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1. INTRODUCTION

Many priority queuing disciplines have been studied recently. Saaty’s {1]
summary of much of the progress up to 1961 includes the work of Cobham (2]
and White and Christie [3] on strict head-of-the-line priority systems. Kleinrock
{4] has analyzed a lag (or delay-dependent) queuing discipline. The character-
istic of the strict system is that it can operate in a saturated condition while
«till giving finite waiting time to the higher priority groups; this system, however,
allows no freedom in adjusting the relative waiting time among the groups.
‘The lag system introduces a set of parameters into the model which allows
manipulation of the relative waiting times; but the previous analysis of the
system allowed operation only in a stable mode (i.e., if any group experienced
an infinite average wait, then so did all the groups).

We recognize that the lag system has the advantage of adjustability of the
relative waiting times; as developed in [4], it has the unfortunate disadvantage
of causing all groups to suffer an unbounded waiting time whenever the system
is saturated. On the other hand, the strict priority system allows finite average
waits for high-priority groups beyond saturation but permits no adjustment
of the relative delays. In this article we adjust the parameters in the lag system
to allow finite waiting times for the higher priority groups under saturated
conditions. In so doing, we develop an interesting priority queuing discipline
that combines the desirable features (i.e., operation beyond saturation and
adjustment of relative waiting times) from both of the earlier systems. The

.. This work was carried out under the author’s consulting contract with T.R.W. Space
Fechnology Laboratiories.
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result is what we call a strict and lag priority mixture (SLPM). The SLPM
system produces a number of strict priority groups, each of which consists of
a number of lag priority subgroups. An example is given and the family of
average waiting time curves is presented.

2. THE MODEL

We assume that we have P separate groups of users of which the pth group
(p=2,3,4,..., P)is to be given preferential treatment over the p — Ist group.
At any time the priority of a particular unit is calculated according to a set of
parameters assigned to that unit; the higher the value obtained by this function,
the higher the priority. The sequence of arrivals forms a Poisson process in
which the average number of arrivals per second from the pth group is ).
We assume that the service times are exponentially distributed with an average
of 1/up sec for units from group p.

We define a pre-emptive priority system as one that removes a unit from the
service facility as soon as another unit of higher priority appears in the queue.
When the unit that was removed is returned to the service facility, it picks
up from the point at which it was interrupted. A nonpre-emptive priority
system is one that always allows a unit to complete its service, once that unit
has begun service.

We define W), =average time spent in the queue for a unit from group p.
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3. STRICT PRIORITY SYSTEM

A common priority system (which we refer to as a strict priority system) is one
in which each unit from group p is assigned a fixed value of priority equal to p.
Within the pth group, a first-come-first-served ordering is used. Thus a
member of the pth group will always be taken into service before a member of
group p’, where p” < p. The behavior of this system has been studied by Cobham
in the nonpre-emptive case and by White and Christie in the pre-emptive case.
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Theorem 1 (Cobham). In the nonpre-emptive strict priority system we have
Jor0<p<1
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where j is the smallest integer such that
o< 1.

An example of this family of curves is plotted in Figure 1.

Theorem 2 (White and Christie). In the pre-emptive strict priority system
we have for 0< p

ol + Tz p i1 pillpi) + (1/pp)
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where j is defined as in Theorem 1.
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Figure 1. ulWy(p) for the fixed-priority system with no preemption: Ap=A/P, p, =p,
P=5.
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Figure 2. pWy(p) for the fixed-priority system with preemption: Ay =A/P, p, = p, P=3§,

An example of this family of curves is plotted in Figure 2. From Figures
l.and 2 we see that the nonpre-emptive and pre-emptive systems are not sig-
mfic:fntly different in their behavior. Both families display the obvious dis-
crimination that the system shows in favor of higher priority units; this is
reflected in the uniformly shorter waiting times for the higher priority units
In these two figures (as well as in Figures 4 and 5) we show a dashed curve oé
the function p/(1 —p); this curve corresponds to the average

e P
Wo pzl ppWp= —“1 =
which i_s invariant to a wide class of queue disciplines (see Kleinrock 5.

An interesting behavior in the waiting time for p > 1 may be seen in these
curves. Specifically, note that when the system is overloaded (i.e., p>1)
certain of the high-priority groups (namely, those for which r=>j) cxperience’
only a finite delay in spite of the fact that there is an infinite queue. This is
dL.xc to the fact that units from group p are sharing the service facility only}
with units from groups p' >p. Thus the infinite queue is made up of units
from groups for which p < j. The value of j increases to the value j=p when-
ever the pq increases such that

p=1
p=1+2p
‘these points corresponding to o, = 1).

