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Abstract

Time-shared processing systems (e.g.,
communication or computer systems) are studied
by considering priority disciplines operating in a
stochastic queueing environment. Results are
obtained for the average time spent in the system,
conditioned on the length of required service
(e.g., message length or number of computa-
tions). No charge is made for swap-time, and
the results hold only for Markov assumptions for
the arrival and service processes.

Two distinct feedback models with a single
quantum-controlled service are considered. The
first is a Round-Robin (RR) system in which the
service facility processes each customer for a
maximum of q seconds; if the customer's
service is completed during this quantum, he
leaves the system, otherwise he returns to the
end of the queue to await another quantum of
service. The second is a Feedback (FBy) system
with N queues in which a new arrival joins the
tail of the first queue. The server gives service
to a customer from the nt queue only if all
lower-numbered queues are empty., When taken
from the o? queue, a customer is given q
seconds of service; if this completes his proc-
essing requirement he leaves the system, other-
wise he joins the tail of the n+15t queue (n =
1L,2,.,.,N-1). The limiting case of N—=w ig
also treated. Both models are therefore quantum-
controlled, and involve feedback to the tail of
some queue, thus providing rapid service for
customers with short service-time requirements.
The interesting limiting case in which q-+0 (a
"processor-shared" model) is also examined,
Comparison 18 made with first-come-first-served
and also shortest-job-firgt discipline, Finally
the FB,, 8ystem is generalized to include
(priority) inputs at each of the queues in the
system,
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I. Introduction

The value of time-shared pProcessing Systerng
as a means of providing a processor to Mmany ugepg
concurrently is well established. Exampleg in-
clude the "simultaneous" use of communication
channels, and communication networks as we]] as
computers and computer networks. However, it
also is clear that the effectiveness of thege 8ys-
tems depends in large part on the efficiency with
which the resources of the processor are allocated
to the individual ugsers. Thus, considerable at-
tention has been focused on the time and Space
scheduling problems of time-sharing systems
giving rise to the description of sophisticated algo-
rithms and, in those cases where it is possible,
an analysis of more or less simplified queueing
models of these algorithms.

In this paper we are concerned with extend-
ing the analyses that have been made for the go-
called feedback queueing models of time-shared
processor operation. In these models the service
received by users (messages, programas, etc,)
is made to depend, either implicitly or explicitly,
on a user's gervice time (e, 8., transmisgion time
in a communication example or running time in a
computer example). However, it is assumed that
the service time is not known a priori, In the
following we shall discuss informally the queueing
models that are subsequently given a Precise
definition and analyzed under Markov assumptions
applied to the service and arrival mechanisms.
By Markov assumptions we mean that the inter-
arrival and service times will be assumed to be
exponential or geometric random variables de-
pending on whether we are analyzing the model of
interest in continuous or digecrete time, respec-
tively,

The term "feedback' ig a natural one when
one considers that in time-sharing disciplines,
users are allocated limited time intervals for
operation, and if the operation time required ex-
?eeds these limits the uger is interrupted and

fed back" to the end of the same or some other
queue to await its next interval of service. The
So-called round-robin algorithm represents what
is perhaps the simplest of the feedback (FB)
algorithms. With this procedure users are allo-
cated fixed time intervals (quanta) of operation
time; 1if the users terminate within this interval
they leave the gsystem and if not, they are placed
at the end of the waiting line to await their next
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quantum of gervice. It is not difficult to see that
users with shorter service requirements receive
better treatment in this type of system. (This
property will be quantified later.) Indeed, this
property characterizes time-sharing disciplines

as a whole and will be seen to apply to th
th
FB models we consider. = ©omer

The more complicated FB models that we
analyze involve multiple queues, each queue cor-
responding to a priority class of users based on
the service requirements of the users. The
discipline for selecting which queue to service
corresponds to that of conventional priority
queues; viz., users at the n'? level are not
served unless all of the n-1 lower level (higher
priority) queues are empty. However, in the FB
priority queues the operation time is again allo-
cated on a quantum basis; a user requiring more
than the time allocated at a given queue level is
moved up (following its quantum of service) to the
end of the next higher level (lower priority) queue.
Thus, in the multiple level FB system the priority
received by a user is made to depend in an ex-
plicit way on the amount of service he has already
received. Although the dependence of the time-
sharing service disciplines on service time is an
a posterior one, the general FB model to be
studied also includes an initial assignment of users
to queue levels based on a priority scheme using
a criterion other than service time (e.g., program
gize). In other words, we shall assume that a
new arrival may join any one of the multiple
queues according to some fixed probability
distribution.

Our principal interest is in the analysis of
these algorithms and a study of the results ob-
tained. The basic results will take the form of
expressions for expected waiting times conditioned
on the amount of service required and, in the
most general model, the a.rri;:all1 prior.i;zl(:‘::;r;re-

o the queue to which the arri
nggidni:ﬁ; assigged). We shall s.tudy these r:esl;lts
by considering their variation with changes n:l e
value of such parameters as q?.antum size an
loading factor. Of particular interest in }tlhm .
regard will be the so-called priocessor—s aset
models in which the quantum size is allowed lc;
approach zero. As we shall see, these ::1(; e Y
correspond to systems which divide up tui; :r-1 p
essing capacity among all the users req g

service stmultaneouslx.

1I. The Time-Sharing Models

A. The Round-Robin Model

in Figure 1 units arrive to th.e
syster: zrﬁﬁdinﬂnitgusou_rce. The stochastic .
input process will be described by an interaz:;‘hva
time distribution which we denote by A(t). :
units are assumed to take their place at the en :
of the queue {mmediately on arrival. 'I“he service
requirements of arriving units are subject to a
gtationary probability distribution B(T).
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B(T)

FIG. 1 THE ROUND-ROBIN MODEL

The service discipline is such that units are
taken from the queue first-come-first-served and
provided with a certain fixed amount of service
which we shall denote by q (for quantum). If the
unit being served completes within the time q
then it is simply ejected from the system. If on
the other hand, it requires more time to complete
then it is removed from the service facility
(processor) and put back to the end of the line. In
due course, after the other units in line ahead of
this unit have received their quantum of service,
the interrupted unit is again served, continuing
from the point at which the previous service was
interrupted; i.e., we have a "preemptive resume"
rule implying that service is not lost because of
interruption. The procedure as outlined is con-
tinued for all units in the queue, each unit making
as many of the 'loops'' shown in Figure 1 as
needed to complete its total service requirement.
We shall assume for all of the models described
in this paper that no "overhead" or "swap'' time is
associated with the process of unloading and load-
ing units from the processor. In this regpect our
results may be viewed as upper bounds on system
performance. (See References 4 and 11 for re-
gults applying to similar models for which non-
zero swap times and a finite source are assumed. )

For the distributions A(t) and B(7r) we
shall present results for the following two sets of
(Markov) assumptions.

