network connected
to the ARPANET. The third application may be found in the
local access problem stated in item 1) above which also lends
itself t o the use of packet switching to provide efficient com-
munications resource sharing; this takes the form of the use of
a multiaccess broadcast channel in a local environment, com-
monly known as ground radio packet switching. Here too,
ARPA has sponsored an experimental system, and its descrip-
tion may be found in this PROCEEDINGS [3]. The common
element running through all these systems is the application of
the smoothing effect of a large population to provide efficient
resource sharing, an exquisite example of which is provided by
packet communications.

Having described the environment and the resources of in-
terest, let us now discuss the performance measures which
permit us to evaluate the effort of resource sharing in a quan-
titative way. Indeed, there are basically four measures that
both the system designer and network user apply in evaluating
the service provided in a communications environment. These
are throughput, response time, reliability, and cost. Before
packet networks came into existence, the obvious solution for
providing communications between two devices was to lease or
dial a line between the two. In such a case the user was able to
associate precise quantitative values to the four measures listed
above. On the other hand when one attaches to a packet net-
work, the user cannot get deterministic answers to the same
quantities as he has in the past. He must accept probabilistic
statements regarding throughput, delay, and reliability (and
alas, sometimes even cost). Moreover the quantities so pre-
scribed can seldom be measured in a straightforward fashion.
This is the state of affairs to which we have evolved today! It
is to the credit of those who developed packet communica-
tions in the last decade that the system design was carefully
studied and wellanalyzed prior to and during the systems
implemention; this certainly has not, in general, been the
history in the information processing industry.

111. WHY THE PROBLEM Is HARD

Back in 1967, when the concept of the ARPANET was first
taking form, we found ourselves entering the uncharted terrain

of packet switching. Let us trace our initial confusion regard-
ing that project briefly. Certainly, there existed at that time
some communication networks, but they were mostly highly
specialized networks with restricted goals. In the early 1960's
Paul Baran had described some of the properties of data net-
works in a series of Rand Corporation papers [4] . He focused
on the routing procedures and on the survivability of distributed
communication systems in a hostile environment, but did not
concentrate on the need for resource sharing in its form as we
now understand it; indeed, the concept of a software switch
was not present in his work. In 1968 Donald Davies at the
National Physical Laboratories in England was beginning to
write about packet-switched networks [5 I ; at around the same
time, Lany Roberts at ARPA pursued the use of packet switch-
ing in an experimental nationwide network [6]. For a more
complete history of the evolution of packet communications,
see [71.

In the initial conception of a packet network, we identified
some problems and looked to the technical literature for solu-
tions to these problems. For example, how should one design
the topology of a network, and how should one select the
bandwidth for the various channels in such a network, and in
what fashion should one route the data through the network,
and what rules of procedure should two communicating pro-
cesses adopt, and how much storage did one need at the
multiplexing nodes of the network? These and many other
questions confronted us. Indeed the general problem was how
to achieve efficient resource sharing among a set of incompatible
devices in a geographically distributed environment where ac-
cess to these devices arose from asynchronous processes in a
highly bursty fashion. Moreover, not only was the demand
process bursty, it was also highly unpredictable in the sense
that the instants when the demands arose and the duration of
the demands were unknown ahead of time. Fortunately we
were unaware of the enormity of the problems facing us and
so we plunged ahead enthusiastically and with naive optimism.
The remainder of this section describes why the problem was
difficult, and in following sections we describe the lessons we
learned and the principles we established in the development
of packet communications. Our efforts have been well re-
warded and the technology of packet communications has
come of age and has proven itself to be a cost-effective
technology.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 17:13 from IEEE Xplore. Restrictions apply.

1322 PROCEEDINGS OF THE IEEE, VOL. 66, NO. 11, NOVEMBER 1978

We auicklv found that many of our old techniaues could not TABLE I
be directly applied to packet network design and that new
techniques had to be developed; these new techniques turned
out to be of great generality and have led to principles and to
understanding which are sure to benefit us for many years to
come. One of our first tasks was to develop tools which would
allow us to analyze the performance of a given network. This
involved evaluating the delay-throughput profrle for networks.
Basically, this is a queueing problem in a network environment.
It had earlier been recognized [81 that the probabilistic com-
plexities one encounters in computer networks are extremely
difficult. One of the simplest analytical questions involving
the solution of two nodes in tandem was first posed at that
time in 1964 and has only been satisfactorily answered (in the
queueing theoretic sense) within the past year [9] ; this, note,
is for the simplest problem. Indeed we have come to realize
that an exact solution for the delay-throughput profile is prob-
ably hopeless in a complex network environment. Fortunately
suitable approximations [1] , [81 have been developed which
permit one to predict the performance of given networks with
a high degree of accuracy. More than that, these approximate
tools allow us to expose and understand the phenomenological
behavior of networks.

The astute reader will observe that the resource sharing prob-
lem stated above sounds very much like the problem faced in
the design of time sharing systems. Surely, with time sharing,
we are faced with the problem of sharing resources among
asynchronous processes which behave in a bursty fashion. The
major difference between the two problems, however, is that
our problem exists in a geographicully distributed environment
which requires expensive communication resources in the com-
munications and coordination functions. The implications
here are strong. For example, when communication is cheap,
then wide-band communications can be obtained with ex-
tremely small delays; such is the case, for example, within the
resources of a local operating system connected together by a
data bus. In a regional or nationwide network subject to the
relatively expensive cost of telecommunications, we find that
typical bandwidths are many orders of magnitude less than that
in a local time-sharing environment, and the delays are many
orders of magnitude greater. Furthermore, the control of these
processes in the time sharing environment can be very tightly
coupled if desired or left loosely coupled if there is sufficient
reason; in the network environment we typically find our pro-
cesses are very loosely coupled due to the difficulty of tighten-
ing the control between them (indeed, the inherent delay due
to the finite speed of light is a fundamental limitation on the
tight coupling of remote processes). The overhead in the time
sharing system is variable and may be very high with poor system
design (for example, thrashing) but may be made small with
clever design. In the network environment, for a variety of
reasons, we find that the overhead due to packet headers,
control information and resource allocation tends to be
relatively high. These comparisons are summarized in Table I.

