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Resource allocation is basically a problem in conflict resolution. Due to the bursty demands by users,

resource sharing has developed as an efficient means of
multiplexing, multiprogramming and packet switching.
tradeoffs among performance, throughput, efficiency,
show that the average response time of the system may
throughput and the capacity. Also, a single resource s
of m resources each of capacity C/m. Thus, based onl

shared single resource is to be preferred,

1. INTRODUCTION

The information processing industry is one of the
fastest growing, most dynamic and most glamorous in-
dustries on the scientific scene today. An enormous
need for access to information processing already
exists in industries such as banking, insurance,
medicine, education, government, retail organizations,
transportation and large corporations as well as the
consumer himself. It is estimated that at the end of
1971 almost a quarter of a million terminals were in
use and approximately four to five million terminals
are projected for 1980 [1]. In the recent Eurodata
report [2,3], it was estimated that the data traffic
in 17 west European countries would grow by a factor
of six from 1972 to 1980 at which time the demand
from terminals is estimated at 1012 pi¢s per day; in
these same countries the number of terminals will
grow from eighty thousand in 1972 to an estimate of
just under one-half million in 1980 and to eight
hundred thousand by 1985.

Just what is it that these terminals are really ac-
cessing? The most general answer must be that they
are accessing resources of various kinds in the form
of processing capacity, storage capacity and communi-
cations capacity. As the capacity of these systems
grows and as the data bases grow and as the number of
Users requesting access to these TESOUrces grows, so
also must grow the rate of conflict among these users
for simultaneous access. A means for allocating these
resources in order to resolve the conflicting demands
is one of the most important aspects of today's sys-
tem design and operation. In fact, resource alloca-
tion is at the root of most of the technical (and
non-technical) problems we face today in and beyond
the information processing industry. These problems
occur in any multi-access system in which the arrival
of demands as well as the size of the demands made up-
on the resources are unpredictable. The resource al-
location problem in fact becomes that of resource
sharing and one must find a means to effect this
sharing among the users in a fashion which produces
an acceptable level of performance. :

The need for sharing arises due to the unpredictabil-
ity of the demands. Specifically, as shown in the
measurements of Fuchs, Jackson and Stubbs [4,5], the
behavior of users accessing computing power is ex-
tremely bursty; that is, the typical user may be
characterized as one who makes demands rarely but
when he does, he Tequires a high bandwidth in terms
of communications as well as in terms of processing,
Clearly, it is uneconomical to provide the full time
use of a high capacity resource to such a user; on
the other hand, to provide him with a smaller resource
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utilizing resources, for example, time-sharing,

In this paper, we discuss the resource sharing
Tesource capacity and the number of resources. We
be reduced significantly as one scales up both the
ystem of capacity C is often superior to a system
Y on average response time, we find that a large

would be inadequate for his needs when they do arise.
The clear solution to this dilemma is to provide a
large resource which many users share in some multi-
access mode (e.g., time-sharing, multiprogramming,
multiplexing, etc.). If done properly this will be

an economical means for satisfying the needs of bursty
traffic. It is our purpose in this paper to espouse
that point of view and to point out the gains which
are available as the system resources grow in size to
satisfy an ever increasing population of users. That
which gives rise to this gain*in performance is noth-
ing more sophisticated than the law of large numbers
[6]! As is well known, this law states that the
collective demand of a large population of random
users is very well approximated by the sum of the
average demands required by that population. That is,
the statistical fluctuations in any individual's de-
mands are smoothed out in the large population case

so that the total demand process appears as a deter-
ministic (diieiy predictable) demand process.

In this paper we give quantitative measures of the
gains which are available from large resources shared
by large populations. The gains we discuss are be-
yond any effects of "economy or loss due to scale"

in the management, maintenance, operation or quantity
discounts associated with large systems, but. rather
arise due to the statistical nature of the demand.

We take the system cost to be proportional to the
total system capacity. This cost assumption neglects
any possible "economy of scale' which would only
strengthen our case in showing that large resources
give improved performance. On the other hand, rather
than an economy, there may be a "loss due to scale'
as a result of various forms of overhead which some-
times manifest themselves in large systems. For
example, the advancing semiconductor technology has
produced some unusual cost structures. We intention-
ally omit any serious consideration of those impor-
tant issues since we wish to isolate the impact of
scale on system performance.

