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Abstract. Results are obtained for a model of many processors operatit~g in series. [ [ 'he  
results arc obtained directly by recognizi.ng that a sequential processing may be viewed as  a 
cyclic queue. Exact  results are given for two sequential processing stages with a buffer s t o r a g e  
of arbitrary size between th6 stages, a~M approximate results for the case of 2 .u (M an in t ege r )  
stages. The analysis is good oMy :for exponentially distributed computation times. 

Introduction 

It is clear that one can always place requirements on the speed of computation 
which exceed the processing rate for any existing computer. If it is necessary t o  
process at such excessive rates, some form of parallel processing must be used .  
Whereas many systems of parallel computation have been proposed, they may a l l  
be reduced to a canonical structure consisting of two or more processors coupled 
through a common supervisory control, with each having access to all, or put't, o f  
the available memory, as shown irL Figure 1. Each of the P processors is considered 
to be identical iu structure, but they may differ in computational speed) 

In such a system, the question as to how one should divide up the total computa-  
tion load presents itself. Indeed, the problem, in general, does not break up into P 
independent sections (each of which could then be assigned to one of the P p roc -  
essors). I t  is perhaps more reasonable to assume that the computations t a k i n g  
place in the various processors are interdependent. In particular, it is assumed t h a t  
the data must be handled by each processor in sequence; that is, the first processor 
carries out a portion of the totM computation on a subset of the data and ~hen  
transfers these results to the second processor (via a storage area in memory w h i c h  
is accessible to both) ; the second processor then performs its share of work and pa.sses 
its results oI~ to the third processor (via memory), and so on. After the first p roc -  
essor fimshes its task on the first subset of data, it immediately begins work on t h e  
second subset, and so on. Consequently, one may visualize many subsets (or parcels) 
of data traveling down the series chain of processors amt undergoing various s t age s  
of processing along the way. We refer to such a chain of Sequential Processing 
Machines as an S.P.M. system. It  is clear that there are two limiting factors h e r e  : 
the computation rate of the processors (possibly all different), and the size of t h e  
commonly accessible storage between each processor, Indeed, when ~ny i ~ t e r -  
processor storage fills up, then the processor feeding that storage must stop u n t i l  
the succeeding processor empties one memory slot (equal to the room for the r e su l t s  

Preparation of this paper was sponsored in part by the Office of Naval Research and t h e  
U. S. Atomic Energy Commission. Reproduction in whole or in part is :permitted for a n y  
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The assumption of identically structured processors is commonly used. However, t h e r e  i s  
a group at U.C.L.A. which is considering tim advantages of allowing the structure of p r o c e s s o r s  
to vary with each problem. (See [2, 3].) 
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Fro. 1. Parallel processing system 

of computation on one subset of data). Similarly, whenever an interprocessor storage 
empties completely, then the processor which draws data from that storage cannot 
begin new work until more data become available. The time required to completely 
process the entire set of data will clearly depend upon these two factors (speed and 
storage size), but will also depend upon the distribution of computation require- 
ments placed on each processor by each subset of data. (This is discussed in greater 
detail below.) The expected value of the time to completely process the data is of 
prime interest, and it is this quantity which we solve for (in certain restricted cases). 

Recently, Aoki, Estrin and Mandell [1] considered the analysis of such S.P.N[. 
systems. They obtained results for the case of two processors (P = 2), where the 
distribution of computation time in each processor was completely arbitrary. 
However, they analyzed the cases in which the size (N) of the buffer storage between 
processor 1 and processor 2 was restricted to N = 1 and N = oo. In this paper, 
by recognizing that such a system of two series processors is identical to a class of 
cyclic queues, studied by Koenigsberg [4], we are able to extend the earlier results 
[1] to the case of a buffer of arbitrary size N between the two stages; however, in so 
doing, we must restrict the distribution of computation time to be exponential. 
Furthermore, by approximating the behavior of a system of P = 2 M processors by 
two processors (each consisting of 2 M-~ stages), we are able to give approximate 
results for the multiprocessor case. 