1. The input process has a discrete time param-
eter t =nq (n an integer) where the quantum
gize q is the basic time interval and n is dis-
tributed according to the geometric distribution
(this describes the so-called Bernoulli arrival
process). Thus, we have

n

Alt) = Alng) = ), a(k) (1)
k=1

where
- ke - @
a(k) = (1-§) § k=1,2,3,...
0=§<1

The mean interarrival period is given by

o0
-
q kz=:1 k a(k) T-E seconds

from which the mean arrival rate is found to be
(1-£)/q per second. The above model was first
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analyzed by Kleinrock.? Secondly, the service
time is assumed to be a discrete random variable
With the same basic time unit of q seconds. In
Particular, we assume the geometric distribution

m
B(7) = B(mg) = }, b(k) 3)
k=1

with

b(k) = (1-¢) ¢*~! k=1,2,3,... (4)

0=<t<1

The mean servicing time is thus q/(1-%) seconds.
For the discrete model an assumption must be
made regarding the order in which events take
place at the end of a time interval. Consider two
types of systems: the first system allows the unit
in gervice to be ejected from the service facility
(and then allows it to join the end of the queue,

if more service is required for this unit), and
instantaneously thereafter a new unit arrives
(with probability 1-§). This is referred to as a
late arrival system. The second system reverses
the order in which these events are allowed to
occur, giving rise to the early arrival system,

In both systems, a new unit is taken into service
at the beginning of a time interval. We shall cite
results for both models in the next section.

2. The input process is the Poisson process so
that A(t) is given by the exponential distribution

1-e ™, t20

Alt) =

A>0 (5)
0; t<0

The mean arrival rate is easily calculated to be
A units per second, The service time T is as-
sumed to be exponentially distributed as follows

1-e*7;

; 720
B(T) =

u>0 (6)
0; <0

with a mean (service time) of 1/u seconds.
B. The Processor-Shared Models

Since we assume swap time to be zero we
may consider the case of a round-robin system in
which q—+0. For the continuous (Markov) model
described above there is no difficulty in taking the
limit of the results as q-0. (See Appendix A.)
However, in the discrete model we must be care-
ful in taking this limit since the service and
interarrival times also go to zero leaving us with
a vacuous system. Thus, we must agree to keep
the average service time and average arrival
rate constant while letting q—0. In both the
discrete and continuous Markov models the re-
sultant model is the so-called processor-shared
model (see Reference 3) of Figure 2 whose inter-
arrival and service times are exponential, As
shown by Figure 2, in the processor-shared
model all units in the system receive service
concurrently and experience no waiting time in
queue, However, the rate (e.g., operations/sec)

PROCESSOR
([ umt)
UNIT 2

A\ (AVERAGE ARRIVAL
RATE)

UNIT N

fL/n=AVERAGE SERVICE RATE FOR EACH UNIT

FIG. 2 PROCESSOR-SHARED MODEL WITH
n UNITS IN THE SYSTEM

at which the units sharing the processor receive
gervice is inversely proportional to the number of
units in the system, which of course varies as new
units arrive and old ones leave. Thus, consider-
ing a computer program as an f]::ample, Wwe see
that a program operates at 1/k'D the speed it would
run were it alone in the computer, if we assume
there are k-1 other programs in the machine at

the same time,

The priority processor-shared model3 is a
generalization of the processor-shared system
congidered above. With reference to the contin-
uous model we assume here that the input traffic
is broken up into P separate griority groups,
where the arrivals from the p't group constitute a
Poisson process with an average rate of units
per second, and have an exponentially distributed
service requirement whose mean is 1/u,, seconds,
For the q#0 case, we give a member of the pt
priority group gpa seconds of service each time
he cycles around the queue.

For q-0 this model then reduces to a
processor-shared model (see Figure 3) with a
priority structure whereby a member from group
P receives service at time t at a fractional rate
fp(ll'#p). where

g
- P
fp § 7N
g.n
=1 b |
and where 18 the number of members from

group i present in the system. The non-priority
processor-shared model considered earlier is the
special case gp = 1 for all p,

C. The Multiple Level FB Model

This model, which we shall denote by FBy
where N is the number of levels, is shown in
Figure 4. We shall make the assumptions of
exponential interarrival and service times (see
Equations (5) and (6)). As pointed out earlier a
unit at the service point at any given queue level
will not be serviced unless all lower level queues
are empty. Thus, immediately after a unit has
received service the next unit serviced will be the
one at the service point of the lowest level,
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non-empty queue. This unit will be given a
quantum (q) of service as in the round-robin
model; if more is needed then the unit is subse~
quently placed at the end of the next higher level
queue, otherwise it leaves the system.

If N < the question arisegchas to what
happens at the highest level (the NP level). We
ghall agsume that the Nth level queue is a
quantum-controlled, ﬁrst-come-ﬁrst-served

(FCFS) queue. Specifically, units at the N

d a quantum at a time until com-
o e e und-robin in the nth

letion (i.e., there is no ro |
gueue but an’arrival to a lower level during t1:1e
servicing of an nth level unit will preempt th.ls
leted the quantum-service in

unit after it has comp ;
progress). Note that, with thege assumptions,

FB; denotes the conventional FCFS system.

A —

FIG. 4 THE FB

It is easy to see that the FBy service
discipline shages that property of th.e RR shervice
discipline according to which the units wit!
ghorter service requirements enjoy shorter
waiting times at the expense of the waiting times
of units with the longer gervice requirements.

this property i{s even more pronounced

ver,
:jf::e FBy models, as we shall demonstrate

later on.
As po

which q 8°©

N the FBN

inted out earlier the limiting case in
es to zero is of interest. For finite
system reduces to a FCFS system.
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lTeTri:l::; :): seen by observing that the first N-1
amount e FBN system provide an infinitesimal
i unt of service when q becomes very small,
Sew‘ignﬂefmentlyhdo not significantly delay the
viewede at the Nth jevel, That is, arrivals can be
! as being immediately switched to the N
evel queue in the limit q=0. At the NI level the
units are served to completion in the order of
their' arrival, receiving an infinite number of
infinitesimal quanta, where in the limit we have a

FCFS system. This result is verified analytically
in the next section.

Of greater interest is the limiting case q=0
when we assume N=«, By arguments based on
very small q sizes it can be seen that the result-
ing system can be viewed as corresponding to a
system in which arrivals always preempt the unit,
if any, in service and are allowed service until
their service time exceeds that having been re-
ceived by some other unit in the queue. In short,
we have a preemptive-resume queueing discipline
in which the unit in service is preempted whenever
there exists another unit in the system whose time
in the service facility has been less. It is clear
that when there exists at least two units having
received the same amount of service time then the
processor begins switching between them infinitely
often. Thus, under these circumstances, we have
the processor-sharing case as described earlier
for the RR model. The two units together then
proceed to share the processor until their re-
ceived service time reaches that received by some
other unit, if any, in the queue. -At this time the
two units are joined by the third one and all three
share the processor. This sort of process con-
tinues until units complete (thus reducing the num-
ber sharing the processor), or until a new arrival
occurs, at which time it receives the whole proc-
essor and the procedure above begins once again.

D. The Multiple Level FB Model with Priorities

There exist many ways to increase the
number of degrees of freedom for manipulating
waiting times in the multiple level queueing model
defined above. In the FBy model we note two
degrees of freedom: the quantum size q and the
number of levels N. What is perhaps the most
obvious way to further control the distribution of
waiting times is to assign external priorities to
the arriving units.