Not only do we have extremes in communications cost
between these two systems, we also have a signifhnt difference
in the reliability of that communications. Indeed, in the local
time shared system, the process-to-process cDmmunication is
usually assumed to be reliable and therefore the acknowledg-
ment procedure (if any exists) is simple and tends to be invoked
only under exceptional circumstances. On the other hand, in
the distributed computer network environment, communica-
tions reliability is not assumed, and, therefore, an elaborate

ASYNCHRONOUS PROCESS-TC-PROCESS COMMUNICATION AND CONTROL
COST COMPARISON BETWEEN LOCAL PROCFSSES IN A TIME-SHARED

SYSTEM AND DISTRIBUTED PROCESSFS IN A NETWORK -
MUltiaCeSS Geographically

Time-shared Distributed
Systems Computer Networks

Typical bandwidth megabyta/sec kilobits/sec mcd communica- fractions of a micro- tens to hundreds of

Process-process
coupling tight to loose typicany loose

Overhead due to variable (typicdy variable (typically
system control low) high)

tions delay second milliseconds

acknowledgment procedure (often including timeouts and other
defaults) is usually invoked. We are here reminded of the
“two-army” problem. This is the problem where two blue
armies are each poised on opposite hills preparing to attack a
single red army in the valley. The red army can conquer either
of the blue armies separately but will fall to defeat if both blue
armies attack simultaneously. The blue armies communicate
with each other over an unreliable communications system.
The problem is to coordinate the two blue armies so that they
will attack simultaneously. Let us assume that Blue Army 1
(Bl) sends a message to Blue Army 2 (B2) indicating that they
should jointly attack at noon the next day. Clearly B1 must
await a positive acknowledgment from B2 that the command
was properly received; were B1 to attack without such an
acknowledgment, then the possibility exists that B2 did not
receive the message correctly, in which case B1 is subject t o
the certain annihilation of his army. If B2 properly receives
the command and acknowledges it, then he must await an
acknowledgment of the acknowledgment from B1, for if B1
did not receive his acknowledgment then we know B1 will not
attack and B2’s attack will then be doomed to failure. The
argument continues in a circular.-fashion where acks of acks
of acks . . . are continually transmitted with no action ever
being taken; the two blue armies can never get perfectly
synchronized with certainty using this unreliable communica-
tions system.

We see therefore that the new culprit in resource sharing in a
distributed environment is the fact that the resources are
distributed and cannot easily be assigned to the demands. In-
deed, in previous resource allocation problems, which often
come under the name of scheduling algorithms, we made a big
assumption, namely, that the scheduling information could be
passed around for free. That is, the competing demands could
organize themselves into a cooperating queue at no price. Un-
fortunately, in the distributed environment, the cost of organiz-
ing demands into a cooperating queue may be very large, and
in one fashion or another nature will make you pay a price [101.

The problem of resource sharing in a distributed enivronment
manifests itself in the routing control and flow control prob-
lems. The problem of flow control is to regulate the rate at
which data crosses the boundary of the communications sub-
network (both into and out of the network). The problem of
routing control is to efficiently transport the data (which has
been admitted by the flow control procedure) across the net-
work to its destination. In 1967 we were aware of the sophis-
tication needed in the routing procedure, but were relatively
ignorant of the need for effective flow control (see below).
These two problems are difficult because we are dealing with a

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 17:13 from IEEE Xplore. Restrictions apply.

KLEINROCK: PRINCIPLES AND LESSONS IN PACKET COMMUNICATIONS 1323

control procedure in a distributed environment subject to
random delays in passing that control information around
in order to control the random demands. The purpose of both
procedures is to efficiently use the network resources (IMP
storage, IMP processing capacity, and communications ca-
pacity). In achieving this goal one must attempt to control
congestion, route data around busy or defective portions of
the network, and in general must adaptively assign capacity to
the data traffic flow in an efficient, dynamic way. These are
hard control problems and represent a class which has not
been adequately studied up to and including the present time.
We have come to learn that distributed control is a sophisticated
problem. Below we return to the issues involved in distributed
resource allocation and sharing. For the moment let us in-
troduce some of the other sources of complexity in packet
communications.

In any distributed communications system design one is faced
with a topological design problem. The problem basically is,
given.a set of constraints to meet, find that topological design
structure which meets these constraints at least cost. The field
of network flow theory addresses itself to such problems and
the salient feature of this theory is that most of its problems
cannot be solved! To exhaustively search over all possible
topological designs for a given problem is certainly not a solu-
tion since the number of possible alternatives to consider can
easily exceed the number of atoms in the universe even for
relatively small problems. (For example, if at some stage you
must consider all permutations of 20 objects, then a computer
would take more than 75 000 years to process all ZO! cases even
if it could examine one million cases per second.) Rather, a
solution consists of elegant search procedures which are com-
putationally efficient and which find the optimal topology
for the given problem. Very few problems in network flow
theory yield to such efficient algorithms. Rather, one gets
around the combinatorial complexity naturally inherent in
these problems by accepting suboptimal solutions. (Beware!
A suboptimal solution to a problem is simply the result of a
procedure which examines a subset of possible solutions and
picks the best of those examined-this suboptimal solution
may or may not be close to the optimal.) The trick here is to
fiid efficient heuristic search procedures which come close to
the optimal rapidly. Over the past decade, efficient procedures
have been developed in many cases and new procedures are
constantly beinginvestigatedfor the topological design problem.

Another source of difficulty in the resource sharing problem
is in defining the appropriate performance measure. For ex-
ample, what is the capacity of a network? It is well-known in
network flow theory that one can easily calculate the capacity
(is., the throughput) between any two pairs of points. What
is not straightforward is to evaluate the total datacarrying
capacity of a network where throughput is measured in terms
of messages successfully received at their destination. The dif-
ficulty comes about because the capacity of the network
strongly depends upon the traffic matrix one assumes for the
data flowing through that network. For example, if the traffic
matrix were such that traffic passes only between immediate
neighbors in the topological structure and in an amount equal
to the capacity of the line connecting those two, then the net-
work capacity would approach a value equal to the sum of all
channel capacities in the network. This is clearly an upper
bound to the capacity for any other traffic matrix. Since in
general we do not know the traffic matrix for a network to be
designed for future use, how is one to evaluate that capacity?