; t .In the pre-emptive case this is strictly true. In the nonpre-emptive case, an occasion-
il unit from group p’ < p (where p° > j — 1) may be found in service, thus causing a
Jlight coupling effect from lower priority groups also.
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Figure 3. Interaction betwcen priority functions for the delay-dependent priority system.

4. LAG (DELAY-DEPENDENT) PRIORITY SYSTEM

The strict priority system discussed suffers from a serious defect: the average
waiting times W, are completely determined once the arrival parameters
(Ap, pmp) are specified. Consequently the system designer has no freedom in
adjusting the relative waiting times among various priority groups. In this
section we describe a lag (or delay-dependent) priority discipline that corrects
this defect and enables the system designer to adjust the relative average waiting
times of priority groups over a wide range.

In the lag system a unit from priority group p entering at time T is assigned
a parameter b, and its priority, g,(7) at time ¢, is calculated from

ap(t) = (¢t — T)bp (10)
where
0<by<Sbe< -~ <bp. (1)

As shown in Figure 3, all entering units begin with an initial priority of zero
and gain priority linearly with time. A unit from priority group pa will be given
preferential treatment over a unit from group p1 <p2 only after time To, as
shown in the figure. Thus there is an interaction among all priority groups.
This system has been studied by Kleinrock [4].

Theorem 3. In the nonpre-emptive lag priority system we have

_ Woj(1 —p) — T2 piWill — bifbp)
Wy = 1— > uapi(l —bplbi) . (12)

This family is plotted in Figure 4 for Ay =P, pp =p, and by =2771.

Theorem 4. In the pre-emptive lag priority system we have

W, r b p= il A\ =i b
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This family is plotted in Figure 5 for the same parameters as in Figure 4.
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Figure 4. uWy(p) for the delay-dependent priority system with no preemption: P = §_

The expressions for W;, in (12) and (13) are given recursively in terms of
‘he Wi for i <p. Thus each represents a set of P simultancous linear equations
n the Wy, where the sets are triangular and therefore trivial to solve. They
wre expressed recursively only for simplicity of form.

In cor_nparing Figures 4 and 5 we see again that the higher priority units
1ave a uniformly shorter waiting time than the lower priority units. Moreover,
rom Theorems 3 and 4 we see that the values of the various Wp can bé
nodified by changing the free parameters by (p=1,2,..., P). With these

: I T T T T

W, I

o 0.2 0.4 » 06 08 1.0

igure 5. uWp(p) for the delay-dependent priority system with preemption: P = §.
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degrees of freedom the designer can adjust the W), to suit any relative waiting
times that may be desired. We note that only the ratios by/b; (i <j) appear
in the solutions. These curves, as well as the results, appear to imply that all
Wy go to infinity at p=1; this is an undesirable feature, for extremely high
priority units must be able to get rapid service even under overload (p >1)
conditions. A closer investigation of Theorems 3 and 4, however, shows that
the behavior of finite delay for the higher priority groups (even under overload)
can still be obtained by mixing the two priority systems discussed. For this
purpose we introduce strict and lag priority mixtures.

5. STRICT AND LAG PRIORITY MIXTURES (SLPM)

Let us assume that we may wish to operate the system at some overloaded
condition, say p’>1. With this overload we insist that priority groups pj,
Pi+1, ..., P experience a finite delay (and we are willing that groups p1, pa, ...,
p3-1 experience an infinite delay). Furthermore we wish to specify the relative
waiting times of the various groups. In essence, then, we are asking for the
desirable features of both the strict and lag priority systems (namely, the ability
to operate beyond saturation and also to adjust the relative waiting times).
We find that by judicious selection of the parameters b, (p=1,2,..., P)
we can achieve such a system, which we refer to as a strict and lag priority
mixture (SLPM).

Specifically, we recognize that if bx/bg—1 > 1 then all groups with p>k
will always be given preference over all groups with p <k in the lag system,
for the rate at which priority is attained is proportional to by [see (10)]. This
system will look like a two-priority group, strict priority system, the lower of
the two containing k — 1 subgroups which interact among themselves as a lag
priority system and the higher of the two containing P —k+ 1 subgroups
which also interact among themselves as a lag priority system. If brfbr > 1
for many (say, M — 1) k, we break the P priority groups into M strict priority
groups, each of which is made up of subgroups that interact among themselves
as lag priority groups. We define the parameters of an SLPM system, present
the results for the average waiting times, and plot an example of this family
of curves. Define

M = number of strict priority groups,
nm = number of lag priority groups in the mth strict priority
groupm=1,2,..., M,
m

Np= 2 mi, (14

P = Ny =total number of priority groups,
Ap = average arrival rate (Poisson) to pth group p = el
1 =average length of messages (exponential) in pth group
p=12,...,Nu,
Ap

=, 15)
iz Hp (

Hp




928 LEONARD KLEINROCK

Nae
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m* = smallest positive integer such that ym* < 1,

me—1
N*='S m=Np._y, ¢ (19)
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forp <1,
(20)

3 forpzl.

