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Abstract

An approach to the design of communication
nets is presented in which message delay is the
performance index. An optimal channel capacity
assignment is solved for in a capacity-
constrained net, and its performance is dis-
cussed. The variation of message delay with
topological structure and routing procedure is
also investigated.

I. Introduction

The efficient design of a communication net is
an extremely complex problem. The number of
design parameters and operating modes is con-
siderable and the definition of efficiency is by no
means unique. Furthermore, the environment
in which the net must operate strongly influences
its construction. As a consequence, many dis-
cussions of communication network design tend
to be either shallow qualitative treatments of
rather general situations or detailed treatments
of highly specialized and simplified nets. In this
paper an attempt is made to give quantitative re-
sults for an interesting class of networks and
then to discuss the implications of these results
as certain of the other design parameters are
varied. The philosophy of communication net-
work design given here draws upon material
presented in the author's book [1]. Other ap-
proaches have been studied in depth and many of
these are summarized in the book by Ford and
Fulkerson [2] and also in the forthcoming book
by Frank and Frisch [3].

II. The Model

A communication net is made up of a collection
of communication centers (nodes) which are con-
nected together by a set of communication chan-
nels (ordered links). Messages (which are
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described by their origin, destination, origination
time, length, and priority class) flow through

the network in a store-and-forward fashion (as
opposed to direct-wire or telephone traffic), A
set of operating rules for handling the message
traffic must also be given in describing a com-
munication net.

The primary function of the network is to pro-
vide rapid and reliable communication between
many of its communication centers simultane-
ously. The design of such networks involves a
number of operational aspects of the stochastic
flow of message traffic: message routing pro-
cedures; priority queueing disciplines; channel
capacity assignments; and topological configur-
ations. Furthermore, the environment in which
the net must operate may be highly variable and
even hostile, In the following subsections we
describe these operational procedures and give
an indication of the form they should take in a
variety of environments.

2.1 Message Routing Procedures

A message routing procedure is a decision
rule which determines, according to some algo-
rithm (possibly random), the next node which a
message will visit. The specification of the
algorithm specifies the routing procedure. The
parameters involved in the algorithm may in-
clude such things as: origin and destination of
the message; priority of the message; availabil-
ity of certain channels; congestion (or annihi-
lation) of certain nodes.

We define a fixed routing procedure as one in
which a message's path through the net is
uniquely determined once its origin and destin-
ation are given. If more than one path is allowed,
then we consider this to be an alternate routing
procedure. An alternate routing procedure may
choose its alternate paths either deterministi-
cally or at random (from some appropriate dis-
tribution) from among the operating links based
upon the parameter values mentioned above; the
former may be referred to as deterministic
alternate routing and the latter as random alter-
nate routing (or more simply as random routing
procedures), See [1,4,5].




2.2 Priority Queueing Disciplines

In passing through the net, messages are
often required to form a queue while awaiting
transmission between nodes, and very often a
priority discipline describes the structure of the
queue. Priority queueing refers to those disci-
plines in which an entering message is assigned
a set of parameters (either at random or based
upon some property of the message) which
determine its relative position in the queue.
This position may vary as a function of time
owing to the appearance of higher priority mes-
sages in the queue. In attempting to meet the
user's demands in regard to a priority structure,
these demands, in their most useful form, must
stipulate the following:

1. The number of priority classes.

2. The relative performance each class
expects from the network (expressed in
terms of average delay time).

3. The average number of messages
arriving per second and the average
message length for each priority class.

In addition, it would be helpful (but not neces-
sary) if the cost as a function of message delay
for the variou—spriority classes were supplied

by the user; this information would allow a care-
ful determination of the necessary service given
each class (item 2 above), It should be empha-
sized that even partial information here is use-
ful; for example, if an extremely high relative
cost is associated with the highest priority class,
then some form of preemptive queue discipline
[6] is almost surely called for. If the distribu-
tion of message arrival times and message
lengths were available, this too would permit

the development of a more realistic model for
analysis.

With such a set of user demands, it is possible
to design priority queueing disciplines with
enough adjustable parameters so as to be able to
comply with these demands (see, for example

(7).