Yet another source of difficulty in the network problem is
that of interfacing terminals and HOSTS to networks as well as
one network to another network. For example, there is the
general issue of virtual circuit service as opposed to datagram
service. A virtual circuit service presents to the user a com-
munications environment in which all functions appear as if
she were directly connected between the two points com-
municating (i.e., an orderly and controlled flow is maintained
whereby data is guaranteed to be correct upon delivery to the
destination, comes out of the network in the same order in
which it came in, and a flow control may be applied to that
transmission to maintain efficient use of network resources
and of terminal-HOST resources). A datagram service ensures
none of these things and simply sends blocks of data (packets)
across the network, not guaranteeing correct delivery (or
delivery, at all), not guaranteeing orderly flow in terms of se-
quencing (packets may arrive at the destination out of order),
and not enforcing any flow control procedure at the process-
to-process level. Which of those two services is desirable has
become an issue of international proportions discussed else-
where in these proceedings [71, [1 11. Futhermore, the inter-
connection of two networks presents an enormous and rich
variety of difficult problems. For example, should one apply
flow control at the boundary of each network in a tandem
chain of networks or should one apply flow control from the
source HOST to the destination HOST across many networks
simultaneously? If we consider the interconnection of networks
with different packet sizes, we have the general problem of
fragmentation-whereby long packets get fragmented into smaller
packets when crossing network boundaries. A variety of other
very important issues arise in internetting (see [271 for a more
detailed discussion of internetting).

Many of the problems we have just presented come about
due to the distributed nature of our message sources and system
resources. The problems created by distributed sources are
very clearly seen in the environment of geographically dispersed
message sources which communicate with each other over a
common broadcast channel; in this case, access to the capacity
of the channel must be carefully coordinated.

Thus in answering the question, ‘Why is the problem hard?”
we have found the following sources of difficulty:

1) the analytic problems from queueing theory and the
probabilistic complexity resulting therefrom;

2) the topological design problems from network flow theory
and the combinatorial complexity resulting therefrom;

3) the price for coordinating and sharing resources in a
geographically distributed environment (the new culprit)
leading to problems of resource allocation, routing con-
trol, flow control, and general processto-process com-
munication problems.

IV. LESSONS LEARNED
After a decade of experience with packet communications it

is fair that we ask what lessons have we learned and what have
we come to know about the needs of the user and the questions
he would like to have answered. So far as the user is concerned
we shall see as we step through the lessons learned below that
he cannot insulate himself completely from the underlying
technology of packet communications. Indeed the service he
sees is quite different from that which he has with leased lines
as mentioned above. Moreover, certain decisions will either be
thrust upon him or accepted by him due to the nature of the
service offered; if he is unaware of the consequence of setting

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 17:13 from IEEE Xplore. Restrictions apply.

1324 PROCEEDINGS OF THE IEEE, VOL. 66, NO. 11, NOVEMBER 1978

parameters in that decision-making process then he may
seriously degrade the performance of the network due to his
ignorance. Let us now list some of the lessons we learned and
return to the principles in the following section.

A. Deadlocks

In [l] , [12] , and [13] we described in detail some of the
deadlocks and degradations of which we have become aware.
In this section we simply enumerate and sketch the details of
the deadlocks. Simply stated, a deadlock (also commonly
referred to as a lockup) is the unpleasant situation in which
two (or more) competing demands have each been assigned a
subset of their necessary resources; neither can proceed until
one of them collects some additional resources which currently
are assigned to the other and neither demand is willing to
release any resource currently assigned to him. Deadlocks are
one of the most serious system malfunctions possible, and one
must take great care to avoid them or fiid ways to recover from
them. It is ironic that flow control procedures by their very
nature present constraints on the flow of data (e.g., the re-
quirement for proper sequencing), and if the situation ever
arises whereby the constraint cannot be met, then, by defiii-
tion, the flow will stop, and we will have a deadlock! This is
the philosophical reason why flow control procedures have a
natural tendency to introduce deadlocks. In this section we
briefly discuss four ARPANET deadlocks which have come
to be known as: reassembly lockup; store-and-forward dead-
lock; Christmas lockup; and piggyback lockup.

Reassembly lockup, the best known of the ARPANET dead-
lock conditions (and one which was known to exist in the very
early days of the ARPANET implementation), was due to a
logical flaw in the original flowcontrol procedure. In the
ARPANET, a string of bits to be passed through the network
is broken into “messages” which are at most approximately
8000 bits in length. These messages are themselves broken
into packets which are at most approximately 1000 bits in
length. A message requiring more than one packet (up to a
maximum of eight) is termed a multipacket message and each
of these packets traverses the network independently ; upon
receipt at the destination node, these packets are “reassembled”
into their original order and the message itself is recomposed,
at which time it is ready for delivery out of the network. (A
more complete description of the ARPANET protocols may
be found in [1 1 , [131 .) Reassembly lockup occurred when
partially reassembled messages could not be completely reas-
sembled since the network through which the remaining packets
had to traverse was congested, thus preventing these packets
from reaching the destination; that is, each of the destination’s
neighbors had given all of their relay (store-and-forward) buf-
fers to additional packets (from messages other than those
being reassembled) heading for that same destination and for
which there were no unassigned reassembly buffers available.
Thus the destination was surrounded by a barrier of blocked
IMP’S which themselves could provide no storeand-forward
buffers for the needed outstanding packets, and which at the
same time were prevented from releasing any of their store-
and-forward buffers since the destination itself refused to ac-
cept these packets due to a lack of reassembly buffers at the
destination. The deadlock was simply that the remaining
packets could not reach the destination and complete the
reassembly until some storeand-forward buffers became free,

and the store-and-forward buffers could not be released until the
remaining packets reached the destination.

Store-and-forward deadlock is another example of a lockup
that can occur in a packet-switched network if no proper
precautions are taken [11, [131. The case of “direct” store-
and-forward lockup is simply a “stand-off.” Let us assume
that all store-and-forward buffers in some IMP A are filled with
packets headed toward some destination IMP C through a
neighboring IMP B and that all store-and-forward buffers in
IMP B are filled with packets headed toward some destination
IMP D through IMP A . Since there is no store-and-forward
buffer space available in either IMP A or B , no packet can be
successfully transmitted between these two IMP’s and a dead-
lock situation results. One way to prevent the deadlock is to
prohibit these packets in IMP A from occupying all those
store-and-forward buffers which are needed by the packets
coming in from IMP B (and vice versa) by the introduction
of “buffer classes” as in [141 . This is accomplished by
partitioning the buffers in a switch into classes, say, B o , B 1 ,
* * * , Bk, where k is the longest path length in the network.
A packet arriving at a switch from outside the net has access
only to class BO buffers. When a packet arrives at a switch
after having made k hops so far, it has access to class Bo,

* * , Bk buffers, etc. Thus, the closer a packet gets to its final
destination, the more access it has, and therefore the speedier
its passage through the network. It can be proven [141 that
this “buffer class” allocation will prevent direct storeand-
forward lockup. “Indirect” store-and-forward lockup can
occur when all store-and-forward buffers in a loop of IMP’s
become filled with packets all of which travel in the same
direction (clockwise or counterclockwise) and none of which
are within one hop of their destination. Both storeand-forward
lockup conditions are far less likely if, as in the ARPANET,
more than one path exists between all pairs of communicating
IMP’S.