Then, given a set of parameters by (p=1,2,..., Nu) such that
0<bi<be< - < by, 2y
and
bn,,
and given p, define Np, , and Ny, as Np, , <p<Nm, (p=12,..., Nu).

S e (22)

Theorem 5t.  For an SLPM system with no pre-emption, the average waiting
time Wy is

esple- S e B e

m=m =Nmy_ +
where
N, b
Dy=1—on 11— > Pf(l “f) 24
i=p+1 i
and
N
C= Wy 241 By o 29)

I —one1i=Vsrpy  pye

In Figure 6 we show this family of curves for M =n,, =5, Ay = X25,
Ty =Tu(p=1,2,...,25, m= 1.2,...,5), bpo1/bp =2 for pand p + 1 in the
same strict priority group. This figure shows the characteristics we were
looking for, namely, operation beyond saturation, and adjustability of the W,.
We note the strict prionty groups, each composed of lag priority subgroups.

t Sce the appendix for proof of this theorem.
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Figure 6. xWp(p) for the strict and lag priority mixtures (SLPM) with no preemption:
5, M =5.

For the SLPM system with pre-emption we get the following:
Theorem 6t. With pre-emption the SLPM system has an average waiting
time Wy :

1 [V G Gl 1 b 1
W,,=D—1,[C|+;;-—mzzm_ﬁm7‘m“. 2 P W1+; (I—E o

§=Nmyy+
(26)
where
pm
= e 27
=) 2
—_— N /\4 1
= —_—— 28
Vem i=Naiit1 Amomy” @)
N
O @)
i=Nm-a+1
and
1 L
G = — Pijs (30)
I —oyeyyi=ioqgt

t See the appendix for an outline of the proof of this theorem.
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Figure 7. uWy(p) for the strict and lag priority mixtures (SLPM) with preemption: P =25,
M=5.

This family of curves is plotted in Figure 7 for the same special parameters
as in Figure 6. The difference between pre-emptive and nonpre-emptive SLPM
systems is that in the latter the strict priority groups are more widely separated.

6. CONCLUSIONS

In this article we introduced the notion of a priority structure superimposed
on the population of users. We then discussed two well-known priority systems,
the strict priority system and the lag priority system (both with and without
pre-emption). Curves of the typical performance of these systems are given in
Figures 1, 2, 4, and 5. We observed that the strict priority system offered no
degrees of freedom for varying the relative waiting times of the different priority
groupsand that the lag-priority system did not allow operation beyond saturation
(i.e., heavy loads). Consequently we developed a new priority discipline, the
strict-and lag priority mixture (SLPM) which was shown to possess the desirable
features of both of the other disciplines. Curves of the performance of the SLPM
system are given in Figure 6 (for the nonpre-emptive system) and in Figure 7
(for the pre-emptive system). It is felt that the generality available in this new
priority queuing discipline is great enough to satisfy the requirements of many
desired priority structures.
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APPENDIX
In this appendix we give proofs for Theorems 5 and 6.

Proof (Theorem 5). Because we are dealing with a special case of the nonpre-
cmptive lag priority system, we may immediately write down the following
cquation which applies to such systems and which is developed in [6], p. 164:

1 » Pl
5 wp=3f (Wo+ > piWi+ 3 piW; Fi'), (A.1)
» isp i1 P
where
D=1 > (1 b”) : (A2)
s s b :

Using the notation in Section 5 and recalling that by, , /by, > 1 (m=1,2, ...,
M —1), we get for N, , <p< N,

1 n=1 b‘ P
W,=— (Wo Gl o piWir—+ > piW, (A3)
Dy, (= el s

and D, =D, [see (24)]. Applying Corollary 1 ([6], p. 155) and using the
definition of C in (25), we have

Z ONe+1 2 Pi | ONeyy

W ON1 RUELEENTA S s A4

ia,\zurn L l—-o‘\v.+,.’=.\'z-+| m+ UNe g e

Substitution of (A.4) in (A.3) gives us

1 l’il W by l’il W) )
szi (c+i=,\'-._.+l e ‘bp Tt Ok 1
The last sum in this equation involves summing p;W; over the stric{ pr_iority
groups m*, m* + 1, ..., mp_; (plus the sum from Nom,, +1to p — 1 within the
myth strict priority group). We wish to show the following:
Ne
> piWi=WnBn for m=m* m*+41,... M, (A.6)
+1

i=Nm-
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where Wi, is the average wait for the mth group of a strict priority system with
Mgroups (m=1,2, ..., M)and wheret A/ =B ; Wnis given by Theorem
1 and rewritten in terms of m in (20). From the conservation law [5] we have
for a large class of queuing disciplines (for 0 < p < 1)