The Model 

Two of the S.P.M. models considered in [1] may be described as follows. The com- 
putation requirement may be thought of as a sequence of n customers, each of 
which must pass through two processing stations in series; at each of the two sta- 
tions, a computation is performed for each customer. The time required for each 
such computation is considered to be a random variable. The processing time t 
at the first station is assumed to be drawn from an arbitrary but continuous dis- 
tribution Pl(t), and from P~(s) for the processing time s at the second station. All 
service (processing) times are chosen independently, one from the other. The reason 
for viewing these processing times as random variables is that the particular num- 
bers involved in each calculation affect instruction execution times as well as the 
number of iterations around loops of instructions. Since in general we cannot predict 
the input data that are to be used, we choose to consider the time required to per- 
form calculations on these data as random variables. 

Each customer must be fully processed by the first facility before he is allowed to 
enter the second facility. Let N be defined as number of customers which the system 
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can "store" or provide waiting room for between the completion of their service at 
the first station and before the initiation of their service at the second station; i.e., 
the maximum allowable queue that  may form in front of station 2 is equal to N. 
This corresponds to the size of the common memory space in the memory buffer 
expressed in units of number of available slots for each customer's partially com- 
pleted eomputatiom Aoki, Estrin and Mandell [1] consider two special cases, namely 
N = 1 and N = ~. In the first case, this corresponds to requiring that the first 
processor cannot begin service on the ( i +  1)-st customer until the second processor 
completes the service of the ith customer, since the ith customer is occupying ~tll of 
the available space (N. = 1) on the queue. If this rule is violated, it can be seen 
that the ith customer's partially completed results will be wiped out as the results for 
the ( i +  1)-st customer are stored into the same memory space. In the second case 
(N = ~) ,  no restriction is placed on the first processor since there is always room 
in memory for storage of its results. The performance criterion for such a system is 
taken to be proportional to the expected time, T', to complete the processing for 
all n customers (each of which must pass through both facilities). I t  is assumed that  
n >> N. We refer to the model described above us the computer model of an S.P.M. 
system. 

We now demonstrate that  the computer model (for any value of N) is equivalent 
to a cyclic queue [4]. Consider again two service facilities in tandem with a maximum 
allowable queue of size N -  1 in front of each facility. 2 Prime the system by placing N 
customers at the first facility ( N -  1 on queue and one in service). When a customer 
leaves station 2 he immediately joins the queue in front of station 1 and again goes 
through the two series facilities (hence the name cyclic). (See Figure 2.) The service 
time t at the first station is chosen from a continuous distribution P~(t) and the 
service time s, at the second facility, from P2(s). Observe that the second service 
facility cannot begin service on a customer until he has been serviced by the first 
facility. In addition, when the second queue is full, there are no customers available 
for the first service facility, since all N customers are at the second station. The key 
point is tha t  a queuing theory model of an S.P.M. system has been set up in which 
the "blocking" phenomenon of the computer model described earlier is brought 
about in this new model by  limitation of the arrival of customers to the first service 
facility. The  only time that  a customer may enter the first facility is when there is 
"room" for such a customer in the second facility. Thus there is an arrival pattern 
at the first facility that  is dependent on the queue size of the second facility'; 
this is exactly the situation we need to describe the blocking condition. The fact 
that the same "customers" are going around the system many times is of no con- 
cern, since their service (computation) time is chosen independently at each step. 
If these N customers are sent around the system n/N times, then each service 
facility will have serviced n customers. Consequently, the expected time, T, to 
complete the n/N cycles in this queuing model will be the same as the expected 
time, T' ,  to process n customers in the computer model. 

2 The queue size is N - 1  instead of N, since in our queuing model it is assumed that there 
is room for one customer in the service facility itself; in the computer model it is assumed that 
there is ao such storage capacity in the processor itself. 

Due to the symmetry of the two service facilities in this model, all comments referring to 
the first station also apply to the second station. The only exception is in the initial configura- 
tion, where we insist that the N units begin at the first station. 