These results have clear applications to computer
operating systems construction, terminal network de-
sign and computer-communication networks [7]. In the
operating systems environment one is concerned with
providing high performance to a population of users
who attempt to share the CPU, main memory, secondary
memory devices, printers, plotters, readers, punches,
terminals and other system devices. In the terminal
network environment, one is anxious to share the data
communications capacity required to provide access to
and from the terminals and the main processing facil-
ity. In computer-commumnication networks, we are in-
terested in sharing both the processing facilities
which are geographically distributed as well as the
data communications required to connect these systems
amony themselves and among the terminals. OQur goal,
however, is not to elaborate upon the applications



but rather to focus on the effect of resource sharing
in general.

2. RESOURCE SHARING: TRADEOFFS AND STRUCTURE

The basic performance parameters of any resource shar-
ing system include the following:

a) the system response time or delay

b) the throughput

c) the resource capacity

d) the resource utilization
In what follows, we take the point of view that there
is a stream of job requests accessing the system re-
source, each of which requires some number of opera-
tions from that resource. We let C denote the capa-
city of the resource in operations per second. Fur-
ther, we let 1/p represent the average number of oper-
ations required by a job. Thus we see that the aver-
age number of seconds a job requires from the resource
is simply 1/uC. We let A denote the average number of
jobs per second accessing the resource. The response
time of the system is simply the time from when the
job arrives until that time when its complete request
has been satisfied; the average response time will be
denoted by T. Similarly, the average waiting time
for a job (response time minus processing time) will
be denoted by W; it is clear that

T =W+ 1/uC (e8]

We assume a first-come-first-served queueing disci-
pline (although most of our results do not Tequire

this assumption). The utilization of the system re-
source will be denoted by p and represents the frac-

tion of time that the resource is busy processing jobs,

A resource of capacity C, under demand by jobs whose
input rate is A per second each of which requires 1/u
operations on the average, has a utilization given
simply by

p = MuC (2)

Clearly, we must have 0 < p <1 if we are to prevent
the formation of infinite queues. As is well known
from queueing theory [8], as the load (p) on the sys-
tem grows, so grows the queue length and the response
time; in fact, the average response time (T) and the
average queue length are inversely proportional to

1 - p. At p = 1 these quantities climb to infinity
and the system is said to be unstable. The only ex-
ception to this is the case of a purely deterministic
system in which the arrivals are uniformly spaced in
time, each of which requires a constant amount of ser-
vice; in such a case we do permit p = 1. For p > I
these averages grow linearly with time in proportion
top - 1.

We are interested in the tradeoff relations among the
response time T, the throughput A, the resource util-
ization p and the system capacity C. The system
structure will affect the relationship among these
performance variables in a significant way, and it is
our purpose to demonstrate that the simplest structure
is often superior to the others. We shall also show
that large systems give significantly improved perfor-
mance compared to smaller ones. Suppose we have a
system in operation and find that its average response
time T is larger than we desire. We may reduce T by
reducing p in one of two disagreeable ways: either
by increasing the system capacity C or by reducing

the system throughput A. On the other hand, it is

not generally known that this reduction in T can be
obtained at constant p if we merely sczle up both the
throughput ) and the capacity C! A related tradeoff
is that of attempting fo increase the throughput of
the system. If we simply increase A then indeed T
will increase. However, we can maintain a constant

T as both A and p increase if we permit C to grow less
quickly than .. These effects and the obvious and
important tradeoffs among them are investigated below.

Let us now examine some alternative structures for re-
source allocation and sharing. We begin by consider-
ing a collection of m resources each of which has ca-
nacity C/m and sarh f which is individually accessed
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by a job stream at rate A\/m; this structure is - dct-
ed in part (a) of fig. 1. Our intuition sugge.ts that
this system is inefficient, since there may be jobs
queued up in front of one of the resources when anoth-
er one is idle; therefore, let us consider port (b)
of the figure in which we have a single queue access-
ing the collection of m resources at a total rate
equal to A. Here we €xpect an improvement, since no
job will wait if any resource is idle. Note that both
configurations have the same total utilization

P = A/uC; in part (b) the appropriate interpretation
is that p is merely the expected number of busy re-
sources [9, Theorem 4.1].
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Fig. 1. Evolution of queueing structures.