In many communication systems, each chan-
nel may naturally be broken into a number of
subchannels. The conditions under which this
may be desirable must be carefully considered;
‘such considerations include the cost (in terms of
delay) of preemption, the particular priority
class structure, etc. In a nonpriority case, it
can be shown that one should never subdivide a
channel if delay is the only criterion (see [1],
Theorem 4.2).
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2.3 Topology

The topological configuration of the communi-
cation net strongly affects its behavior as re-
gards reliability, message delay, routing, etc.
(see [1,4,5]). Itis clear that complete freedom
is not generally available in the design of the
topology for most nets. In fact, not only may
the topology be constrained, but also it may be
that the structure of the network will be changing
during the period of its operation. However,
proper advantage must be taken of the freedom
which does remain in the restructuring during
configuration changes so that "optimal" perform-
ance is achieved.

Once the topological constraints have been met,
there remains the crucial problem of selecting
the capacity of each channel in the net, (the
channel capacity assignment), We address our-
selves to this problem in the following section.

IIT. Optimal Channel Capacity Assignment

We first consider a situation in which there
are N separate single exponential channel facili-
ties. The ith node has a Poisson arrival rate Xy
messages per second, each message having an
exponentially distributed length of mean 1/u;
bits; the channel capacity associated with the
ith node is Cj. All nodes behave independently
of each other; however, they are mutually
coupled by the following linear constraint on
their capacities:

N
=7 e (1)
i=1

That is, there is distributed throughout the N
channels a total capacity of C bits/sec. The
system under consideration is shown in Figure 1.

For any assignment of the C; which satisfies
Equation (1), there is defined T Ty = E (total
time that a message spends in waiting for and
passing through channel i), One may ask about
that particular assignment of the Cy which satis-
fies Equation (1) and which also minimizes the
average (over the index i) of the set of numbers
Tj. Specifically, we define this average to be

T = — T, (2)
= R
where
N
A= YNy (3)
i=1

TE(x) denotes mathematical expectation of x.
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Note that the weighting factor A;/X for Tj has
been chosen in the obvious way to be proportional
to the number of messages which pass through
node i, The solution to this problem is stated

in:

Theorem 1

The assignment of the set C; which minimizes
T and which satisfies Equation (1) is

X \/Ai/ui
Ci = u—i + C(1-p N (4)
' Z'«/A./y.
; Sl e
J
provided that
N )\i
c> ) = (5)
i=1 M
where
A
and
N A,
i 9 = 2 (7)
B 5 By

With this optimum assignment, we find that

(8)

and
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N 2
<izl Ai /ui >

) (9)

This theorem is a special case of Theorem 2
which is proved below. We note that the opti-
mum assignment operates in the following way.
Each channel is first apportioned just enough
capacity to satisfy its average required flow of
Ai/uy bits/sec. After this apportionment, there

remains an excess capacity C - Ri/#i= C(1-p)
i=1

which is then distributed among the channels in

proportion to the square roots of their average

flows )\i/ui. Equation (5) expresses the obvious

condition that there be enough capacity initially

to satisfy the minimum requirements of the

average flow in each node.

We now consider the more general case of an
interconnected net with N channels subject to a
fixed routing procedure. We assume the inter-
arrival times and message lengths are independ-
ent random variables throughout the net (see the
Independence Assumption [1]). Furthermore,
the externally applied traffic is Poisson in nature.
Consequently, we find that the interarrival times
for message arrivals throughout the net are also
Poisson (see [8]). This being the case, we in-
tend to show that the optimumT channel capacity
assignment for the net, with fixed total capacity
C, is described by an equation similar to Equa-
tion (4). The interpretation of )y is, as before,
the average arrival rate of messages to the ith
channel; further, we take uy = u for all i. The
average message delay T now must be carefully
defined as

p
T= Y, E 2z (10)
j,k ’Y J
where v, = average number of messages
entering network, per second, with
origin j and destination k
Y= )

R

Z . = average message delay for messages

with origin j and destination k.

That is, T is appropriately defined as the overall
average message delay, where the weighting
factor for ij is taken to be proportional to the
number of messages which must suffer the delay
ij. For any pair jk, the quantity ij is
1-Op'cimum being interpreted as minimizing T,
the average message delay.



composed of the sum of the average delays en-
countered in passing through each channel on the
fixed route from node j to nodek. If we break
Zjk into such components, and if we also form T
by summing over the individual delays suffered
at each channel in the net (instead of summing
the delays for origin-destination pairs), we im-
mediately see that

Ay
T = ;—T T, (11)

where clearly Aj is the sum of all v;, for which
the (fixed) jk route includes channel’i. Thus we
note that T is defined in a consistent manner
[that is, A = v for the net in Figure 1, and so
Equations (2) and (11) are equivalent]. We may
now state our fundamental result:

Theorem 2

For a net as described above, with a fixed
routing procedure, the optimum channel capacity
assignment is

7Li _ v‘)\i
Ci = —“— + C(1-np) AT (12)
Y VX,
=1
With this optimum assignment,
N
Y VA
S
) e (13)
uC(1-np) v )ti
and the average message delay T is
(8 )
. T-= - (14)
u C(1-np)

where n =\ /vy is the average path length for mes-
sages, and p = v/uC.