182 r , .  KLEINROCK 

FIRST | 
QUEUE 

MAX. SIZE N-I MAX. SIZE N-I  

F~G. 2. The oyelic q~mue model 

Bounds on Performance 

Following the suggestion by Aoki, Estrin and Mandell, we define the performance 
measure, R, as the ratio of T'  ( the expected time to process the n customers in the 
multiprocessor system--see Figure 1) to the expected time that  it would take a 
single processor to serve these n customers by itself. The  average time, m , to serv. 
ice one customer in this single (reference) processor will be taken as the average 
of the mean computation times of the P processors in the multiprocessor system; 
tha t  is, if my denotes the average time that the pth processor takes to process one 
customer, then 

, 1 F 
m = -~ v~=lm v (1) 

Now, since there is a total of n customers passing through P processing stations, 
it is clear that  the single processor system must service each customer P times in 
order to perform the same total computation. Since each computation time is an 
independent random variable by assumption, this single processor must in effect 
carry out nP computations (each taking on the average, m* seconds). Consequently, 

T' 
R - (2) 

nPm* 

Let  us consider the range of values which R may take. I t  is clear tha t  the multi- 
processor system will always perform better than the case in which only one of its 
P processors is actively computing at any given time. In  this degraded situation, the 
expected time to completely process n customers will merely be the sum of the 
average time that  it takes each processor to service n customers (i.e., T ' =  
n ~s= l  ms) .  Consequently, 

P 
E '?rip 

R <  wi  - 1. 
-- nPm* 

Furthermore,  the best tha t  can be obtained is a situation in which all P processors 
are actively computing all of the time. In  this best case, T '  must be greater than or 
equal to the time that  it  takes the slowest of the P processors to service n customers 
(i.e., T' >_ nm ..... ). But  m ~  > m*, and so 

rim* 1 
R >  

- nPm* P" 

Thus,  for any S.P.M. system with P processors, R is bounded from above and below 
by 

1 
_~ R _~ 1. (3) 
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Obviously, the smaller is R, the berber is the performance of the S.P.M. system. 
Bdow, we consider only the case for which the distribution of computation time, 
t, in the pth processor is given by 

P , ( t )  = 1 - e - %  (~) 

i.e., P~,(t) is the probability that the computation time in the pth processor is less 
than or equa,1 to t. From this it is dear  that  mp = 1/**p, and so 

, I ~ 1/~*~. 
97b ~" P p = l  

Two-Processor Systems 

The first result requires that the value of P be restricted to P -- 2. It is convenient 
to define the quantity 

~nl _ /*2 
Er 

THEORE~'I 1. Consider a two-processor S .P.M. system described by the computer 
model above in which the distribution of computation times is exponential as given in 
Equation (4) and which provides storage for N customers between the two stages. The 
performance measure R (for n >> N )  is 

1 1 -- a ~+1 
1 + ~  1 : - 7 ~  o - ~ 1 ,  

R = (5) 
N + I  

2N a = 1. 

PfmOF. As shown above, the value of T calculated using the queueing model 
must be equal to T' as c~lculated using the computer model. Consequently, the 
theorem will be proved by solving for T. 

To review, the cyclic queueing model, as shown in Figure 2, consists of N cus- 
tomers distributed between the two processors. In 1958 Koenigsberg [4] considered 
the problem of cyclic queues with exponentially distributed service times (see Equa- 
tion (4)), and solved for the equilibrium probability p(k, N - k )  of finding k cus- 
tomers (waiting and in service) ~t the first facility and N -  k customers at the second 
facility. His result (for P = 2) is 

p(k, N-I•) = crk-Zep(N, O) (k = O, 1, 2, " .  , N )  (6) 

where by definition ~ = tt~/ta • The value of p(N,  0) may be found by summing 
Equation (6) over alI/c and equa~ing this sum to unity, i.e., 

iv /¢ 

F. p(~, N - k )  = 1 = ~ ~-~p(N, 0). 
k=~9 Io-=0 

Thus, 

N 
p(hr, 0) - 

k~O 
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Consequently, 

i N ~ - -  (7 

p(N,O) = I 
i 1 
[ 3 / + 1  

Thus, Equation (6) becomes (for k = 0, 1, 2, " "  , N) ,  

t 1 _ _  ~:~,+l ~ [ 

p(k, N - k  ) = It- 1 

N +-i 

o" ¢ 1, 

(7) 