In December 1973, the dormant Christmas lockup condition
was brought to life. This lockup was exposed by collecting
measurement messages at UCLA from all IMP’s simultaneously.
The Christmas lockup occurred when these measurement mes-
sages arrived at the UCLA IMP for which reassembly storage
had been allocated but for which no reassembly blocks had
been given. (A reassembly block is a piece of storage used in
the actual process of reassembling packets back to messages.)
These messages had no way t o locate their allocated buffers
since the pointer to an allocated buffer is part of the reassembly
block; as a consequence, allocated buffers could never be used
and could never be freed. The difficulty was caused by the
system fmt allocating buffers before it was assured that a reas-
sembly block was available. To avoid this kind of lockup, reas-
sembly blocks are now allocated along with the reassembly
buffers for each multipacket message in the ARPANET.

Piggyback lockup is a deadlock condition which was identified
by examining the flow control code and has, as far as we know,
never occurred. This lockup condition comes about due to an
unfortunate combination of intuitively reasonable goals im-
plemented in the flowcontrol procedure. One of these goals,
which we have already mentioned, is to deliver messages to a
destination in the same order that the source received them.
The other innocent condition has to do with the reservation of
reassembly storage space at the destination. In order to make
this reservation procedure efficient, it is reasonable that only
the first multipacket message of a long file transfer be required

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 17:13 from IEEE Xplore. Restrictions apply.

KLEINROCK: PRINCIPLES AND LESSONS IN PACKET COMMUNICATIONS 1325

to make the reservation. The ARPANET flow control proce-
dure will then maintain that reservation for a given file transfer
as long as successive multipacket messages from that file are
promptly received in succession at the source IMP. We have
now laid the groundwork for piggyback lockup. Assume that
there is a maximum of eight reassembly buffers in each IMP;
the choice of eight is for simplicity, but the argument works
for any value. Let IMP A continually transmit eight-packet
messages (from some long file) to some destination IMP B
such that all eight reassembly buffers in IMP B are used up by
this transmission of multipacket messages. If now, in the stream
of eight-packet messages, IMP A sends a single-packet message
(not part of the file transfer) to destination IMP B it will gen-
erally not be accepted since there is no reassembly buffer space
available. The single packet message will therefore be treated
as a request for buffer allocation (these requests are the
mechanism by which reservations are made). This request will
not be serviced before the RFNM (an end-to-end acknowledg-
ment from the destination to source) for the previous multi-
packet message has been sent. When the RFNM is generated,
however, all the free reassembly buffers will immediately be
allocated to the next multipacket message in the file transfer
for efficient transmission as mentioned above; this allocation
is said to be “piggybacked” on the RFNM. In this case, the
:ight-packet message from IMP A that arrives later at IMP B
(and which is stored in the eight buffers) cannot be delivered
to its destination HOST because it is out of order. The single-
packet message that should be delivered next, however, will
never reach the destination IMP since there is no reassembly
space available, and, therefore, its requested reservation can
never be serviced. Deadlock! A minor modification removes
the piggyback lockup.

These various deadlock conditions are usually quite easy to
?revent once they are detected and understood. The trick,
lowever, is to expurgate all deadlocks from the control
nechanism ahead of time, either by careful programming
:a difficult task) or by some automatic checking procedure
:which may be as difficult as proving the correctness of pro-
yams). Those deadlocks found in the ARPANET have, to
$e best of our knowledge, been eliminated.

B. Degradations
A degradation is just that, namely, a reduction in the net-

work’s level of performance. (Deadlocks are, of course, an ex-
treme form of degradation which is why we discussed them in
the separate section above.) For our purposes, we shall measure
performance in terms of delay and throughput. In this section
we discuss four sources of ARPANET degradation, namely:
!ooping in the routing procedure; gaps in transmission; single-
“cket turbulence; and phasing.

Looping comes about due to independent routing decisions
made by separate nodes which cause traffic to return to a
previously visited node (or, in a more general definition, causes
traffic to make unnecessarily long excursions on the way to its
destination). Of course any reasonable adaptive routing proce-
lure will detect these loops (through the build-up of queues
md delays perhaps) acd will then break the loop and guide
the traffic directly on to its destination. However, the occur-
rence of loops does cause occasional large delays in the traffic
flow and in some applications this is quite unacceptable. It is
sonic that a remedy which was introduced in the ARPANET
to reduce the occurrence of loops, in fact made them worse in

the sense that whereas they occurred less frequently, when
they did occur, they persisted for a longer time. Some loop-free
algorithms have recently been published [151, [161.

The next degradation we wish to discuss is the occurrence
of gaps in the message flow. These gaps come about due to a
limitation on the number of messages in transit which the
network will allow. Assume that between any source and
destination, the network will permit n messages in flight at a
time. If n messages are in flight, then the next one may not
proceed until an end-to-end acknowledgment is returned back
at the source for any one of the n outstanding messages. We
now observe that if the round-trip delay (Le., the time required
to send a message across the network in the forward direction
and to return its acknowledgment in the reverse direction) is
greater than the time it takes to feed the n messages into the
network, then the source will be blocked awaiting ack’s to
release further messages. This clearly will introduce gaps in
the message flow resulting in a reduced throughput which we
might classify as a mild form of degradation.

We now come to the issue of single packet turbulence as
observed in the ARPANET. We note that “regular” single-
packet messages in the early ARPANET were not accepted by
the destination if they arrived out of order. Rather, they were
then treated as a request for the allocation of one reassembly
buffer. Therefore if, in a stream of single-packet messages,
packet p arrived out-of-order (say it arrived after packet p + 3),
then packets p t 1, p + 2, and p + 3 would all be discarded at
the destination, and only after packet p arrived would a single
packet buffer be allocated to message p + 1. This allocation
piggybacked on the end-to-end ack for packet p , and when it
arrived at the source IMP, it then caused a retransmission of
the discarded packet p + 1 (which had been stored in the
source). Of course any packets arrving at the destination after
packet p + 3, but before p + 1 arrived in order, would them-
selves be discarded. When packet p + 1 finally arrived for the
second time at the destination IMPit was then in order and this
caused an allocation of a single-packet buffer to packet p + 2,
etc. The net result was that only one packet would be deliver-
able to the destination per round-trip time along this path;
had no packets been received out-of-order, then we would have
been pumping at a rate close to n packets per round trip time
(if the maximum number in transit n could fit into the pipe).
Observe that once a single packet arrived out-of-order in this
stream, then the degradation from n to 1 packets per round-
trip time would persist forever until either some supervisory
action was taken or until the traffic stream ceased and began
again from a fresh start in the future. We refer to this effect
as “single-packet turbulence,” and it was observed in the
ARPANET as described in [171. The need to handle a con-
tinuous stream of traffic (e.g., packetized speech) was
recognized some time ago and resulted in the definition of
“irregular” packets known as type 3 packets (as contrasted
to “regular” type 0 packets); these packets are allowed to
be delivered out of order, receive no end-toend acknowledg-
ment, and are generally handled in a much more relaxed
fashion.