Figure 5 illustrates this type of extension to
the FBy model for the special cage N=w«. In
particular, we assume an infinite number of levels
(queues) and an independent, Poisson input to each
level with average arrival rate Ap per second.
We shall define

o0

A= (8)

A
p=1 P
and require that A <, The gervice times for
arrivals at every queue or priority level are as-
sumed to be independent, exponential random
variables distributed according to Equation (6).
As in the FBy; model the lowest level, non-empty
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FIG. 5 THE PRIORITY FB_ MODEL
queue i{s chosen for service, and service is allo-
cated q seconds at a time with units requiring
more moving up level-by~-level as described

earlier.

Our description is completed by specifying
that the service discipline at each queue level is
highest-priority-first. By highest priority we
mean the lowest level queue of arrival to the sys-
tem. That is, in a given queue, the unit to be
served next must have entered the system origi-
nally at a queue level that is equal to or less than
the queue levels of arrival for the remainder of
the units in the given queue. Within a priority
group in a given queue the discipline will be FCFS.

»,9q

Further generalizations to the multiple level
model that may be considered are those of dif-
ferent quantum sizes for different levels and dif-
ferent mean service times for different priority-
level units. To extend the results to include these
generalizations is a simple matter conceptually,
but introduces more awkward symbology. Al-
though we shall not carry out a complete analysig
for these additional degrees of freedom, Refer-
ence 4 indicates the basic changes that would be
necessary.

Once again, it is of interest to investigate
the case when q goes to zero. For this, we
Proceed in the same manner Phipps7 employed to
extend Cobham'g?9 analysis of conventional
priority queues to a continuous number of priori-
ties. In our model, as q goes to zero we shall
pass from a countable number of priorities to a
continuous number of priorities, Following
Phipps we introduce A, as the arrival rate for
the continuous time-priority r such that,

00
A=S. A dr
T

The present degenerate model differs from
the preemptive Processor-shared mode] discussged
earlier in only one Trespect

7 have been given
When this gitua-

was described
-shared model. Of
n exists when the

for the pPreemptive procegsor
course, if the above conditio.
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then preemption of the
immediately.

priority 7 unit arrives.
Sharing Models

unit(s) in gervice occurs

1. Results for the Time-

he order of the descriptions in the last

tio:l:lt;eemean waiting times, conditioned on the
sec

ted below
required, are presen

a.mot}xlnt Fogsriz‘:li:li g‘he re’sults are presented in
for the ”

f the results pre-
orems. Some O
o t?ﬁrzft:}ll::n from the literature and areini
rs'z?erenced accordingly; proofs (;f the Xeanl:; Bng
theorems are supplied in Appendices .
iscrete RR (round-
+ we consider the d
bin)FniII:iél. Equations (2) and (4) describe the
% metric distributions to be assumed for the
ig;(:ararﬂval and service times. We have the fol-
lowing theorem.

Theorem 1 (Kilei.nrock)2

the mean waliting
In the late arrival system |
':fn)ne in systemT for a unit requiring kq seconds

of service is given by

2 k-1
k I-p 1% (1-8)% (1-p)
where,
a = §+(1'E)q' P l_gq

(b) In the early arrival system the mean waliting
time in system for a unit requiring k quanta of
service is given by

1

_(-8)pq® ||, (1-te)1-a*"
ol (1-97 (1-p)

We now consider the continuous RR model in
which the exponential distributions defined by
Equations (5) and (6) are assumed for the inter-
arrival and service times.

Theorem 21

Let the "qu
defined as follows,

w' =-—.l{j._

kK 1-p (11)

Pq

tum -service" distribution be

0;7<0
Fim =11-e™" ;05 7<4 (12)
l;72q

Then the mean wait
system of a unit re

ing time in the continuous RR
quiring t seconds of service is

M 2)E (2
YE (5) [1- ,3k"1]
1-B P
2
1 p Mg
+ | £ Pq k pe k-1
1= : [l-p (1/u) - ‘i_—B] ll-B ]+—1—_p—(1/.u)[1-ﬁ a
This will be the sum of the time spent in the
queue and the time spent in the service facility.

W(t) =1 +£k£+
1-p

l

3)

1
The proof appears in Appendix A.

'I,‘his is simply the distribution of the amount of
time taken by a unit to which q seconds of service
18 allocated.
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where

p=Alu (14)

B=p+(1-p) eHd (15)

k is the smallest integer such that kq>t, and
El(-rz) is the second moment of the quantum-
gervice distribution in Equation (12). Specifically,

o0
E1(72)=S TzdF1(7)=_lz' [1'(2#q+€-uq)€_“q1(lﬁ)
o u

For the limiting case q-+0 we have the
following result for the processor-shared model.

Theorem 3 (lCleinrock)3
1heorec’® =

The expected value of the total time spent in
the processor—shared system for a unit requiring
t seconds of service is

W(t) = 1—1:- (17)

P

where p is defined by Equation (14). Although
Kleinrock obtains Equation (17) by taking the

limit q—+0 for the discrete (either the late or
early arrival) system, we shall produce the same
result in Appendix A as a limit of the continuous
system (Equation (13)). As verified by Kleinrock,
the geometric interarrival and service times of
the discrete models in the limit q-+0 become
exponentially distributed if t£-—-1 appropriately.

In the conventional FCFS system (i.e., the
FBy system with g =) the waiting time in the
queue is independent of t and the waiting time in
gystem easily found to be (see Reference 6, for
example)

wey =e8Lm) Ly (18)
1-p
Comparing Equations (17) and (18) we note im-
mediately that units requiring more than the
average amount of service (1/p seconds) have
longer waiting times in the processor—shared
system than for the FCFS system, whereas the
opposite is true for units requiring less than the
average amount of service.

For the priority processor-shared system
in which there are P priority groups each re-
ceiving a fractional capacity of the machine de-
termined by Equation (7) we have the following
result:

Theorem 4 (Kleinrock)s

For the priority processor—shared system
the mean waiting time in system of a pth priority
unit requiring t seconds of gervice is

P gnr -
Wp(t)= t[1+ 121 E;l_'—P.;
where
= 20
pp hp/up (20)

293

v (21)
p= 2, Po
p=1
and gp> 0;p=1,2,3,...,P.

Turning now the FBy model let the inter-
arrival and service times be independently and
exponentially distributed as pefore. We have the
following result.

Theorem 5

A unit requiring t seconds of service in the
FBy system has an expected waiting time in sys-
tem of

()L."Z)[Ek('rz) +y E, (1 )

W(t)= - =
[1-p(1-¢ PEY) [1-p(1-€ L,
-u(k-1)q
5 p(l-e ) (k-l)q'*’t: 1<k=N-1 (223)
l-p(l-e-“(k_l)q)
(1/u)
wit) = £
(1-p)[1-p(1-e'“(N'1)q)l
-4(N-1)q
4, _Pli-€ ) (k-1)q+t; k=N (22b)
l-p(l-e-“(N-l)q)

where k is the smallest integer such that kq>t,
where we define Ei(r2) as the second moment of
the distribution

0; T<0
F,(r)= 1-e *7; <7 <kq (23)
1; T Zkq
with
E,(7) = (L/n) [1-¢ #Kdy (24)
Ek(72)=(1/.u)2[1-(2pkq+s"‘kq)e'“kq] (25)
and where
cHka ;
v = —— (26
k ,_*Ha

As indicated earlier, Schrage5 has provided
a general analysis of this model in the case N =9,
In particular, the Laplace transform of the waiting
time distribution is found under the assumptions of
arbitrary quantum sizes for each level. (See also
Reference 4 for the generalizations to the priority
FBos model,) The methods used in Appendix B
are similar to those used by Schrage with a
straightforward extension to take care of the
boundary condition arising because of a finite N.