But,  since 'rn~ = 1/~p , 

a [ l d  

E~ = ~(:v, o). (a)  

Both expressions are readily evaluated from Equation (7). From E q u a t i o n  (2) 
we get (for P = 2), 

T' 7' T 

2 

Now, shice T( = T ~) represents the expected time that it takes to c o m p l e t e l y  p roee~  
the n customers, it is found that the expected time during which the ] o t h  facili ty 
is busy is merely (1 -- E~)T.  During these (1 -- Ep)T  seconds, t h e  2oth facili ty 
must service n customers, each of which takes an average of 1/tzp s e c o n d s .  Con- 
sequently, 

( 1  - -  E ~ ) T  = n/l~p 

Summing this last equation over p, we obtain 

( 2 - E ~ - E ~ ) T  = n  + . 

( p  = 1, 2)- 

If we make use of this equilibrium (steady-state) probability d i s t r i b u t i o n ,  we re- 
quire that  the system has been operating for a long time. This is e q u i v a l e n t  to re- 
quiring that  each of the N customers go around the cycle many t imes-  Now,  since 
n / N  is just tile number of cycles needed to process a total of n c u s t o m e r s ,  we insist 
that  n / N  >> 1, or n >> N. 

For p = 1, 2, Ep is defined as the probability that the pth facility i s  e m p t y .  It  is  
clear that 

~'~ = p(0, N)  (S) 

O" ~ ] ,  
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From this last and Equation ( t0)  it can be seen that  

1 
t~ = 2 -: E ~  z t; , ,  (11) 

This denominator is now evaluated by use of Equations (7), (8) and (9). For 
¢ 1, we obtain 

Thus, 

1 - o- N 1 - (7 2 - -  E l - -  Ee = '2 ~r 
1 -- ~ v + l  i -- o -,v+~ 

= ,  + (L_-_! (L±_(A. 
1 - -  0 "NLI 

For a = 1, we obtain 

2-- Ei--.E2 = 1 + 
N 

O* - -  O "  

1 - -  fiN-P: 

2-- IE~-- E2= 2 (1--  -l~f-~=-l) 

,, # I. (12) 

o r  

2N 
2 -  E l -  E~ - N + 1 ~ = 1. (13) 

Combining Equations (11), (12) and (13), we finally arrive at 

l 1 1 -- a N+' 
1 + a 1 - -  a -v o # 1 ,  

R =  
N + I  

! 2N , =  1, 

which completes the proof of the theorem. 
Note that R = R(z,  N) is symmetrical in z and a-~; that  is, 

R(~, N) = R(~ -~, N).  

This is easily shown as follows. For ~ = 1, it is clearly true. For ~ # l, 

1 ( 0  
R(~, N)  - 1 + ~, ; ~  T - . - - ~ v  U~" 

i i -- a -(/+i> 

= R(~-: ,  N) .  

R(+, N) is plotted in Figure 3. 
For ~ = 0, oo, it can be seen that R(0, N) = 1. independent of N. Physically, this 

makes sense since one or the other of the two computation facilities is infinitely 
slower than the other; comparing this to a system with one processor whose average 
computation time is the arithmetic mean of those two must result in a system which 
gives an average total computation time equal to that  of the two-processor system. 
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O-=CO 0 
O-o 5(~,  1 / 5 0  

0"= 10, 1/10 

Or= 5~ 1/5 

o =  3 ,  1 /3  

G = 2~ 1 /2  

o" ~ 4 / %  3 /4  

o '=1 

From Figure 3, it can be seen that R((~, N) seems to be a monotonical ly  decreasing 
function of  ~. This is shown to be true in the following theorem. 