The last degradation we discuss is known as “phasing.” In a
typical packet network, more than one resource is often re-
quired before a mesage is allowed to flow across that net-
work. For example, some required resources may be: a message
number; storage space at the source; storage space at the
destination, etc. Tokens move around the network passing out

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 17:13 from IEEE Xplore. Restrictions apply.

1326 PROCEEDINGS OF THE IEEE, VOL. 66, NO. 11, NOVEMBER 197E

these resources in some distributed fashion. Phasing is the
phenomenon whereby enough free tokens are available in the
network to permit message flow, but, the proper mix of tokens
is not available simultaneously at the proper location in the
net. The delay in gathering these tokens represents a degrada-
tion i l l , 1181.

Fortunately, the degradations here described have been
remedied in the ARPANET and in later networks.

C. Lessons of Distributed Control
We have had ‘lessons” in two areas of distributed control.

The first has to do with flow control, and it is simply the
observation that flow control procedures are rather difficult
to invent and extremely difficult to analyze. The deadlocks
and degradations referred to the in previous subsections were
principally due to flow control failures (and occasionally rout-
ing control failures). To data there is no satisfactory theory or
procedure for designing efficient flow control procedures, much
less evaluating their performance, proving they contain no
deadlocks, and proving that they are correct. Attempts in this
direction are currently under way.

An important lesson we have learned with flow control is
that a packet communications system offers an opportunity
for passing data between two devices of (very) different speeds.
We can effectively connect a slow-speed teletype to an enor-
mously high-speed memory channel over a packet network and
apply flow control procedures which protect the two devices
from each other as well as protecting the net from both.
Specifically, we must not drown the teletype with a flood of
high-speed input, nor must we “nickel-and-dime” a high per-
formance HOST to death with incessant interrupts, nor -must
we use the network as a storage medium for megabytes of data.
Flow control mechanisms provide the means to accomplish
this; the trick is to do it well.

The second area of distributed control in packet communica-
tions has to do with the routing control. The ARPANET, and
many of the networks which have since based their design on
the packet-switching technology which emerged from the
ARPANET experiment, employ an adaptive routing procedure
with distributed control. In such a procedure, routes for the
data traffic are not preassigned but rather are dynamically as-
signed when they are needed according to the current network
status. Control packets (called routing update packets) which
describe the state of the network to some degree are passed
back and forth between neighboring IMP’s in some fashion and
current queue lengths and congestion measures are added to
these updates by each IMP. The ARPANET employs a periodic
update routing procedure whose rate depends upon channel
utilization and line speed. The updates passing between IMP’s
have no priority in competing for the processing capacity of
the CPU at the IMP’S but do have priority in the queue discip-
line feeding the output modems between IMP’s. An important
lesson learned is that giving low priority to the processing of
routing updates appears to be advantageous since the processing
load on the CPU is rather large and prevents the further dis-
patching of arriving packets to output queues [191. Another
routing lesson we have learned is that frequent updates cause
background congestion in a network which may be intolerably
high even in the absence of other data traffic; the update proce-
dure and update rate must be carefully chosen. A number of
alternatives to periodic updates have been suggested [1] in-
cluding such things as aperiodic updating (send updates only
when status information has crossed certain thresholds and
then send it immediately); and purely local information for

routing decisions based on queue lengths within a given node
and knowledge of the current topology. Furthermore, unlem
. w e is taken, there is a tendency for looping to occur in thesc
distributed control algorithms; looping can be prevented wit€
more sophisticated algorithms [15 I .

One of the lessons which is now beginning to emerge is tha
the most important advantage of distributed control adaptive
routing is its ability to automatically sense confi ia t ior
changes in the network; these configuration changes may bc
planned or accidental as for example the result of a line 0:

‘IMP failure. This is important for two reasons: first because
configuration changes do happen often enough so that thr
requirement for a centralized control evaluating new routing
tables based on the current configuration would be an enor
mously complex task from an administrative point of view
second because it is specifically at times of configuratio1
changes when drastic network action must be taken and o n l ~
then is the adaptive routing procedure really called upon t c
do serious work (it is not yet clear to what extent the routing
algorithm should adapt to statistical fluctuations in traffic).

Without diminishing the result of these lessons, it is fair t c
say that the most significant lesson learned regarding routing
is that it works at all. Perhaps one of the greatest successe
of the ARPANET experiment was to show that a distributec
control adaptive routing algorithm would indeed converge or
routes which were sufficiently good. The difficulty in proving
this lies in the fact that we are dealing with a dynamic situa
tion in a distributed control environment with delays in the
feedback paths for control information flow. The empirica
proof that things do work has had an important impact or
network design; indeed, these distributed algorithms a r t
currently operating successfully in a number of packet net
works.

D. Lessons from Broadcast Channels
As mentioned earlier, packet communications has found im

portant applications in the areas of satellite packet broadcast
ing and in ground radio packet switching. In both environ
ments we have a situation in which a common broadm
channel is available to be shared by a multiplicity of users
Since these users demand access to the channel at unpredict
able times, we must introduce some access scheme tc
coordinate their use of the channel in a way which prevent!
degradations and mutual interference. In many of the schema
described [101 we have found that “burst” communication!
provides efficiencies over that of “trickle” transmission. B)
this we mean that when a data source requires access to tht
channel, it should be given access to the full capacity of thal
broadcast channel and not be required to transmit at a sloa
speed using only a fraction of the available bandwidth (set
Section V-A on principles regarding “bigger is better”).

In examining the recent literature, we find that a number 01

access schemes have been invented, analyzed, and published
for a summary of many of these access schemes, see [101. Wt
observe that these access schemes fall into one of threr
categories, each with its own cost. The first of these involve
random access contention schemes whereby little or no contro
is exerted on the users in accessing the channel, and this result!
in the occasional collision of more than one packet; a collisior
destroys the use of the channel for that transmission. Suck
schemes as pure ALOHA, slotted ALOHA, and (to a muck
lesser extent) Carrier Sense Multiple Access fall into thi
category. At the opposite extreme, we have the static reserva,
tion access methods which preassign capacity to users thereb5

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 17:13 from IEEE Xplore. Restrictions apply.