Proof: From our assumptions of independence,
each queue may be treated separately. From the
well-known results from queueing theory (see, for
exaample, [9]) we have for the ith channel with
Poisson arrival rate A; and exponential service
rate uiC; that the delay T, is given by

= 1
i “ici—li

T

We now wish to minimize T in Equation (11) sub-
ject to the capacity constraint in Equation (1).
To this end we form the Lagrangian [10]

N

G=T +a< C.-C>
g i
i=1
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where o is some undetermined multiplier.
Forming 8G/8C; = 0 we get

A
=_i_.+__1_ _i (15)

. Hy Va vy Hy

Summing this last on i and using Equation (1) we
get

i 1

N
L
Vay i=INHy

Solving this for vay and substituting back into
Equation (15) we obtain Equation (12) (for u, = pu).
Using this value for C; in the expression for T
and T gives us Equations (13) and (14). We note
that this establishes Theorem 1 (wheren = 1),

N
), C;=C =
i=1

It remains to prove that the average path length

n =X/y. We observe that

Vs
n= ), 2= (16)
ks, O

where n, is the path length for the origin-
destinatiJon pair jk. Now, we recognize that 7\1
is the sum of all v, for which the jk route in-
cludes channel i. I]f we consider A (the sum of
the Ai), we observe that it is composed of the
sum of the numbers Vik each added in njk times.
Thus

A= ; X =j;k7jk B (17)

Thus, from Equations (16) and (17) we get

n=Aly

We note that p (= lc/i‘—) is the ratio of the

average number of bits/sec. entering the net
(from external sources) to the total bit-handling

N

capacity C =, C

i=1
network load. On the other hand, A is the aver-
age number of messages being transmitted per
sec. internal to the net. Since n = \A/y, we see
that n is thus the ratio of the average number of
messages being transmitted/sec. internally to
the average number /sec. entering the net.

i We thus refer to p as the

We observe that the assignment in Equation (12)
operates in the same way as in Equation (4).
This is discussed below.



IV, Message Delay and Network Design

The single most significant performance mea-
sure of a communication net (operating in a
relatively stable, peaceful environment) is the
average time, T, that a message spends in the
net. Indeed, the assignment given by Equation
(12) is that which minimizes T, and the value it
takes on is given by Equation (14). This equation
reveals the trade-off between two crucial prop-
erties of the net, namely, the average ‘pé.th
length, E, and the degree to which the traffic is
concentrated (see below), We consider that the
network designer is given values of u,C, and vy
(and therefore, also the network load p). He has
available, as design parameters, the routing
procedure, the channel capacity assignment, the
topology and the priority discipline. Equation
(14) assumes that the C; have been optimally
chosen according to Equation (12) and that a given
topology and fixed routing procedure are in
effect. However, since any fixed routing pro-
cedure and any topology applies, the designer
may choose these in a way which minimizes T.

The numerator sum in Equation (14) is a con-
vex function of 2A;/A and thus attains its mini-
mum value when )\i= A for some i = 10 and A4 = 0

N
for i # 1 subject to the condition '21 A= L
1‘.'
Since the Ay depend upon the input traffic (not a
design variable) and the topology and routing
procedure (clearly design variables), we should
attempt to concentrate the A, as much as possible
in order to minimize the numerator sum in Equa-
tion (14). Complete concentration is not possi-
ble since each node may be required to serve
as both an origin and destination for some mes-
sage traffic; subject to this, however, the net
which achieves a maximal concentration of traf-
fic is the star net, shown in Figure 2, We see

FIG2 THE STAR NET
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that this configuration groups all traffic leaving

a node into a single channel (and likewise for the
traffic entering a node) with the exception of the
central node. We note that n ~ 2 for the star net,

On the other hand, the denominator in Equation
(14) contains the term (1-np). Asp—~ 1/n we
see that this term dominates the behavior of T,
and so we must take care to minimize n in such
a circumstance. The net which minimizes n is
the fully connected net shown in Figure 3. For
this net, all paths are of length unity and so n= 1
(its minimum value).