T~IEORnM 2. FoP ¢i __< ~ --< 1, R ( ¢ l ,  N )  _> R ( z 2 ,  N ) .  
P a o o r .  From Theorem 1, we have (for  ~ ~ 1) 

1 - ¢~+i 1 
R ( ~ , N )  1 - ~ + l + ~ - , ~ A '  ~ _ J  " 

1 +  

Let 
N 

- -  0" ~ O" 

x(~) i - ~N+I" 

It is enough to show that x(¢) is monotonically i~creasing with ~ (for 0 < ~ < i). 

This is done by showing that dx/do" >_ O. Differentiating, we get 

dx((T) 1 -- N a  N-1 Jr No -~+l ¢ r~v 
- - (14) 

d~ (1 - ~N+1)2 

The  denominator in Equat ion (14) is a lways posit ive (for 0 _< ~ < 1),  so it may  be 
neglected. Denot ing  the numerator by y(¢) ,  we have 

y(~r) = 1 - N J  - i  + N~r lv+i --  o 3~v 

= (i- 2~)_N~-I(I_ 2) 

= (1 --  ~2)[1 -b ~2 + ~' + . . .  + o m - 2  --  N J - I ] .  

4 Restricting ~1, ~ _< 1 is completely general, since R(z, N) = R(¢ -~, N). 
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Agah~, since 1 -- ~ is M w a y s  positive, it is necessary to consider only the polynomial 
z(z) = y(~)/1 - 2 w h o s e  degree is 2 N - 2 .  

z(~) = 1 + £ + ~ + . . .  + j~--2 _ NC--~. (15) 

By Descartes' rule of s igns  for polynomials, it can be seen that Equation (15) 
has at most two positive real  roots. Ciearly, one of these is at cr = 1. Also, it can be 

seen that 

z(~)  = C - ~ z ( ~  ') .  

Therefore, if z0 is a r o o t  of z(z),  so must be a~ ~. Yhus, the only two positive real 
roots of z(¢) must both occur  at z = 1. Furthermore, z(0) -- 1 > 0. Thus, 

z(~) > 0 for 0 <_a < 1 

Consequently, clx/dz > 0 for 0 <_ z < 1, which completes the proof of Theorem 2. 
From Theorem 1, we  h a v e  R(z, 1) = 1 for all z. This last, with Theorem 2, gives 

the following Corollary. 
COROLLARY. 

R ( 1 , N )  < R ( z , N )  for ~ 1, N >  1. (16) 

Note further, from T h e o r e m  1, that  

I 1 
- -  ~ , < 1 ,  

l i m R ( a , N )  = 1 +~r  (17) 

1.~t_ 0._ 1 °" ~> 1. 

The fact that  ~ = 1 is opt imum (Corollary above) is reasonable from a physical 
point of view, since b o t h  facilities are truly symmetrical (as can be seen from the 
cyclic queueing model) ; consequently, if they do not both have identical computa- 
tional speeds, the f a s t e r  facility will, on the average, be waiting for the slower 
facility. The balanced case (o = 1) is clearly the best arrangement, as one would 
expect by intuition. 

It is interesting to n o t e  t ha t  a relatively small storage capability (N in the range 
from 10 to 20) is suff ic ient  to acMeve a performance measure which is within a 
few percent of its o p t i m u m  (minimum) value (see Figure 3). 

Multiprocessor System~ 

The analysis is now extended to S.P.M. systems for which P > 2. Unfortunately, 
the cyclic queueing m o d e l  proposed earlier no longer gives an accurate description 
of such systems. The  source  of the difficulty is that  we cannot cause the appropriate 
blocking phenomena in  t he  queueing model, since customers may now distribute 
themselves among m a n y  processing stations rather than among just two stations. 
Consequently, we r e so r t  to an approximation which is based on our results for the 
P = 2 case. ~ 

The subscript P is n o w  introduced into the notation for the performance measure 

A storage of size N between each processor is assumed. 