Whereas the merged queue system provides an improve-
ment over the m separate facilities, there still re-
mains an inefficiency when there is no queue but less
than all the resources are busy; in this case, some
resources remain idle at a time when their services
could be used in speeding the work of the other busy
resources. To overcome this inefficiency, we consid-
er part (c) in which we have now merged the resources
as well as the job stream to produce a single queue
whose input rate is A and whose capacity is C. 1In
part (d) we show a collection of m such single re-
source systems similar to that in part (a) but now
each has m times the input rate and m times the re-
source capacity and therefore the system is capable
of handling more jobs per second. We have come full
circle and are back to the inefficient structure of
part (a) which therefore suggests we consider the
system of part (e) in which we have a merged job
Stream at a rate mA which itself can be improved to
the merged-queue merged-resource system of part (f).
That which distinguishes the two single resource fa-
cilities in parts (c) and (f) is that in the latter
we have scaled up the input and the capacity by a
factor of m while maintaining a constant load

o = X/uC. Of the six systems shown, all of which
have the same value for P, the last is often superior
in that it has the smallest response time T. In fact
if we were to further scale the input and capacity of
the system, we would see yet further improvement.
Below we obtain the quantitative measures of this
improvement. (In fig. 2 we introduce a shorthand
notation for these various structures.)

Below we use the standard notation A/B/m from queue-
ing theory, where the symbol A describes the distri-
bution of the time between arrivals (assumed to come
from a renewal process), where B describes the dis-
tribution of service time and where m identifies the
number of servers in a multiple-server system (i.e.,
multiple resource) such as the structure shown in
fig. 1 part (b). Both A and B may take on the values
M, D, G (and others) in which M describes an exponen-
tial distribution (the Markovian or memoryless

C/m
Clm C
A m=> x—{m A2~ => A\ —— ¢
C/m
[

Fig. 2. Shorthand notation.
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distribution), in which D describes a deterministic
distribution (constant value for the random variable)
and where G implies no restriction on the distribution
(that is, a general distribution). 1In the next sec-
tion, we begin by discussing the queueing system
M/M/m and in the section following that we consider

+ the system G/G/m.

3. THE CLASS OF SIMPLE QUEUEING SYSTEMS--M/M/m

Here we consider the system M/M/m as shown in fig. 1
part (b). The interarrival time between jobs is ex-
ponentially distributed producing a mean input rate
of A jobs per second. Each resource has a capacity
of C/m operations per second and the job lengths are
exponentially distributed with mean 1/u operations
per job; this produces a mean service time of m/uC
Sec. per job and a system load p = MuC. We are in-
terested in the performance of this system as A, C
and m vary,

The basic equations describing the behavior of this
system are well known [8]. We find that Py » the prob-
ability that the system contains k jobs (counting
those in queue as well as those being processed), is
given by

b, )kt xsm
Py k m 3
PP m /m! k2m
where
- m-1 ek
Po | + ) )i )
k=0

From these basic equilibrium probabilities one may
easily calculate the average response time T as

T = m/uC + (5)

m
HC(1-p)
where Py is simply the probability that the system
contains m or more jobs and is given by

Po(mp)m

mo (1-p)mI! (6

From these equations we may examine the relationship
among T, A, C, p and m. In particular, it was shown
by the author [9, Theorem 4.2] that the value of m
which minimizes T at constant pis m= 1. In addi-
tion, it was demonstrated that T could be reduced at
constant p by increasing both A and C. (Results sim-
ilar to these were discussed by Morse [10] and Feller
[11]). There are numerous ways to display this trade-
off, some of which we now present.