KLEINROCK: PRINCIPLES AND LESSONS IN PACKET COMMUNICATIONS 1327

creating “dedicated” as opposed to multiaccess channels. Here
the problem is that a bursty user will often not use his preas-
signed capacity in which case it is wasted. Such schemes as
Time Division Multiple Access and Frequency Division Multiple
Access fallin this category. Between these two extremes are the
dynamic reservation systems which only assign capacity to a
user when he has data to send. The loss here is due to the
overhead of implementing the demand access. Such schemes
as Polling (where one waits to be asked if he has data to send),
active reservation schemes (where one asks for capacity when
he needs it), and hiini-Slotted Alternatmg Priority (where a
token is passed among numbered users in a prearranged se-
quence, giving each permission to transmit as he receives a
token) all fall in this category. Each of these schemes pays
its tribute to nature as shown in Table 11.

Unfortunately, at this point in time we are unable to evaluate
the minimum price (i.e., a degradation to throughput and/or
delay) one must pay for a given distributed multiaccess broad-
cast environment.

We have found that contention schemes are fundamentally
unstable in that they have a tendency to drift into a congested
state where the throughput decreases significantly at the same
time the delay increases. Fortunately, however, we have been
able to design and implement amazingly effective control
schemes which stabilize these contention schemes [20]. An-
other lesson we have learned is that certain tempting ways of
mixing two access schemes (e.g., taking a fraction of the traffic
and a fraction of the capacity assigned to one access scheme,
and using that capacity to handle that traffic using a second
access scheme) does not give an improvement in the overall
throughputdelay performance [lo] . Furthermore we have
found that certain capture effects exist in some of the con-
tention schemes (e.g., a group of terminals may temporarily
hog the system capacity and thereby “lock out” other groups
for extended periods of time) and one must be wary of such
phenomena [20 I .

We have also found that in a ground radio broadcast environ-
ment, a few buffers in each packet radio unit appear to be
sufficient to handle the storage requirements [21 I ; this comes
about largely due to the fact that our transceivers are half-
duplex (i.e., they can either transmit or receive, but not both,
at a given time). We can show (see Section IV-E) that dedicated
broadcast channels have an inherent advantage over dedicated
wire networks in a large (many-user) bursty storeand-forward
environment [221. Moreover, we have investigated the optimal
transmission range for ALOHA networks and have found that
those broadcast networks can be made quite effective when
the traffic is not bursty; indeed this optimal range is chosen so
that the channel utilization in the resulting local ALOHA system
is 1 /2e and then those networks need only more capacity
than the corresponding M/M/l network [221.

Lastly we point out that perhaps one of the fmt applications
of broadcast radio access schemes will be to implement these
access schemes on wire networks (for example, coaxial cables
or fiber-optics channels) in a local environment; an example of
such an implementation is the Ethernet [23].

E. Hierarchical Design
As N (the number of nodes in a network) grows, the cost of

creating the topological design of such a network behaves like
N E where E is typically in the range from 3 to 6. Thus we
see that topological design quickly becomes unmanageable.
Secondly, we note that as Ngrows, the size of the routing table
in each IMP in the network grows linearly with N and this too

TABLE I1
THE COST OF DISTRIBUTED RESOURCE^

Access Control Idle
Method Collisions Overhead Capacity

Random access contention Yes No No
Dynamic reservation No Yes No
Fixed allocation No No Yes

places an unacceptable burden on the storage requirements
within an IMP. In addition, the transmission and processing
costs for updating such large tables is prohibitive. Third, even
were the design possible, the cost of the lines connecting this
huge number of nodes together grows very quickly unless
extreme care is taken in that design. In all three cases just
mentioned, one finds that the use of hierarchical structures
saves the day. . I n the design case, one may decompose the net-
work into clusters of nodes, superclusters of clusters, etc.,
designing each level cluster separately. This significantly reduces
the number of nodes involved in each subdesign, thereby
reducing the overall design cost significantly. For example, a
1 OO-node net would have a cost on the order of loo4 = 10’
(for E = 4), whereas a 2-level hierarchical design with 5 clusters
would cost on the order of 5(20)4 + 5(4) < 1 Os , yielding an
improvement of three orders of magnitude! The same approach
may be used in routing, where names of distant clusters, rather
than names of distant nodes, are used in each routing table,
thereby reducing the table length down from N to a number as
small as e In N giving a significant reduction [241. For example,
a 1000-node net would give a SO-fold reduction in the routing
table length when hierarchical routing is used.

In [221 we discuss the overall effect and gain to be had in
the use of hierarchically designed wire networks and broadcast
networks. For example, we can show that in a bursty dedicated
broadcast environment, the use of hierarchical network struc-
tures (even with fixed allocation schemes) yields a system cost
which is proportional to [log MI 2 , where M is the number
of users. Comparing this to the case of wire networks where
the cost is proportional to the a, we see the signifkant ad-
vantages that broadcast channels have over wire networks in
a bursty environment when hierarchical structures are allowed.
We can see this intuitively since we assume that the cost of a
broadcast channels is proportional only to capacity, but is
independent of distance; if we properly select the transmission
range, then the broadcast capacity can be reused spatially (i.e.,
it can be used independently and simultaneously in more than
one area). Further, it can be shown that a 2-level hierarchy
using random access in the lower level and dedicated channels
in the upper level can be quite efficient in a broadcast environ-
ment; this is true since the lower level has gathered together
enough traffic so that it is no longer bursty when delivered to
the upper level (recall that dedicated channels do well with
nonbursty traffic)

V. PRINCIPLES ESTABLISHED
This section is really a continuation of the last since there is

a somewhat fuzzy boundary between lessons and principles.
Indeed, one might accept the pragmatic definition that a
principle is a lesson you had to learn twice.

A. Bigger is Better
The law of large numbers states that a large collection of

demands presents a total demand which is far more predictable
Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 17:13 from IEEE Xplore. Restrictions apply.