1 8 8  L. K L E I N R O C K  

R and processing t ime T of a P-processor sys tem;  t h a t  is, 

R = Re 

T = T~,  

The  average t ime necessary to process a single c u s t o m e r  in a P-processor S.P.M. 
system is just Te/n. Equations (2) and (3) then b e c o m e  

Re - T~ nPm* (18) 

and 

1 
~ Rp < 1. (19) 

Consider P = 4. Having  already analyzed the b e h a v i o r  of the P = 2 systems, we 
are led to consider the configuration shown in F igure  4, in which the P = 4 system 
is considered as two P = 2 systems in tandem. We are t e m p t e d  to replace each P = 2 
system by  a single P = 1 system whose average process ing  t ime is just T2/n. Were 
this to be done, we would be left with a simple P = 2 sys tem,  whose behavior has 
already been calculated. However,  once this is done, the  assumpt ion of exponentially 
distributed service times (Equation (4)) is violated,  since we now have a two-stage 
service operation at each processing stage. We choose to  make this replacement, 
however, and thereby only approximate the true s y s t e m  behavior .  The results below, 
under this approximation,  indicate tha t  the app rox ima t ion  is rather good. In this 
way, (approximate)  answers for P = 4 are obta ined .  

Now consider P : 8 and break this system into two P = 4 systems. Then use 
the results from Theorem 1 with T4/n as the ~verage  t ime  to pass through each 
P = 4 system. Continuing, consider P = 2 ~ (M an  in teger)  and decompose such a 
system into two P = 2 M-~ systems, as shown in F igure  5. 

This approximate mmlysis is carried out for two special  cases, namely:  
(a) All m p =  m (i.e., 1 / ~  = l / t 0  and a rb i t ra ry  N ,  
(b) N --> ~, and arbi trary mp = 1/tt~ . 
As we shall see, one or the other of these usually gives ~ good approximation to 

the more general cases. 
For arbi trary N, and for 1/~p = 1/t~ for all p = 1, 2, • • • , P = 2 ~, we have from 

Equat ion (18) 

R2~ T2~ 
- 2~nm------- ~ . ( 2 0 )  

• 

[ 

I 

I MAX QUEUE MAX QUEUE MAX QUEUE MAX QUEUE 
I SIZE N-I  SIZE N- I  SIZE M - I  s IZE N-I  

L L _ J  

FIRST TWO-PROCESSOR SYSTEM SECOND T~O-PROCESSOR SYSTEM 

FIG. 4. Decomposition of a four-processor system into two Swo-processor systems 
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I N-I  N - I  N- I  

1 
i 

M-1 
F I R S T  2 - P R O C E S S O R  S Y S T E M  

r- - i 

N - I  N - I  N - I  I 
l 
I 

J 

SECOND 2 M-t- PROCESSOR SYSTEM 

FIG. 5. Decomposition of a 2~-processor S.P.M. system into two 2M-l-processor S.P.M. 
Bystems 

But m* = 1 / ~  and,  using Equat ion (20) and our approximation (see Figure 5), 

T,~ ~- 2n ( ~ 7 ~  ) R2 (21) 

where T2M- ~/n is the  average t ime for a customer to pass through a 2M-Lprocessor 
system C o n t i n u i n g ,  we have 

From E q u a t i o n s  (21) and (22), 

T~,, ~_ (2R~)~ T~,- ,  (23) 
n n 

Continuing t h i s  i teration, finally, 

T ~  _ ~  ( 2 R 2 ) ~  _~1" . (24) 
n n 

But T1/n i:s j u s t  the  average time for a unit  to pass through a single processor, so 
T1/n = 1 / ~  b y  definition. Thus 

T ~  __~,~ (2R2)M _1 . (25) 
n 

From E q u a t i o n s  (20) and (25), 

R2~ "~ (R2) ~ (26) 