For the limiting case in which q-0 that
was discussed earlier we have the following.

T

The proof appears in Appendix B.
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Coro!!gi 5.1
1
T-_p(“"'); N < (27)
Hm Wi(t)={
(AIZ)S x"dF(x)
0 t
+ i N =@
2 _ Mt
ll-dl‘t'"til 1-p(1-€¢ ") i
where,
0; x<0
F(x) = { 1- *%; 0=sx<t (29)
1; x2t

As explained in the last section Equation (27) cor-
responds to the FCFS system while Equation (28)
corresponds to a "preemptive ' processor-shared
system. The result of Equation (28) is easily
shown by observing that, from the definition of k,
holding t fixed implies

Um kq=t

q—~0
Thus, setting kq=t and noting also that (k-1)q—kq
as q—~0 and

2

Iim 4, E.(v") =0

q=0 k1
Equation (22) reduces to Equation (28).

Generalizing to different priority level inputs
we now present an expression for the conditional
waiting times of the priority FBew model.

Theorem gt

Let Ey(r) and Ek(-rz) be defined as in Equa-
tions (24) and (25) and let
= 0
pp Rp E l(T) (30)
denote the utilization factor for the pth level, If
we let W, (t) be the expected waiting time of a p
priority unit (i.e., one entering the system at the
pth level) requiring t seconds of service, and let
k be the highest numbered level (according to p
and t) to which the unit must ascend, then we have

w
w_(t) = £

- - -u(k-p)q
(1 ppk)[l ppk+ Py € ]

_, o #k-p)g
. Pox™Pp €

1ot Py

i (k-p)q (k-p)g+t (31)

where Ppk is the high priority utilization factor
(of an equivalent 2-level model) and is given by

i kil
AE (r)+ AE (1); k>p+1
e T k-r+l repHl rk-r
ppk= (32)
, lrEk_r_'_l('r); k=p or p+1
r=1
TThe proof appears in Appendix C.
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is the expected time to complete

and where Wo ce at arrival and is given by

the unit in servi

1 2
1 2.1 AE )
= E (t7)+ —r+1

ZAp ( 2 11:‘1:r

(33)

(72);

P
2., 1
A E ()35 A'E..+1
pk 1 2r=1rkr

k=p or p+l
with

k-1 _
S LT leais (34)

)

A
A .
pk I'=p+1 ]=k+1 j

i
A=Y xre'"(j'r’q (35)

] r=1
In the limiting case when q =0 that was
described in the last section we have the following

result.

Corollary 6.1

Let 7T be the continuous time-priority re-
placing the discrete priority index p when q-0,
and let A, denote the average arrival rate of
priority 7 units. Then the average waiting time
in system W, (t) of a unit entering at priority
level T and requiring t seconds of service is
given by

t+r
(2)
S; M B g 98 .
WT(t)= 2 i t+T
thr (1)
- (1) [1- A dg]
2[1 A o A dg] S:) § g
(36)
where
t+7-&
E,S_:__E = n x" e M¥ ax (37
(o]

IV. The Shortest-Job-First Model

The preceding FB models can be character-
ized by the fact that the type of service received
by a unit is made to depend on the total amount
required, but with the constraint that this amount
is not known a priori. It is desirable to investi-
gate the potential improvement in performance
that might exist if this information were available
for each unit at arrival time. For this, we shall
look at a shortest-job-first (SJF) system which is
described as follows. We assume a Poisson input
of units with average arrival rate of A per second.
It is assumed that the service time required by a
Wt is known at the time of arrival, and that it
1s an exponentially distributed random variable
with a mean of 1/u seconds. Now when the serv-
ice facility completes the service of a unit it
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inspects the queue and det

ghortest service time req:i?:;n::t th: T e
ceeds to service this unit to com léti : fhen o
there 18 no preemption by a new ar =
shorter service requirements, The :al g

cility commences immediately the ser?rimce fa-
unit that arrives when the facility ig id] b 7
has analyzed this model and derived th ei el
expression for the mean waiting time lrel gollowing
unit whose service requirement is t sﬁoﬁse ofe

o(1/u)

2
1-2/u [I'E-Ht(l-'l-yt)]

w(t) =

(38)

V. Examples and Discussion

The service disciplines discussed in the
previous sections offer a variety of techniques by
which the waiting times of different classes of
units (programs, messages, etc.) can be manipu-
lated or adjusted to meet a set of operational re-
quirements. Of course, for these disciplines to
have valqe it 1s assumed implicit in the operational
requirements of the system that the servicing of
certain classes of units is to be favored (in a
priority sense) over the servicing of others, based
on the service requirements of these classes. An
additional, external priority assignment, inde-
pendent of service times, was also assumed for
the generalized multiple level model and for the
priority processor-shared model. In this section
we shall display, for the FB disciplines of interest,
the comparative waiting time performances, how
one may manipulate the waiting times by adjusting
the basic structural of quantum size, and the ef-
fects on performance of variations in loading.

First, let us briefly review the basic nature
of the three service disciplines of interest in this
section: the RR, FB;, SJS, and FCFS disciplines.
It 18 clear that each of the RR, FBy, and SJF
disciplines have the common objective of favoring
units with short service times. The extent to
which this favoritism is shown in each case will
be the subject of the following examples. The
SJF discipline is distinguished from the FBy and
RR disciplines in that the SJF discipline assumes
a priori information on the service time required
by new arrivals. Thus, we have:

the SJF discipline discriminating on the basis
of a known "future'' service requirement,

the F B,y discipline diseriminating explicitly
on the basis of past gervice,

the RR discipline making an implicit disc
nation on the basis of past service,

d) and the FCFS system making no discrimination
at all based on gervice requirements.

For our first examples we consider the
variation of conditional waiting times for the RR
and FBy models with changes in loading. It is
more convenient for the FB models in which q#0

aiting time in queue. This 18 quite

to display the W
s?mpl?' ogtained from the expressions for waiting
time in the gystem by subtracting out the time t

in the service facility. Thus we shall display

a)

b)

c) rimi-

W, = W(t) - t; (k-1)q <t = kq (39)

k
where W(t) is given by Equation (13) and Equation
(22) for the RR and FBy systems, respectively.
Note that a broader class of service requirements
are now included in Equation (39). Specifically,
Wy now represents the waiting time in queue for
all units whoge service requirements are such
that (k-1)q <t = kq. Clearly, this is because all
ll.L'nits in 'this class make the same number of

passes' in the RR system or ascend the same
number of levels in the FBy system.