FIG3 THE FULLY CONNECTED NET

It is clear that these two factors (i.e., the
numerator sum which reflects the degree of
traffic concentration, and the average path length
n) cannot be minimized independently. The
trade-off between these two is apparent: the
maximally concentrated traffic pattern (star net)
yields an @ x2; the (fully connected) net which
minimizes @ results in a maximally dispersed
traffic pattern. The choice as to which net to
use is determined by that factor which dominates
the behavior, and this is a function of p. Indeed,
an optimal sequence of network topologies can be
found [1] which varies from nets similar to the
star net (for p << 1) to the fully connected net
(as p >~ 1), The sequence is obtained by adding,
to the star net, some direct connections between
nodes, eventually obtaining the fully connected
net. The performance of such a sequence has
been obtained from a digital simulation [1] for a
particular 13-node net and the results are given
in Figure 4. We see that the minimum envelope
of the family of message delay curves gives the
performance of the sequence of optimal nets.

Having discussed the effect of topology and
channel capacity assignment on message delay,
we now direct our attention to the effect of
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OF A 13- NODE NET

alternate routing procedures. Equation (12)
assumes that the message traffic is stationary
in time and also that a fixed routing procedure is
used. It is clear-that the communications re-
quirement for many communication networks
may change during their period of operation
(especially if the environment is fluid and/or
hostile), Consequently, the network must be
capable of dynamically altering its character-
istics during such changes. In that case, one
cannot hope to maintain a fixed channel capacity
assignment such as that given in Equation (12)
and a fixed routing procedure. Indeed, if the
input traffic requirements are changing, then the
numbers Ay cannot be calculated and C; cannot

- be chosen according to Equation (12). In such a
circumstance, a judicious alternate routing pro-
cedure serves.a major role, Indeed, such a
routing procedure automatically matches the
traffic pattern to the network topology. Further-
more, it tends to distribute the traffic so that the
chénnel capacity assignment which happens to
exist at any time appears as one in which the
traffic and capacity are proportional (see [1]).
This resultant proportional channel capacity
assignment is clearly not the optimum (indeed,
that given by Equation (12) is the optimum), how-
ever, it is nearly optimum, and is therefore
desirable. Moreover, as the environment be-
comes more hostile and/or mobile, directory-
type routing procedures require more and more
of the communication capability to update the
rapidly changing directory (see (4,5, 11]); in
such cases, it is important to rely less upon
exact and complete directories and to depend
more upon local network information making use
of alternate routing. A degree of caution must
be exercised, however, since uncontrolled al-
ternate routing in a congested net can lead to
chaos, Indeed, the telephone company tends to
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limit (and even prohibit completely) alternate
routing on unusually busy days (Mother's Day, for
example).

V. Conclusions and Extensions

The emphasis here has been the minimization
Uf Lhc CLVC.['CISC KDCDDH.EC dclay ll.l. a n.;u.pu.b“-] -
constrained communication network. The ap-
proach taken was to concentrate upon the optimal
assignment of channel capacity to the various
links in a network with a given fixed routing pro-
cedure. From this assignment, it was possible
to expose the critical design trade-offs in the
network design, namely, the average path length
and the degree of concentration of the traffic.
From these observations, it was then possible to
derive an optimal sequence of topologles as a
function of the network load. Indeed, as shown
in [1], in a communications environment for
which the terminal traffic conditions are known
and time-invariant, the most efficient network
design incorporates a topology chosen from the
optimal sequence (dependent upon p), uses the
channel capacity assignment given by Equation
(12), and follows a fixed routing procedure. How-
ever, if the required traffic between nodes is
either unknown or time-varying, then some form
of alternate routing is essential. This statement
follows from the observation that alternate
routing procedures dynamically assign the traffic
in a way which matches the message flow to the

current network capabilities.

In the previous discussion, a fixed cost con-
straint (equal to the total channel capacity C) was
assumed, Other cost functions which depend
upon the channel capacity in a linear fashion have
also been handled [1]. Cost functions which are
nonlinear with the capacity suggest the use of
iterative solution methods (e.g., steepest de-
scent) for optimization. It is clear that many
other factors enter into the performance of a
communications net, for example, the network
vulnerability to attack or failure. Considerations
such as these require a new problem formulation;
however, it appears that the results reported
here give an indication of the general form and
operation of networks optimized for a variety of
gituations.
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