Each of t h e  R2 t e rms  generated in the above analysis apply to two identical 2"- 
processor s y s t e m s ,  so z = 1 for each such term. 6 Consequently, using Theorem 1 
in Equat ion ( 2 6 ) ,  we finally have the following: 

THEOREMS[ 3. For all mp= 1/~ (p = 1, 2, . . .  , P = 2M), 

~.~ - -  . ( 2 7 )  

* That is, for  two 2~,-processor systems in tandem, ~ refers to the ratio of the average time 
for a customer to  pass through one system to his average time to pass through the other 
system. 
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Note from the Corollary to Theorem 2 that  the best system is one in which all 
processors have equal computational speeds. This is the case given in Theorem 3, 
and we find that  such a system compares extremely favorably with the ideal sys- 
tem represented by the lower bound in Equation (19). Tha t  is, we must compare 
[(N q- 1)/2N] M and 1/2 M. I t  can be seen that  for those values of N and M such that 
(N q- 1/N) M is reasonably close to unity, the performance of the balanced system 
is very nearly as good as that  of the ideal system. In Figure 6, these systems are 
compared for various N and M. 

For N --~ oo and arbi t raw m p =  I/~p, we have, again, 

R2,~ = .__T2~ (28) 
2 a ~ n m *  " 

Now, 

and so 

, 1 2~ 
,,~ = ~ ~ i/,,,, (29) 

p=l 

T2M 
I~2M - -  2M" 

p=l  

7'2M/n is now formed by working up from smM1 values of M. Let 

- average time to pass one customer through the pth (p = 1, 2) 
n 2"-processor stage in a decomposed 2m+tproeessor system 

(rn = O, 1, . - . ,  M - l ) ,  
T( ..... ) T,9> ,,,(2) n 

7,(,,,~,,) r,,,9! q,<2)] 
"n - m i n i o n  ' ~ n  't " 

(30) 

I.O "°'/ 

.8 
I / ~ p  = I / ~  FOR ALL p 

N ; 2  ° 

R2M I0 
N=O~ 

.4 

.2 

o T I I t I l t l l l  , . 
I0 I00 I000 

P = 2 M = NUMBER OF PROCESSORS 

Fro. 6. Performance of balanced S.P.M. system (1/~ = 1/~) as a function of the number 
of processors P, with storage (N) as a parameter 
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F o r  s u c h  a 2~+Lprocessor system, the appropriate definition of . (~ _< 1 has been 
c h o s e n  with no loss of generality) is 

T ( m i a ) / %  q~ (ml n )  
v"/__L-- = *~"' (31) 

o" = T ( m a x ) / ,  ~ q , ( ~ 5 "  

~(~ginning with M = 1, we have from Equations (17), (28) arid (29), 
r ~ ( m a x )  

( f ' ~ F T ~ m  ~x) Vimln) 1 1 * l  

-.~ --i n - = ~ .  
T2 2 @ [q ' (min) / r[ ' (max)~  1~ 
7 -  \ 2 / k  n 1 + ~ - ~  i - 1  , 

B u t  for the pth  processor, T 1 / n  = rn~, = 1 / > p ,  and so 

- -  ~ n l a x  ) • 

F o r  M = 2, 

2 (I FrP"> I 
- -  n _11 M- ki~ / ' 2  J 

T(,,,ax) 2 

% 

[ (1 ,~_=) (1 , ) ]  
= m a x  , m a x  

I n  general, 
r r , ( m a x )  

T2,__2 ~ i 2,~- * 
n n 

= max max , 
1 

(1 
• , .  m a x  ~.~[ ) " ' "  ) 

) ~t2) n -  / ) i + l  

o r  

- -  ~__ i [ t a x  ) ;~  " "" ~2"~/ 
n 

E q u a t i o n s  (30) and (32), then, lead to 
"THEOaEM 4. F o r  N --~ ~ a n d  a r b i t r a r y  m r  = 1 /#p  , 

max ( 1 / ~ )  
( 3 3 )  R2M ~ -- 2 - - - -  

E p=i 

I r ~  Figure 7, this function is plotted versus P -- 2 ~x for various sets of {1/~p}. I t  
s h o u l d  be noted that for #p -- ~, we get R2~ = 1/2 ~, which is the limiting case of 
~ q u a t i o n  (27) as N -* 0% as of course it must be. It  can be seen that Theorem 4 
~ l s o  applies for arbitrary P (not necessarily of the form P = 2M). 