Perhaps the most striking display of the effect of
large systems may be seen in fig. 3 where we plot the
normalized average response time

P
WCT _ m
N o

The normalization is simply the average service time
for a job in one of the m servers, and this normaliza-
tion successfully removes all parameters from the ex-
pression leaving only m and p. In this figure, we
see that all the curves begin at unity for the value
p = 0 since at this point Py = 0 (m= 1,2,...). As m
increases for a given value of P, we see that the
normalized delay decreases in a dram:t:c fashion and
as m > < we see that the behavior apyroaches that of
the pure deterministic system (D/D/1,) in which p-
queues form untii we exceed the value o = 1. Th.s
figure, however, does not permit one to compare the
various structures from fig. 1 equitably since we
cannot investigate the behavior as A and C vary in
some observable way; the difficulty of course is that

il
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Fig. 3. Normalized average response time (eq.(7)).

we have normalized the response time and have there-
fore lost an essential parameter in our performance
evaluation. If we return to eq.(5), we see the man-
ner in which the average service time m/uC affects
the response. In fig. 4 we plot eq.(5) under the con-
stant conditions p = py = 1 and C = Cy = 1; thus we
assume that the total capacity of our M/M/m system is
held constant at C_ = 1 and this is shared equally
among the m resources as in fig. 1, part (b). In
fig. 4 we see quite the opposite behavior from that
in fig. 3, namely that the response time degrades as
m increases at constant load p. This is simply a
demonstration that the system of fig. 1 (c) is super-
ior to that of fig, 1 (b). Since uC was held con-
stant in fig. 4, we obviously were varying p by a
variation in A. We need not have held uC constant
but rather could have held A constant, in which case
we choose to rewrite eq.(5) as

pP
. m
T==+ X(T=p) (8)

In fig. 5 we select )\ = Ao = 0.8 as we permit p to
vary by changing uC. Clearly, the response function
will now branch out from the origin and again we see

20—
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Fig. 5. Average response time (eq.(8)).

the degradation in response time as m increases at a
constant p; this too demonstrates the superiority of
a single resource as opposed to multiple resources at
constant total resource capacity.

It is convenient to superimpose portions of these
last three figures, and this we have done in fig. 6,
where we show the curves for m = 1,2 from figs. 3,

4 and 5 (note that the curve m = 1 from figs. 3 and
4 are identical). In addition, we show a curve for
m = 1 in the case when uC=2u°C°=2and).=2)\o=
1.6. Also in fig. 6 we have used our shorthand nota-
tion from fig, 2 to identify the exact system struc-
ture and system parameters for the cases p = 0.4 and
p = 0.8. This allows us to see the proper tradeoff
relations among the various structures of fip. 1.

We draw attention to the value p=0.8. Them=1
system at point B gives a response time of five sec-
onds, and this is seen to be superior to the M/M/2
system with the same input rate and the same total
capacity at point A; again this demonstrates the
superiority of single resource systems. On the other
hand, doubling the input rate and doubling the total
system capacity for M/M/2 brings us to point C and
provides a large improvement over that of point B;

i
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Fig. 6. Comparison of average response times.

this is an interesting observation since we have
really done two things simultaneously, namely we have
increased the size of the system (from this we expect
an improvement) and we have also split the resource
into two (from this we expect a degradation). The
overall effect is a large improvement, but we do see
at point D that if we were to merge the two resources
into one of equivalent size then we gain further. (A
similar behavior may be found at p = 0.4.) The mes-
sage is clear in this case; large single shared Sys-
tems yield improvements in the average response time!

Let us quantify these observations analytically. We
find it convenient to expose the parameters of the
response time and so we temporarily write T = T(m,A,C)
where once again C denotes the total capacity of the
m resource system (throughout we assume that p is con-
stant). As mentioned above, we have the important re-
sult

T(1L,A,0 < T(mA,0)  m=1,2,3,.., (9)

demonstrating the improvement due to single resource
systems. Furthermore, since Pm and p, depend only
upon m and p (and not upon A and C Separately), then
from eqgs. (5 and 8) we see that scaling A and C togeth~
er must give an improvement in T proportional to the
scaling factor, namely, for a > Q

T(m,a),a0) = 1 T(m,1,C) (10)

Of course the same is true for the average waiting
time in the queue W = W(m,2,C), that is