Figure 6 presents curves for various values
of k; i.e., the number of RR passes or the num-
ber of FBy levels a unit whose service time is
between (k-1)q and kq seconds must experience.
The curves come from Equation (39) into which
has been substituted Equations (13) and (22) for
the RR and FBN systems, respectively, with the
values py =1.0/second, q=0.5 seconds, and N =,
The loading p is varied by allowing A to vary
from 0 to 1.0. Also included is the curve for the
FCFS model whose waiting time in queue is ob-
tained from Equation (18) by subtracting t.

]
5 |- :_'?’
k=7 o
\ I
I
4 |—
\ k=3l /
/
N
3 /
] /
w
@ &f & /
x @ /
= < k=1
2 |- & e
V74 a
y = -
[ ==
0 — | ]
0 2 4 6 8 1.0

P
FIG. 6 COMPARISON OF =-LEVEL FB AND RR
CONDITIONAL WAITING TIMES

The curves clearly show how units with
shorter service requirements enjoy shorter aver-
age waits in both the RR and F By systems than in
the FCFS system. This effect will be demon-
strated further later on. Note also the compari-
son of the RR and F B, disciplines that is inherent
in Figure 6. The fact that the shorter service
time units in the FBy model do not have to wait
behind the longer ones in the higher queues ac-
counts for the better service they receive in the
FBe model. However, it is clear from the figure
that this improvement is at the expense of the
waiting times for the longer service time units.
Thus, the RR system gives better service to the
units with longer service requirements. Another
way to view this comparison is to observe that

Scanned by CamScanner



the 'variance' of the two sets of curves about
their cross-over point (k=4) is larger for the
FB,, model than for the RR model,

We now investigate the variation of condi-
tional waiting times (in queue) with quantum sizes
in the RR and FBy models. For this, we have
Figures 7 and 8 from which several interesting
observations can be made. The two figures refer
to the same two equations mentioned above with
the parameter values A=0,5/second, u=1.0/
second. (Figure 7 refers to the RR system and
Figure 8 refers to the FB,, system.) In both fig-
ures we have plotted curves corresponding to
units with service times of 0.5 and 2,0 seconds.

20 fem - o R
\\‘ t*20 SEC
s| /a ]
N
e 2 PASSES | PASS
=i
§ e
- s sEc = 7
5 kz - :pAss APPROACHES 10 _/
= - - L ASYMPTOTICALLY
1 1 1 | A
25 5 10 18 20

FIG. 7 RR CONDITIONAL WAITING TIMES
A=.5/gec. u =1,0/sec.

o

t*20 SEC

20 -

| LEVEL

2 LEVEL

W, (SEC)

|

APPROACHES 10 _/

ASYMPTOTICALLY
1 |

15 20
.25 5 10 q (SEC)

FIG, 8 INFINITE LEVEL FB WAITING TIMES
VS, QUANTUM SIZE
A=0,5/gec. u = 1.0/sec.

First of all, the jumps or discontinuities,
occurring at the same points in both figures, are
due to the decrease (looking from left to right) in
the number of passes made in the RR system, and
to a decrease in the number of levels required in
the FB,, model, Take, for example, the points
in Figures 7 and 8 corresponding to a unit re-
quring 2.0 seconds of service when the quantum
size is 2.0 + € where ¢ is very small. We sgee
that the unit makes only one pass in the RR sys=-
tem and waits only in the first level of the FBx
system. However, the above remark changes to

two passes and two levels when the quantum size
is made to be 2.0 - €. Since the waiting times
are substantially different for one and two passes
in the RR system and one and two levels in the
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discontinuity in the

e the
FBew 'y'ten;:,::et:az‘;ro- Of course, the above
limit as €

-multiples of 2.0 and 0.5
o all sub-mu

remarks 8pPLY ¥ %) © 50 ynich there is an
seconds; 1. 8., = 2,0 for the upper curves

t n
=L e s';“:.}:ldth: ant? nq = 0.5 for the low;;-
o Fiegsu re;s q goes to infinity the round-robin
curv .

Boo system to one level,
o :E:ep:: :iaethFeCFl;‘S syg;:em. Observe
e bothu;ets regardless of their service require-
i allh e t;‘le game mean wait if they require
e A waa in the RR system (or one level in the
:‘Lg or:;rsp:m); {.e., in the region where q>t in
(-]

Figures 7 and 8. R
1 way the
now discuss in an informa
reasonv:ewhy the upper envelopes in Figure 7 (for
the RR system) increase as q increases. First
consider the processor-shared casge; i.e., the
lmit as q goes to zero; we have subtracting t

from Equation (17)

.
Wq(t) i-p "
1
We want to compare this waiting time "in queue

with that of a FCFS system, viz.,

w_(t) = P—(llt/“—)
q P

ted earlier units requiring greater than
f:egzge service (t> 1/u) do worse by sharing the
processor than in the FCFS system, whereas for
units requiring less than average service the
opposite relationship exists. In the processor-
shared case new arrivals immediately gain access
to the processor gnd begin service, thus "slowing
down' units already in the system. Now in this
respect we observe two effects on the waiting time
for a finite, non-zero quantum size. First, a
glven unit does not have to wait for (or be "slowed
down' by) new arrivals on the given (tagged)
unit's last round-robin pass. This effect causes
the tagged unit's waiting time to decreage.
Second, the units in the system at arrival of the
tagged unit (which now become ahead of the tagged
unit in the round-robin cycling) are potentially
being allocated more service up to the tagged
unit's last pass., For shorter than average serv-
ice requirements (the 0.5 second example in
Figure 7) we see that, on the average, the units
ahead of the tagged unit will take greater advan-
tage of this additional time than for units larger
than average (the 2.0 second example). As can
be observed in the figure the net effect, when con-
sidered along with the fact that the last pass leads
to essentially zero service, produces an upward
slope of upper envelopes which is less pronounced
for the longer service time units.

Now consider the reason for the increasing
slopes (as q increases) of the envelopes in Fig-
ure 8 for the FBe system., For this, consider
the example of a 2.0 second unit that requires just
over one quantum in some model "A" and just over
two quanta in some model "B". That is, model A
has a quantum just less than 2.0 seconds and
model B has a quantum just less than 1.0 second.
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The 2.0 second unit must ascend t
model A and three in model B, N
reason why the mean wait is sho
than in model A, even though th,
has increased, is because the units ahead of the
2.0 second unit in model A are being allocated

two quanta of 2.0 seconds each (4 seconds total)
while in model B they are being allocated three ’
quanta of 1.0 second each (3 seconds total), Thys
the units (ahead of the 2,0 gecond unit) requiring !
greater than 3 seconds are holding up the 2.0
second unit more in model A than in model B. Ag
for the effects on new arrivals in models A and B
we note from the second term of Equation (22)

that since (k-1)q =t is constant on each point of
the upper envelopes the new arriyval Processing
time is the same in both Systems. Thus, the net
effect is an increase in Wk. Of course, the fact
that the average unit requires but 1.0 second of

service explains why the effect is not more marked
than it is.