For the general case of arbitrary N and m~, it is necessary to use the more general 

f o r m  

1 1 -- N+I (34) 
R2 = I + a 1 -- a ~ 
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1.0 

N=cO 

.6 I I /Zp = 2 p 

R2M 

., 

X\\ 

0 I I I I I I I I i t  1 I . . . . .  ~ I I J I  
IO I 0 0  IOOO 

P = 2 M = NUMBER OF PROCESSORS 

FIG. 7. Performance of an inf in i te storage (N --~ co) S.P,N:[. system for var ious assign- 
m e n t s  o f  l.//~p 

Fro. 8. 

2 .0  - 

1.6 

b 1.2 

I 

.4 

0 

Effect of approximating equation (34) by R~ = 111 -t- o" 

N=I 

_ 

I I 1 1 1 1 1 1 1 1 
.~ 4 .6 .IB 1.0 

o" 

in place of Equat ion (17) (which was appropriate  for N --+ oo) in Theorem 4 or in 
place of (N  q- 1 ) / 2N  (which was appropriate for 1/gp = l / g )  in Theorem 3. When 
N and ~ are such that  ~ << 1, then Equat ion (34) approaches  the  expression in 
Equation (17) and then Theorem 4 applies. On the o t h e r  hand, J will not be much 
less than unity if ¢ itself is very close to unity (for r easonab ly  large N, say N > 20); 
in this case, R2 --+ (N -b 1 ) /2N and then Theorem 3 applies.  Thus,  almost all cases 
fall into one or the other of the two cases considered (as  long as N is not very small). 
In  Figure 8 the factor (1 -- J + ~ ) / ( 1  -- J )  is p lo t ted  f rom Equat ion (34). Note 
tha t  this factor goes to ( N  -J- 1 ) / N  as ~ --+ 1. 7 From F igu re  8 it can be seen that  the 

It is easy to show that (1 - ~N+z)/(1 - ~ ' )  <_ (N -b 1) /N for 0 _< ¢ _< 1, tlmreby provid- 
ing an excellent upper bound for this factor. 
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t~'0 cases considered earlier cover most of the interesting possibilities, since the 
c~rx'es tel~d to cluster around unity. 

Co~chtsion~ 
This paper i~as been concerned with the behavior of Sequential Processing 5/[achine 

( S.P.~{. ) systems. The men.sure of performance chosen is the ratio Re of the average 
time it takes to process n jobs (customers) through a series of P tandem processors 
~o the time it would take a single machine (whose processing time is the average of 
~he processing times for the P machines) to perform the same processing by itself. 

Two major results have been. presented. The first comes from the recognition 
that when P = 2 the S.P.M. system may be replaced by a cyclic queueing model 
and thereby obtain exact results for R2 with an arbitrary storage (of size N << n) 
b,c.tween the processors, with the restriction to exponentially distributed processing 
times. These results are given in Theorems 1 and 2 (and its corollary) and in Equa- 
tioI1 (17). 

The second major result comes from the approximation of the behavior of a 
P = 2 ',~ S.P.M. system by a P = 2 S.P.M. system, where each processor in this 
decomposed system consists of 2 '~-~ processors and has an average processing time 
equal to the solution obtained by approximating a P = 2 M-~ S.P.M. system by 
two P = 2 M-2 sections, and so forth. At each stage of the approximation, the exact 
results from the P = 2 case are used. The main results are given ia Theorems 3 and 
4. A major conclusion drawn is that  the best S.P.M. system is one in which each of 
ti~e processors has the same average processing t ime (as one would expect in- 
euitively). 
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