Wm,ad,a0) = Lm0 an

Thus again we see the significant gains due to scaling
up the system parameters. These observations were
made by the author [9, Sect. 4.3] where he also gen-
eralized the single server case to yield the result

T(1,a),bC) = b—ﬁ%?ﬁ?ﬂ T(1,A,0) (12)

W(1,a},bC) = _Z_a(_l_‘_L
b™[1-p(a/b)]

where p = A/uC and a < uCb/A. We note that when

a = b, then these last equations reduce to our earlier
results for m = 1. Whereas T and W vary as we scale

A and C as just described, we find by using Little's
result [8] in eq.(8) that

AT(m,A,C) = N(m,),C) = N(m,ar,acC) 14)

W(1,2,0) (13)

and
AW(m,A,C) = Nq(m,A,C) = ﬁq(m.ak,ac) (15)

where N and N_ are the average number of jobs in the
system and in‘the queue respectively. This tells us
that the average number of jobs does not depend upon
the scaling parameters, but remains constant for a
given value of p.

Eqs. (11, 13, and 15) give the corresponding results
for W as egs. (10, 12, and 14) give for T. It remains
for us to find the relationship for W which corres-
ponds to the relationship in eq.(9). First we ob-
serve from eq.(5) that

P
m
W(mA,0) = e (16
Our concern is with the behavior of W as m varies.
This dependence is contained in the expression Py
which is given in eq.(6) and which represents the
probability that an M/M/m system contains m jobs or

more, that is
P, = z Py an
k=m

Now from Theorem 4.1 of [9] we know that p is simply
the average fraction of busy resources which may be
written as
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m-1 o

k
D=Zﬁpk‘2pk (18)
k=m

k=0
Since the first of these two sums must be non-negative
we have immediately that

p2P (19)

Further we see for the single resource system that
W(1,3,0) = -8 __
( ) WCT1-p) (20)

Thus from eqs. (16, 19, and 20) we have the relation
we were seeking, namely

W(1,2,C) 2 W(m,A,0) m=1,2,3,... (21)

This tells us that the average waiting time in an
M/M/m system decreases with m whereas the average re-
sponse time increases with m! This effect may be seen
in fig. 7 where we Plot T and W at constant values of
P as a function of m with € = 1. Note that

T(m,2,C) - W(m,2,C) = m/uC as shown in that figure.
Thus if average queueing time is the performance mea-
sure rather than average response time, then parti-
tioned systems are superior; in the computer systems
under study, we take the point of view that the total
response time is the appropriate performance measure
and so the single resource systems are preferred.

We may display these improvements in yet another way
if we focus on the single resource system M/M/1. For
example, in fig. 8 we show the effect of increasing

A on the average response time for m = 1; the appro-
priate expression for T is

= P/A

T= V= (22)
At constant p we observe the reduction in delay as
we increase A (and therefore also C). In fact, we
observe that the average response time improves by a
factor of 50 as we pass from A = .1 to A = 5 as anti-
cipated from €q.(10). Similarly, in fig. 9 we show
the improvement in efficiency (i.e., resource utili-
zation) at constant average response time as the Sys-
tem is scaled up. The function plotted there is
simply the solution to eq. (22) for p, namely

AT
° =TT )

A further result of this SOort was given by the author
[9, Theorem 4.4] for a system of m separate M/M/1
queues, the ith of which has an input rate Aj and a

o

Fig. 7. Average response time and average wait
at constant loads (eqs. (5 and 16)).

Fig. 8: Average response time for various input
rates for m = ] (eq. (22)).

capacity Ci' Subject to the constraints C = C, +

Gy +ecee Cooand A= Ay + A, 4oven A, it was sﬁown

ﬁ m ° } 27 m 5

that the assignment o capacity and traffic which
minimizes the overall average response time T =
AITI/A * ATH/A #oees ApT/A (where T; is the average
response for the ith system) is A. = ) and C; = C

for i = i_ (and Ai = 0 and G = for i # iy); this
is for any value of i . Again, a single large shared
resource is optimum.

Thus, in summary, for the system M/M/m we have the
two basic relationships given in eqs. (9 and 10).