1328 PROCEEDINGS OF THE IEEE, VOL. 66, NO. 1 1 , NOVEMBER 1978

than are the individual demands. We are thus led to the con- allocating it to a demand, the more likely we are to run into a
sideration of large shared resources (large in the sence that we in- deadlock or degradation. With an ample resource, we can be
crease both the number of users-or the load presented by each more cavalier in assignment and even renege on the assignment
user-and the capacity of the resources). Furthermore it is if necessary, assuming that a backup facility (in the form of an
easy to show that the performance improves significantly as ample resource elsewhere in the network) is provided.
we make our systems larger. In particular we can show that
a small system whose capacity is C operations per second and
whose throughput is .I jobs per second (with each job requir- The Principle here is that one must Pay a Price to nature for
ing an average of K operations per job) performs A t ima as Organizing a collection of distributed resourcesinto a cooperat-
slowly (i.e., the response time is A times longer) as a system ing DOUP. We have not Yet e s t a b W ~ d what that minimum
whose capacity is AC and whose throughput is AJ. n e lesson price is, but we have classified the Price in the form of calli-
here is very clear, namely that bigger systems perform far better sions, control overhead, and idle capacity.
than smaller ones [25 1 . This is a statement about performance E. ‘mow Control
and not one about cost. Indeed if one is talking about com-
munication channel capacity, then one usually also gains The “principle” here is that flow control is a critical func-

through an economy of scale due to the tariff pricing structure tion in packet communications and we are still naive in the

as presented by the common carriers. All the more reason, invention and analysis of flow control procedures. Hopefully,

therefore, to concentrate more and more traffic on ever larger cleaner code and cleaner concepts will simplify our ability to

channels to gain both cost and efficiency in performance; of design and evaluate flow control procedures in the future.

course one must be careful not to abuse any “resale” restric- There is a “miniprinciple,” which seems to be emerging from our
tions. Moreover, our lesson about burst communications tells preliminary studies 1261 which states that if one wants to
us that in sharing this large channel dynamically, one should maximize the power in a network at fured cost, where power
provide the full capacity to a single user on demand, rather is defined as throughput divided by response time, then under
than to preallocate fractions of the capacity on a permanent simple statistical assumptions on the flow, one should operate

basis (omitting consideration of such channelsharing schemes at a point where the throughput delivered is half the maximum

as spread-spectrum). possible and the response time is then twice the minimum (no-
The “bigger is better” principle may not apply to the case load) response time.

of stream traffic (defined as real-time traffic which requires a F. stale f iotocoh

D. Dirtnbuted Control

low delay and moderately large throughput requirement-an
example being packetized speech). Indeed, an unresolved
issue recently raised by Dr. Robert E. Kahn (Editor of this
Special Issue) is how effective it would be to handle stream
traffic by dividing each trunk into a multiplicity of medium-
capacity channels which may then be linked together to form
a stream traffic path. We are currently looking at this issue.

B. The Switch
Our second principle has to do with the use of a software

switch at the nodes of a network. The principle here is that
it pays to place intelligence at the switching nodes of a net-
work since the cost of that intelligence is decreasing far more
rapidly than the cost of the communications resource to which
it is attached. The idea is to invest some cost in an intelligent
switch so as to save yet greater cost in the expensive com-
munications resource. The ability to introduce new programs,
new functions, new topologies, new nodes, etc., are all enhanced
by the programmable features of a clever communications pro-
cessor/multiplexer at the software node.

C. Constraints
The principle here is simply, “constraints are necessary and

often are evil.” Indeed some of the constraints we have seen
are sequencing, storage management, capacity allocation, speed
matching, and other flow and routing control functions. These
“natural” constraints render us vulnerable to dangerous dead-
locks and degradations. As mentioned above, if the constraint
cannot be met due to some possibly unfortunate accident,
than the system will stop all flow. If one is slow in meeting
the constraints, then that represents a delay-throughput
degradation. As a result of this principle, we see that it be-
hooves us to provide sufficient resources in the network which
then allow us to be more relaxed about assigning them. That
is, the more precious is a given resource, the tighter we are in

In our experiments in the ARPANET, the SATNET, and the
packet radio network, we have occasionally attempted to adopt
a protocol from one network directly over into a new network.
We have found that this is a dangerous procedure and must
be carefully analyzed and measured before- one adopts such a
procedure. Indeed, the use of old protocols in a new environ-
ment is dangerous. For example, we found that the use of the
ARPANET-like RFNM end-toend protocol was extremely
wasteful of channel capacity and resulted in a capture effect
between pairs of users when used in the SATNET. In a 2-user
Time Division Multiple Access scheme (in which odd-numbered
slots are permanently assigned to user A and even-numbered
slots to user B), user A could prevent B from sending any data
if he simply started transmitting first in each of his slots since
this would require B to devote al l of his slots to returning
RFNM’s to A . Time in the SATNETis divided into Tied length
slots (of 30-ms duration). A slot is used for a single packet
transmission even if the packet itself is tiny, as is the case of a
RFNM. This inefficiency does not exist in the ARPANET
since no extra bits are stuffed into ARPANET packets to
artificially increase their size. Indeed, gateways have been in-
troduced between the ARPANET and SATNET which renders
these nets independent of each other’s protocols and formats
[21.

G. Inexperienced Designers
It is important that users recognize the difference in func-

tion, performance, and operation of a packet network as
opposed to a leased line. Certain decisions regarding the
parameter settings in any process-to-process communication
are often left up to the user of a packet network; for example
the buffer allocation he provides in his HOST to accept data
from another process communicating through the network
with his HOST is a decision often left to the system user. If his
buffer allocation is too small, he may degrade the apparent

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 17:13 from IEEE Xplore. Restrictions apply.

KLEINROCK: PRINCIPLES AND LESSONS IN PACKET COMMUNICATIONS 1329

performance of the network to an unacceptably low degree;
this comes about, not because the network is slow, but rather
because his allocation was too small. The principle here is that
if one leaves design decisions in the hands of the users (or even
network designers) then those individuals must be informed as
to the effect of their decisions regarding these parameter set-
tings; they cannot be expected to understand the consequence
of their actions without being so informed.

VI. CONCLUSIONS
The purpose of this paper has been to boil down a decade of

experience with packet communications and from this to ex-
tract some lessons and principles we have established. We have
succeeded only in part in this endeavor; the field is st i l l moving
rapidly and we are learning new things each day. Indeed, in
addition to lessons and principles, we have identified a number
of open issues which require further study. Aside from the
meager principles we stated in the preceding section, we feel it
is necessary to make some concluding statements. First we
feel that one must view packet communications as a system
rather than as a trivial leased line substitute. The use of packet
communications offers opportunities to the informed user on
the one hand and sets traps for the naive user on the other. It
is necessary that the overriding principles which we have
established and others which we have yet to establish be well
understood by the practitioners in the field. We must continue
to learn from our experience, and alas, that experience is often
gained through mistakes observed rather than through clever
prediction. In all of our design procedures we must constantly
be aware of the opportunity to share large resources among
large populations of competing demands. We must further be
prepared to incorporate new technologies and new applications
as they arise; we cannot depend upon “principles” as these
principles become invalid in the face of changing technologies
and applications.