WO levels in

oW the bagic
rter in mode] B

€ number of levels

Now consider for both Figures 7 and 8 the
downward slope of the lower envelopes, A little
reflection shows that the reason for the decrease
in the waiting times stems from the necessity of
pProcessing new arrivals during the service time
of the unit being considered. In other words, if a
unit requires n passes (levels) in a given system,
then the arrivals during the first (n-1) quanta of
its service must be processed. Taking the 2.0
second unit as an example we see that as n in-
creases and q decreases such that nq=2.0 sec-
onds (looking at the points on the lower envelope
of the t=2,0 second curve) we see that the prod-
uct (n-1)q increases. Thus, the increased ar-
rival period implies an increase in the mean num-
ber of arrivals, which implies an increase in the
minimum, mean waiting times as the number of
levels increases {(quantum decreases).

Finally, we look at the increase in waiting
times as the quantum size varies between the
discontinuities; 1i.e., as the quantum size varies
without a change in the number of passes (levels).
Although the curves in Figures 7 and 8 are drawn
Unear, the data showed a very slight downward
convexity (dip). When the quantum increases but
the priority (number of passes or levels neces-
sary) does not, then it is clear that more time is
being allotted to units ahead of the given unit
whereas this unit does not need the additional
time. Thus, its waiting time clearly increases.

In Figure 9 we have displayed the effect of
a finite number of levels in the FBy system.
Specifically, we have plotted versus quantum n;sizce
the waiting time of a unit requiring _2. 0 seco e
in a 4-level system (FBy) with 1/u=1.0 ae}.;co .
and p=0.5. Clearly, the 2.0 second unit eco;l}l]
a "background" (4th level) unit just as soon as the
quantum gize reduces below 2/3 seconds. To the
right of the line q=2/3 seconds Figure 9 1'; the
identical to the upper curve of Figure 8. g e
left of this line we observe the effect of gradua -y
putting all units into the backgrond as the quan
tum size decreases. The serrations are explained
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FIG. 9 4-LEVEL FB CONDITIONAL WAITING
TIMES VS, QUANTUM SIZE
p=0.5 u=1,0/gec

as before, and as we explained in Theorem 5 the
system becomes a conventional FCFS system in
the limit as q goes to zero. It is interesting to
observe from Figures 7-9 that there is an optimum
RR and FBy system for every unit with a given
service requirement. Clearly, the optimum system
is one with a quantum size just over the running
time of the given unit. A reduction in this opti-
mum causes an increase in the number of passes
or levels, and an increase in this optimum im-
plies giving more service to the units ahead of the
unit for which the quantum size is optimum.

We now look at a comparison of the mean
waiting times for the processor-shared system
(the RR system with q=0), the preemptive
processor-shared system (the FB system with
q=0), and the shortest-job-first (SJF) System,

In particular, the expressions for the waiting
times given in Equations (17), (28), and (38) will
be plotted versus loading and versus the service
time required. Recall that in the RR? (processor-
shared) system we may view the current units in
the system as sharing the processor. If there are
n units in the system, then each is serviced at the
same time but at (1/n)tP the speed they would if
they had the processor to themselves. In the FB°
(preemptive processor-shared) system this shar-
ing occurs only between units having the same
(highest) priority (i.e., the same amount of past
service).

We have plotted the waiting times for all
three disciplines versus loading (p) in Figure 10,
and versus the service requirement t in Figure 11.
The number in parentheses following the system
designations on the curves represent the corre-
sponding service times. Note in Figure 10 that
the RR° formula reduces to the FCFS formula
(p/1-p) for t=1.0 seconds. We observe in Figure
10 that the variance of the curves about the FCFS o
(or RRO, t=1,0 second) line is greater for the FB
system than for the RRC system. Of particular
interest in Figure 11 are the cross-over points for
small values of t which give those regions where
one discipline improves over another. Note that
Equation (17) is linear with respect to t and that
Equations (28) and (38) become linear for large t.
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FIG. 10 COMPARISON OF SERVICE DISCIPLINES
RR(q=0), FB(q=0, N =), SJF, FCFS
u=1.0/gec.
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o} e
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FIG. 11 THE FB(q=0), RR(q=0), SJF, and FCFS
WAITING TIMES VS, SERVICE TIMES

We comment here that all of the queuein,
models considered obey the Conservation Lawl2
which states that

P o0

z S‘ p_(t) W_(t) dt = constant (39)
p=l"o P P

where we have broken the input population into P

priority groups and where (t) dt is the fraction

of time that the full processor! spends servicing

iAltt:.:::'nat:l.\-rely, we may think of pp(t)dt as the
fraction of time that the partial processor spends
on such units, weighted by the portion of the full
processor which is giving service to such units,
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units from priority group p whose totg] se

time requirement lies between t and t+dt, p
tion (39) indicates, regardless of the queueing
discipline (under some very weak assumptiong)
that the superior treatment given certajn Unitg
must result in inferior treatment to Some othep
units. This effect is noticed in Figures 6, 10 and

11.

VI. Summag

In this paper, we have studied the behavigp
of the average waiting time (conditioned on re-
quired service time and on priority) in a number
of feedback queueing models of time-ghared 8ys-
tems. The purpose of this study was to analyze
certain specific models in order to better under-
stand the way in which they manipulated the varioug
customers' wait in system. All the modelg con-
sidered were quantum controlled, and the analysig
was carried out for arbitrary quantum sizes, An
especially interesting affect occurs when the quan-
tum approaches zero and these results were elab-
orated upon.,

The basic assumptions made were that the
arrival and service processes were Markovian
and that swap-time was zero. The effect of the
swap-time assumption is to yield results which
are ideal in the sense that the waiting times in-
crease in all systems for non-zero swap-time.

This study has been one of analysis — not one
of synthesis. Indeed, the general problem of
finding optimum algorithms for operating time-
shared systems has yet to be formulated, much
less solved. We feel, however, that the various
models studied here provide the system designer
with a number of degrees of freedom with which to
synthesize a satisfactory (albeit non-optimum, in
Some appropriately defined sense) time-shared
processing system.

Appendix A
Proof of Theorem 2

We consider a unit (which we call the
"tagged" unit) arriving at the RR system in equi-
librium and agsume a gervice requirement of t
Seconds. Defining k as the smallest integer such
that t < kq we address the problem of finding the
tagged unit's average waiting in queue. To find
the mean wait in system we simply add t to the
waiting time in queue.

Assume that on arrival of the tagged unit
there is one or no unit in service and n in the
queue. We decompose the waiting time in queue
into two parts, T; and T,. T; corresponds to
the time required to finish the unit, if any, in
service (taking into account the possibility of its
returning for more) plus the time required to
process (not necessarily to completion) all ar-
rivals during this time, Tg corresponds to the
time required to properly service the n units in
the queue at arrival. Of course, both T; and T3
must take into consideration the processing of all
arrivals that occur in Ty and Ty. Evidently, the
mean waiting time in queue is
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Wy = E(T;) +E(T,) (A.1)

The resequencing of events implicit in our
definitions will clearly not affect the determination
of Wy 80 long as all events are taken into account,
This often-used '"resequencing" approach is justi-
fled by the fact that the input process is time-
homogeneous and statistically independent of the
gtate of the system.