Eq. (10) tells us that large systems (scaling up the
input rate and the System capacity) yield improve-
ments in average response times which are proportion-
al to the scaling factor. Eq.(9) tells us that for
a given scale factor the single resource system is
superior to the multiple resource System. Let us now
investigate these trading relationships for other
than these simple queueing systems and attempt to ex-
tend them to more general distributions.

4. MORE COMPLEX QUEUEING SYSTEMS--G/G/m

Computer systems seldom display the simple statisti-
cal behavior which we have assumed for the system
M/M/m in the previous section. In particular, job
processing times are seldom exponentially distributed
and so it behooves us to remove this constraint., The
exponential assumption on the interarrival times
(that is, assuming a Poisson arrival process) is the

=1 and
3) )

Fig. 9. Throughput versus input for m
various response times (eq. (2
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lesser of the two evils in Sect. 3; if we temporarily
accept the Poisson assumption, then we are led to
considerations of the theory for M/G/m queues. Un-
fortunately, the theory is badly lacking in this case;
however, the famous Pollaczek-khinchin mean value
formula for the average response time is available for
the. M/G/1 queue, namely [8]

1 wo
T=E¢m (24)

where W, = Ab,/2 and where b, is the second moment of
a job's processing time. We‘note that this expression
for T is similar to that given in eq.(5) when m = 1,
namely T = 1/uC + p/[uC(1-p)]. Thus the improvements
discussed with reference to figs. 8 and 9 as the cap-
acity and input are scaled up also applies to this
case.

However, we are interested in the much more general
system G/G/m. We now permit an arbitary distribution
of interarrival times and of service times for jobs
in a multiple server system. We seek to obtain trade-
off relationships similar to those we obtained in the
previous section. Here, the theory is in worse shape
than for M/G/m; we cannot even give an exact expres-
sion for T in G/G/1! The best we can do is to work
with known bounds on the system performance and we
will show that these bounds predict behavior not un-
like that which we were able to obtain above.

We begin with the single server system G/G/1. Once
again, we assume that the average arrival rate of
jobs is given by X and that the variance of these
jobs' interarrival times is given Sy 032 in the case
of a Poisson job stream we have G, = 1/X¢). Also
the average number of operations per job will aga%n
be denoted by 1/y and with a variance given by o 4,
The single resource is assumed to have a processing
capacity of C operations per second. Thus the aver-
age processing time for a job is again gi}/en by 1/uC
and with a variance which we denote by op“. We see
that o = 0,2/C2. A useful descriptor for a random
variable, for example the interarrival time, is its
squared coefficient of variation which we shall denote
by C,° and which equals

(25)

Namely, it is the ratio of the variance to the mean
squared. For the processing time we have the corre-
sponding quantity

2 2

G = Cz"bz

=C (26)

v |

where C,” is the squared coefficient of variation for
the nmrger of operations required by a job. Whereas
T is in general unknown for G/G/1 there does exist an
upper bound for this quantity first derived by
Kingman [12] and which is given by

1 A(caZme)
Wt T

This bound improves as p - 1; in fact it is known in
this limit that the response time itself is exponen-
tially distributed with a mean given by this upper
bound. We are interested in observing the behavior
of this expression as we scale up both A and C as
earlier. In so doing, of course, we will change the
interarrival time parameters but will maintain con-
stant all coefficients of variation. In order to see
the effects of this scaling, we rewrite eq.(27) in
terms of these coefficients, namely

T < (27)

2. 2.2
P Ca s . C 28
Ts{e ST * T,(1,A,0) (28)

where once again p = A/pC. This last expression is
very similar to that given in eq.(8) for m = 1 (we
could just as well have written it in terms of uC).

Now we clearly see the effect of scaling A and C sim-
ultaneously, namely the (bound on the) average re-
sponse time drops in inverse proportion to this scal-
ing factor. Using our earlier notation and applying
it to T, we have

1
T, (1,a,80) = 2T, (1,1,0) (29)

In fig. 10 we plot a family of upper bounds on T for
G/G/1 holding A constant for each member of the fami-
ly; this produces a set of curves similar to that in
fig. 8 for M/M/1 and once again shows the significant
improvement due to scaling as given in eq.(29). 1In
fig. 10 we have taken Ca2 = Cg = 1 which happen to
be the values corresponding to the system M/M/m;
therefore we may compare the bounds in fig. 10 with
the true values for M/M/1.