Lastly, we must point out that the true sharing of processing
facilities in the network (Le., the HOSTS) has not yet been
realized in modem day networks. One would dearly love to
submit a task to a network, ask that it be accomplished in the
most efficient fashion, and expect the network to find the
most suitable resources on which to perform that task. Cur-
rently, one must specify on which HOST his program should be
stored, where his job should be executed, where to store his
results, at which location his results should be printed, and
specify when all this must happen. The next phase of network-
ing must address this general question of automatic resource
sharing among HOSTS in a distributed processing environment.
Perhaps in the next special issue on packet communications we
will be in a position to identify lessons and principles for true
resource sharing of this type.

REFERENCES

[1 1 L. Kleinrock, Queueing Systems, Volume ZZ: Compufer AppUa-

(21 I. M . Jacobs, R. Binder, and E. V. Hoversten, “General purpose
tions. New York: Wley Interscience, 1976.

[31 R. E. Kahn, S. A. Gronemeyer, J. Burchfiel, and R. C. Kunzelman,
packet satellite networks,” this issue, pp. 1448-1467.

“Advances in packet radio technology,” this issue, pp. 1468-1496.
(41 P. Baran, “On distributed communications,” RAND Series

Reports, Rand Corporation, Santa Monica, CA, Aug. 1964.
(5 1 D. Davies, “The principles of a data communication network for

computers and remote peripherals,” i n Roc. ZFZP Congress ‘68,

[a] L. G . Roberts, “Multiple computer network development to
achieve resource sharing,” in Roc. ACM Symp. Operating Sysr.,
Gatlinburg, TN, 1967.

[7] L. G . Roberts, “The evolution of packet switching,” this issue, pp.

[8 1 L. Kleinrock, Communication Nets; S t o c m c M e w e Flow and
Dehy. New York: McGraw-Hill, 1964, out of print. Reprinted
by Dover Publications, 1972. (Published in Russian, 1970,

[9] 0. J. Boxma, “On a tandem queueingmodel with identical service
Published in Japanese, 1975.)

times at both counters, I.,” University Utrecht, Dept. of Mathe-
matics, Preprint No. 78, Mar. 1978.

[10) L. Kleinrock, ‘Terformance of distributed mufti-accesll computer-
communication systems,’’ in Proceedings of ZFP Congress ’77

[11 1 L. Pouzin and H. Zimmerman, “A tutorial on protocols,” this
Toronto, Canada, pp. 547-552; Aug. 1977.

[121 L. Kleinrock, “ARPANET lessons,” in Roc. Znt. Conf. Com-
issue, pp. 1346-1370.

[131 R. Kahn and W. Crowther, “Flow control in a resource sharing
munications, Philadelphia, PA, pp. 20-1-20.6; June 1976.

computer network,” in Roc . 2nd B E E Symp. Problems in
Optimization of Data Communicafion Systems, Palo Alto, CA, pp.
108-116, Oct. 1971, (also reprinted inIE%ETmm. Communia-
fions, pp. 539-546; lune 1972).

[141 E. Raubold and J. Haenle, “A method of deadlock-free resource

Edinburgh, Scotland, pp. 709-714; A-. 1968.

1307-1313.

allocation and flow control in packet networks,” i n Proc. Third
Znf. Con$ Compufer Communication, Toronto, Canada, pp. 483-

151 W. Naylor, “A loop-free adaptive routing algorithm for packet
487; Aug. 1976.

switched networks,’’ in Roc . Fourth Data Communication8 Sym .,
Quebec City, Canada, pp. 7.9-7.14; Oct. 1975.’

161 A. Segall, P. M. Merlin, and R. G . Gallager, “Arecoverable protocol
for loop-free distributed routing,” in Pro. Int. Conf. Communia-

171 H. Opderbeck and L. Kleinrock, “The influence of control proce-
fiom, Toronto, Canada,vol. 1, pp. 3.5.1-3.5.5; June 1978.

dures on the performance of packetswitched networks,” i n Not.
Telecommuniarrtiom Con$ Record, SanDiego,CA., pp. 810-817;
Dec. 1974.

isarithmic principles,” in Roc . ThirdDafa Communication Symp.,
St. Petemburg, FL, pp. 44-49; Nov. 1973.

191 W. Naylor and L. Kleinrock, “On the effect of periodic routing
updates in packet-switched networks,” in Not. Telecommunica-

201 L. Kleinrock and M. Gerla, “On the measured performance of
tions Conf. Record, Dallas. TX. DO. 16.2-1-16.2-7: Nov. 1976.

packet satellite a c w a schemes,” in Roc . Fourth Znf. Conf. Com-
puter Communication, Kyoto, Japan, Sept. 1978.

181 W. Price, “Simulation of packetswitching networks controlled on

[2 1] F . Tobagi, “Performance analysis of packet radio communication
systems,” in Not. TeZecommunications Con$ Record, pp. 12.6-2-

[22] G. Akavia, “Hierarchical organization of distributed packetswitch-
12.6-7; Dec. 1977.

ing communication systems,” Ph.D. Dissertation, Computer Sci-
ence Department, Univ. of California, Los Angela, Mar. 1978.

[23] R. Metcalfe and D. Bow, “Ethernet: Distributed packet switch-
ing for local computer networks,” Communications of the ACM,

I241 L. Kleinrock and F. Kamoun, “Data communications through
vol. 19, no. 7; pp. 395-404, July 1976.

large packetswitching networks,” in Proc. Znt. Telefmfjk Con-
gress, Sydney, Australia, pp. 521-1-521-10; Nov. 1976.

[25] L. Kleinrock, ‘‘Resource allocation in computer systems and
computer communication networks,” in Roc. of ZFP Congress

[26] -, “On flow control,” in Roc. Znf. Conf. Communicatiom,
‘74, Stockholm, Sweden, pp. 11-18; Aug. 1974.

[27) V. G. T. Cerf and P. Kirstein, “hues in packet network intercon-
Toronto, Canada pp. 27.2-1 to 27.2-5, June 1978.

nection,” this issue, pp. 1386-1408.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 17, 2009 at 17:13 from IEEE Xplore. Restrictions apply.