Now for E(Tz) we use expected value argu-
ments essentially the same as those used by
memrockz for the discrete system. Let y; denote
the time spent in queue on the 1th pagg by the
tagged unit. Since the tagged unit must make k
passes we may write

k k
E yi‘ = E E(yi)
i=1 i=1

Correspondingly, we define Nj as the mean num-
ber of units ahead of the tagged unit at the begin-
ning of the ith pass. We shall now develop a
general expreasion for Nj. For 1> 1, Ny will be
composed of the mean number of those units of
N;.; whose service requirements exceed q sec-
onds (we call these returning units), and the mean
number of new arrivals that occur during the time
interval yj-1 +q. (The q seconds is included be-
cause of the tagged unit's service following y;_;.

E(T2) =E

(A.2)

From the memoryless propertyl of the expo-
nential distribution we may observe that the
probability & with which a unit returns (requires
more than q seconds of service) is independent of
i and given by

(- -]
&= S‘ m ePTdr = eHa (A.3)
q
Thus, we have
(A.4)

N, =8N + 2 [Ely;_) +al

But
E(yi-l) =N, El(‘r)

so upon substitution into Equation (A.4) we obtain

= + (A.5)
Ni Ni-l [ +A.E1(-r)] Aq
For convenience we define
B =6+7LE1(T) (A.8)
so that
(A.T)

N, =BN;_; *M

Now solving this equation for N with the condi-
tion Nj = n = E(n) ylelds
i-2 j
N =Bi'lr'1+7uq Y, B 1>1 (A.8)
i §=0
Using induction Equation (A.8) is easily estab-
lished. From Equation (A.2) we may now write
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k
E(T,) = E,(r) 121 N, (A.9)

whereupon substitution of Equation (A. 8) into
Equation (A.9) yields, after carrying out the sum-
E, (1)

mations
gt [“«H (F-13) (1-3“)] (A.10)

where, by evaluating Equation (A.68), we have

E(T2)=

B=p+(1-p) e*9

Now in the RR and FBy models we have assumed
that no losses or "overhead" times exist in system
operation, and in both models no advantage is
taken of any a priori information concerning the
nature of the new arrivals, Thus, it is not diffi-
cult to see that the average number of units in the
queue for both the RR and FBy systems is pre-
cisely the same as for the exponential FCFS
(Erlang's) system. Thus, we may solve for n by
using the corresponding result for the FCFS sys-
tem which is given by

2
- (1/p)
1-p

Now using E;(7) = (1/u)[1-¢ *9] from Equation
(12) we may render Equation (A.10) as

(1/u) 21 /)
B(T,) =48 [xkq»f (PTp" %) (1-—.Bk)J (A.11)
Turning now to E(T1) let Wo be the mean
amount of time required to complete the quantum-
gervice in progress at the time of arrival. Then
E(T,) is equal to W, plus the expected time to
process the mean number of arrivals in Wo plus
the time it takes to process the unit in service if
it returns for more service. Here again, the
processing referred to includes the processing of
subsequent arrivals as for E(Tg). The mean num-
ber of arrivals in W, is given by AW,. If we call
o the probability that the unit in service at arrival
returns for more service we have

n =0+ AW, (A.12)
as the mean number of units (excluding n) to
service following Wo. The time to process the

n' units can be calculated as for E(Ts). We note,
however, that these units are all "behind" the
tagged unit and therefore will be provided with a
maximum of only (k-1) quanta of service before
the tagged unit receives its last quantum. Thus,
we can proceed as before and form the sum

N, E (r)}+[s N +AN E (1) E (1) +-+-

+[8N, _o* AN, oE (T ] E ()
from which it i easy to establish by induction and

by using N; =i
k-1

k-1 1B =

LN (A.13)
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Finally, therefore, we have

I‘Bk-l] A.14)
E(T,)=W_+[0+AW_] [’ﬁ_ E,(r) (A

Using El(-r)=(1/n)[1-e-#q] from Equation (12)
this may be put into the form

o(l/p)

w
o k-1, o(l/p) (A.15)
E(Tl)'T:B[l‘PB 1+ 1-

k-1

g B "1
It remains to derive expressions {;or W, and

o. To find W, we shall follow Cobham® and ob-
serve the following. Given that a quantum-service
of duration t is in progress at the time of the
tagged unit's arrival, then from the point of view
of the unit being served the expected time of ar-
rival is simply (t/2). We must now determine the
probability dC(t) of arriving when a quantum-
service of duration t is in progress. For this
Cobham writes

dC(t) = Aqt dF, (t) (A.16)
where F(t) is the quantum-service distribution
given by Equation (12) and X represents the
average arrival rate of quantum services. Now
Equation (A.16) is based on a Poisson arrival
mechanism of quantum-gervices; in our case unit
arrivals are Poisson which gives rige to Poisson
"bulk" arrivals of quantum-gervices, However,
Equation (A. 18) still applies since for our pur-
poses only the randomness or Poisson nature of
the arrival times is necessary for Equation {(A. 16)

Since a unit requires a kth pass (quantum-gervice)
with probability e #(k-1)q we gee that

[- -]
ao=n ) ewlella, A (A.17)
T k=1 1-e 4
Therefore, we obtain with Cobham
o0
W =§ w/2dow) =—M2_ 5 (2 (4 14
° (6] l-e-“q L

To determine o we find the probability that
the tagged unit arrives and finds a program being
served whose original service requirement was
greater than q seconds. Now suppose that the
tagged unit arrives when the service facility is
busy and that the elapsed time of the program in
service is 7; i.e., we know that t > 7 where t is
the original service requirement of the unit being
served at the time of arrival, From the memory-

less Property of the exponential distribution we
have

Pr{t>q|t>‘r}=€-‘u(q-7); 0=73q (A.19)

But

Prit>7}= M7

8o that given a unit in service at arrival

(A, 20)

Prit>q,t>r}=Prit> qft> TIPr{t>r}=e™9 (4, 1)

which is independent of . Thus, Pr{t>q}=¢#q,
Since the Probability that the service facility is
busy is given by p= Alp we have
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o=perd (A. 29

Inserting Equations (A.18) and (A. 22) into Equation
(A.15) we get

a/qul(,,Z, .
E(T,)= Li—lr‘“"’ﬁ b
pi:’;q[l_ﬁk'l] (1/w) (4. 23)
where
B=p+(1-p) P (A.24)

Substituting Equations (A. 23) and (A, 11) into Equa-
tion (A.1) now ylelds

2

(M2)E (77)
k 1

PXq __I__B_

k-1
wit)= T+ [1-p8" "] +

=H“q
k  pe -1
(1/p) -2 [1-81+ EE— (1 /u)1-g7Y
T 1-p (A. 25)

which constitutes the result of Theorem 2 when the
service time t is added. Ql])_

We may now produce the result for the
processor-shared model of Theorem 3 by taking
the limit of Equation (A. 25) as q goes to zero,
Since the waiting time is conditioned on the Service
required, we want to hold kq constant while al-
lowing q to go to zero in Equation (A. 25). Calling
kq=t let us first calculate