For the behavior of the multiple resource system, we
oW turn our attention to G/G/m. Exact values for T
again are unknown and so we resort to the known bounds
derived by Kingman [13] and Brumelle [14], namely
2 4

X aaz+(cb /m)*«(m-l)/u'c2
§ 705 i
If we rewrite this equation in terms of the squared
coefficients of variation we then obtain

m
Tsﬁ

2 2.2 2
C "+ C ™ +(m-1
rem, 2t W DS Ly g e
A 2A(1-p)

Again we see the improvement due to scaling at a con-
stant p, that is

1 :
Ty(ma},aC) = 3 T (m,,0) (32)

Unfortunately, the bound for G/G/m in eq. (31) is not
especially tight and so it is difficult to use it in
showing that m = 1 is the optimum system as we were
able to do for M/M/m as in eq.(9). However, it has
besn shown by Brumelle [14] that in the case when
Cp < 1 then m = 1 is optimum, that is

T(1,X,C) < T(m,),C) (33)

This result extended the results of Stidham [15] for
G/M/m, G/D/m and G/Ex/m where Ex is a k-stage Erlang-
ian distribution [8]. Thus we see that the single
large shared resource is superior in terms of re-
sponse time for a large class of G/G/m systems. How-
ever, Brumelle did give an example whigh showed that
G/G/2 can be superior to G/G/1 when Cp" > 1.

20

Fig. 10. The upper bound on average response
time at constant input rates G/G/1
(eq. (28)).
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An improvement for the bound in eq.(31) for G/G/m was
conjectured by Kingman [13, 16] and takes the form of
the following approximation

2. 2,7
n_, AMa, mb/mJ
uC 2(1-p)

In fact it has recently been shown by Brumelle [17]
that this approximation forms an upper bound for the
system G/M/m. Recently, Schrage [18] has been able
to show that so long as the processing time is bound-
ed by some finite quantity then Kingman's conjecture
holds as an approximation for the system G/G/m as

P > 1. If once again we express this new upper bound
(or approximation) in terms of the coefficients of
variation we find

(34)

2.2.2
mp Cawc

T (p) - W' (35)

or, in terms of uC we have

2 2
" B
— - , |
A i1, (36)

Once again we have the relationship given in eq. (32)
regarding the scaling effect. We note further that
the portion of T,' which corresponds to the waiting
time in queue (the second term) is independent of m!
T,' is far superior to the bound given in eq.(31)

for G/G/m. We may reasonably assume that processing
times are bounded and may therefore use this improved
expression for the mean Tesponse time especially when
e > 1. Furthermore T,' is far simpler than the exact
expression for M/M/m given in eq.(5) as regards its
dependence upon m. In fig. 11 we plot the upper bound
for T and W as a function of m for various p in a
fashion similar to that of fig. 7; we take the case
HC = UyCo = 1 and Caz = gz = 1. Again we note that
these values for the coe icients of variation are
the appropriate ones to use for the system M/M/m; thus
we may compare figs. 7 and 11 in order to see the ef-
fectiveness of the bound in this one case. In any
event, we make the observation that the response time
degrades with increasing m at constant p.

Thus in this section we have shown that the concept of
large shared single resources is once again the direc-
tion in which we find improvements in the mean re-
sponse time of the system. We may further point out
by observing egs. (5, 8 and 22) for the M/M/m system
and eqs.(28, 31, and 36) for the G/G/m system, that
forming the product AT yields equations which are in-
dependent of the scaled parameters; this product is

1 5 10 15 20 2% 30 35 40

Fig. 11. Upper bounds on average response time
and average wait for G/G/m (eq. (36)).

2-111P

simply the average number of jobs in the system (by
Little's result [15]). Simply stated, then, if AT
is to be constant, then an increase in A must give a
corresponding decrease in T.