= P
3 pol¥p =L . A7)
»=1 P
This applies to our SLPM system and may be written as (No = 0):
M Na I3
W= We. A8
m=1 e-N§.+1P‘ S (=8

We recognize further that an M-group strict priority system with Am/um = B
also obeys the conservation law; that is,

¢ )
2 BuWn=7—W, (A.9)
me=1 == p)
where we have chosen B, as in (17), so that (A.8) and (A.9) may be set equal
(after normalizing] with respect to W),

e 2 s

m
m=1 Wo i-nvtis1 Wo

We may now change the values of pi in this last equation and leave the
sum on 1 (for any m) unchanged as long as we maintain constant the sum
Ba =Z?'_"N__.+, pi; this is because such a change can affect only those terms
piWy for Ny +1<i< N in (A.8), since the other priority groups see this
set of (lag) priority groups as a single strict priority group with Am/pm = fBm
(due to by, + 1y, > 1). Let us therefore choose pt=0for N1 +1<i< N,
and py =B for m=2,3,..., M. In this event it is clear that we have
Wy, =Wm for m=2,3,..., M, which causes cancellation of these terms in
(A.10) and gives

(A.10)

ﬂlWl=.§:P(Wl~ (A.11)

By making use of (A.11) we may remove the m = 1 terms from (A.10) to obtain
M Wm Nem W‘)
—— =] =0.
mZ:» (B"' Wo i-Ng..H 7

We now make the new selection pt=0for Npy_; +1<i< Ny, and e
Bm for m=3,4,..., M. Again this gives Wy, =Wy, for m=3,4,... M
By cancelling them in (A.12) we get

N
BeWo= 5 piWi.
i=Ni41

(A.12)

(A.13)

t Am is defined in (29); Am and pm are the arrival and service rates, respectively, for the
mth group.
1 Note that W and W; contain the factor Wo .

R
A
2
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We continue this procedure to obtain (A.6). For p>1 we use Corollary 1
to the conservation law from [5], which carries through to give us (A.6) over

the range m =m*, ... M. We apply this to (A.5) to yield (23), thus proving
Theorem 5. Q.E.D.

Proof (Theorem 6). The proof here is almost identical to that given for
Theorem 5. We begin with a general preemptive lag priority system that
satisfies the following equation ([6], p. 167).

= iy by
Tt el argt+ 5 an(1-%). g
Hp  i=p i=1 bp i=p+1 by
where
1
Ty=Wp+ —. (A.15)
Hp
Thus
T—'[l S Tb‘] A.16
p—D; I‘p+l'==pp( t+i=lpt ibp 5 (A.16)

where Dj, is given by (A.2). Using our SLPM notation, we get for
N, , < p<Np,

1 /1 £ L=l by
Tp=—|— T Ti+). ;
Dy (,u.,, +i=z,,m ‘+i:.\'.z,_‘+l Al ‘b,,) )
By Corollary 2 ([6], p. 157) we get
L Ny L m
7 = EeE Ledly 18
.':A\'Z-HP‘ : T—oyeiqi=fo i)
Thus
r r B
2 pTi= 3 pW+ 5 B
i=N*;1 i=N*+1 i=Ne41 g
»
ONe+1 Pi
(2 ) 5 2
(1 T ONey1 i:g+l}ll
=G,
where C} is defined in (30). Thus
P P-1
2pTi=Ci— 3 pTy. (A.19)
isp i=NTh1
Adding 3F., pi/u; to both sides of (A.7) we get
L W,
2 pli=7—. (A20)
i=1 (0
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We now wish to consider a pure strict priority system (with preemption) with
M groups where B =An(1uim) m=1,2,.... M [see (17) and (28)); 1] s
the average of the mean service times of the groups Np_1 +1<p<N, -
Equation A.20, which applies to this strict priority system, gives

M Wﬂ
e

T is just the average wait (in queue plus service) for the mth group (see [6]).
We also apply (A.20) to the SLPM system to obtain

M N W,

Ty=
met sy =] —p
We now apply the arguments in the proof of Theorem § to get
Xa
PTi=BmTm for m=me, m*+1,..., M. (A.21)
1

i=Nalis

Use of (A.19) and (A.21) in (A.17) gives us
e [l te- 3 gt 5 r(x—"‘)]
e G o R = o 5|

Substitution of (A.15) in the last equation establishes (26) and completes the
proof. Q.E.D.