5. APPLICATIONS

In this section, we briefly draw attention to the ap-
plication of our results to computer systems and com-
puter-communication networks.

In the case of single resource time-shared computer
systems [7], we expect the results to carry over di-
rectly. In this case, each scheduling algorithm must
be examined in the limit as the resource capacity and
input rate are scaled up. The flavor of these re-
sults can be seen by reference to the author's paper
(jointly with Muntz and Hsu) published in previous
IFIP Congress Proceedings [19] in which tight upper
and lower bounds were given for the response time as
a function of required service time in the CPU. If
one examines these bounds in the scaled limit of in-
terest to this current paper, then one finds that the
upper bound approaches the response in a first-come-
first-served system and the lower bound approaches
zero; moreover, the first-come-first-served system
yields a delay which itself approaches zero in our
limit, thus showing that all Tesponse functions im-
prove with the scaling of input and capacity. In the
1968 meeting of this Congress, the author delivered a
paper in which a finite console model for time-shared
Systems was studied [20] under exponential assumptions.
There it was shown that partitioned systems were in-
ferior to single resource systems (the comparison was
between the systems of part (a) and part (c) in fig.
1). In a finite population model such as discussed
there, an appropriate scaling will be obtained if we
hold the "saturation number' constant as we scale the
system capacity and the ""thinking rate" of customers
proportionally (by maintaining a constant saturation
number we are in a sense holding the system load con-
stant). It can be seen there that the expression for
T behaves as in eq. (10) here, namely the improvement
is proportional to the scaling factor. The results
of Jackson [21] and Gordon and Newell [22] on queueing
networks have recently been applied quite successfully
in the modeling of multiple resource time-shared sys-
tems [23, 24, 25] and it is interesting to note, for
example, that Jackson's model yields resource behav-
ior which is characterized as an M/M/m system and so
these resources also enjoy the benefits of scaling
which we discussed in Sect. 3 above.

In the case of computer-communication networks, the
basic characterization for the analysis of network
delay has been to decompose it into a weighted sum of
single resource delays (each communication channel is
a resource); that is, [7, 9]

Ay
T =Z—Y_ T, 37

Here T is the average delay to messages passing
through the network, T; is the average delay messages
experience in accessing the ith communication channel
in the network, A; is the traffic carried by the ith
channel and y is the total message traffic entering
the network. In this case the appropriate scaling to
consider is at the network level; that is, the quan- -
tities to scale up are the network throughput, y and
the capacity of each of the communication channels,
In so doing, the ratios Ai/y remain fixed (the Ai's
also scale) but the channel delays T; each behave as
do the resources considered in Sects. 3 and 4 above,
thereby yielding the same benefit in the performance
measure T (that is, an improvement equal to the scal-
ing factor). Another interesting effect in packet
switched networks has been observed in the behavior
of T in these networks as described in [7], namely
that the message delay behaves almost as if the net-
work were a D/D/1 system; that is, the performance is
approximately that of an unloaded system until a



an Computer Networks [

critical load value is reached, at which point the
System goes unstable. This is an example of the de-
terministic behavior due to the law of large numbers
we had discussed earlier, In this case, the phenome-
non is due to the many terms in eq.(37) which contri-
bute to T (one term for each communication channel),

6. CONCLUSIONS

Our goal in this paper has been to isolate the effect
of scaling the input rate and system capacity of a
shared resource. We found that an important perfor-
mance measure, the average Tesponse time, improved
significantly in the case of a single large shared
resource. The improvement came about for two reasons;
first, and principally, due to the simultaneous in-
crease in the system throughput and capacity and
secondly due to the merging of the resources into one
common resource. We found that these results apply
to rather general queueing systems in the class G/G/m
and have given some indication as to where these re-
sults have application in the field of information
processing.

Whereas our theme has been that "bigger is better,"
the reader is cautioned that this statement has been
established here only when one studies the effects

of scaling the system parameters in isolation. As we
had mentioned earlier, the practical problems of over-
head, technology and large systems management may
dominate the performance variables and it is those
which would then bear careful investigation. OQur
goal has been to point out the possible gains in the
clean environment of our study.
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