2
L2
l-p[l-p

k
lim 8% = Um [p+(1-p)6]%; & =M
q—+0 q—0
With rearrangement we have

k
k_ k ki k k-1
B7= ) (D) 6 [at1-a)"t = +kp(1-5) 6

igo i ] p(1-5) +

k(k-1) 2 2

—5—p (1-5) §52

Now kq=t implies §¥= ¢ Ht

and approximating
(1-€7#9) by uq for o< q<<1

we have

lm Bk= e-ut

2
o [1+put+(Lg.l*)_+. . J = ¢ Ht(1-p)

With the same approximation it ig easy to
establish

2
El('r )
1-5

Um
q-0

1o ~ P =0

Aq
1-5 q-+0
so that on substitution of the above limits into
Equation (A. 25) we get

=1 _cHt(l-p)
%W(t) lmp{pt-(p/u)[l € 1+

ot

—_—

1-p
3 after adding the

(plw)[1-e#HL-0) 1

which establighes Theorem
service requirement (t).
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Appendix B
__,—-——‘—'—-_—_'—'

For the proof of Theorem 5 we gha] again
resequence the events that must occur during the
waiting time of an arriving unit g0 as to simplify
the arguments necessary in determining thig wait-

time. We consgider a unit (the tagged unit) ar-
riving at the FBy system in equilibrium, asgume
that its service requirement ig t Seconds, and de-
fine k as the smallest integer such that kq> t,
We break up the waiting time in queue into two
parts so that we may write

Wk = E(Tl) + E(TZ) (B.1)

where T; is the time to complete the unit in
service plus the time required to process the units
which were in the first k queues at the time of ar-
rival, and Tg 18 the time to process all new ar-
rivals that occur during the tagged unit's waiting
time.

We shall approach the problem of deter-
mining Wy for k < N by looking at a special two-
level model which is equivalent in the sense of the
waiting time we seek. Figure B.1 shows this
equivalent two-level model. Note from the figure
that arrivals requiring j quanta of service are
(artificially) separated into j corresponding parts.
The first k parts (or j parts if k> j) are com-
bined into a single arrival unit to the high priority
(lower level) queue. The remaining parts, if any,
each constitute a unit arrival to the low priority
queue. In this special model "feedback" is no
longer explicit. Indeed, the quantum-at-a-time
Processing is no longer carried out by the server,
but is implicit in the arrival processing mecha-
nism instead. However, for the waiting times
of high priority arrivals (requiring kq seconds
or less) for which feedback does not exist anyway,
it is clear that this artificial arrival mechanism
has not changed anything. As can be observed,
arrivals to the high priority queue are Poisson
while arrivals to the low priority queue are
Poisson in '"bulk".

NEW LOW PRIORITY QUEUE
ARRIVAL (SERVICE s q SECS)

—{[-TTTTT1]
ﬂ
gLt — |

ARRIVAL HIGH PRIORITY QUEUE

2
RATE OF 1 (SERVICE $ kg SECS)
UNITS) L'

>
*
~

|

>
*
BOBLMOOD P

|

FIG. B.1 EQUIVALENT TWO-LEVEL MODEL
WITHOUT FEEDBACK

From the above remarks we now make the
simplifying observation that the time (Ty) to
process the first k queues in the FBy model
(N>k) and the unit in service at arrival is the
same as the waiting time in the high priority queue
of the special two-level model in Figure B.1, In
both cages the tagged unit must wait through the
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€maing, therefore, to determine the
special two-level
may identify our
single-cl:va;;?;e; model with t-he corjz"espond{ng
ority mod of‘C ltiadfoit:g-i:he--h.ne (two-level) pri-
o obham.” The only difference we
€iween these two two-level models is that in

iz_l bulk. But for the ave:
high Priority queue it is
the arrival process to the low priority queue is
Poisson, Indeed, it can be shown that the high
priority waiting time distribution depends on the
low priority arrival brocess only through its aver-
age rate (see Reference 10, for example). Thus,

using Cobham's result for the high priority aver-
age waiting time we have

Trage waiting time in the

Wo

E(T,) = e (B. 2)
1

where p. is the utilization factor for the high pri-
ority queue and W, is the average amount of time
required to finigh the unit being served at the time
of arrival. In our case

py=1-AE, (r) = 1-p(1-¢ *59) (B.3)

where Ey(7) 18 given by Equation (24), and

A 00 A, 00
k(72 Yl
Wo— 3 X T dFk('r)+ 25; T dFl(‘r) (B.4)

where A, Ay and Fy(r), Fi(7) represent, re-
spectively, the average arrival rates and service
time distributions for the high priority and low
priority queues. The distributions are defined by
Equation (23). Now since an arrival requires
service at the low priority queue only if it re-
quires in excess of kq seconds of service we have

) kq
ke-“
A=r, A=A Y HlRAe L., (B.5)
1 A‘k 7k l_e-uq k
Thus,

A/2)[E %)+ 9 B, ()]

E(Tl) = (B.6)

1- p(l-e-"kq)

To calculate E(Tjp) we now return to the
original FBy model. We observe that the average
number of arrivals in Wiy must be based on Wy +
(k-1)q since the tagged unit received. (k-1)q tl'?ec:—
onds of service before reaching the kth (< Nth)
queue. Clearly, each of the new arrivals must be
allocated (k-1) quanta of service of which Ey_;(1)
is the average amount taken. Thus,

E(T,) = yW +(k-1)q] E, _,(7) (B.7)

Finally, therefore,
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2
(A_/z)IEk(-r 2)+1kE1(1' )] '
ka,
(B.8)

Wy =AW+ (k-1)q] E ,TH 1-p(1-¢ ¥

1sksSN-1
Solving for Wy and substituting for Eg.-1(7) we
get

2
W2E 47 By

w =
X [l-p(l-e-“kq)lll'.ﬂ(l'i

(k-1)q ; 15kSN-1 (B.9)

Adding t to Equation (B.9) now produces Equation

(22a) of Theorem 5.

Finally, for k> N-1 we may simplify mat-
ters by observing that all units in the system at
the time of arrival must be served to completion
before the tagged unit comes to the service point
for the NP time. Thus for E(T;) we may use the
result for the waiting time in queue for the FCFS
system. In particular, from Equation (18) we
have (subtracting the time t in the server)

E(T,) = 2L/8) (B.10)
1 1-p
Now the period during which we must allow for new

arrivals is again W_+(k-1)g. Because of the na-
ture of the N*! queue each of these new arrivals

will be allocated (N-1)q seconds of service. Thus_

E(Tz) = ).[Wk-l- (k-1)q] EN_I(T) (B.11)
Adding Equations (B. 10) and (B. 11) and solving
for W, now ylelds

k
p(1/u) L
-u(N-l)q]

W =
Kk (1-py1-p(1-e

p(l_e'"(N"l)q)

T ity B ? = B.12
s, e k2N B3

Adding t to Equation (B.12) now establishes Equa-
tion (22b) of Theorem 5 and completes the proof of
Theorem 5, Q.E.D,

Appendix C
Proof of Theorem 6

To find conditional waiting times for the
priority FB_ model we shall employ a method that
is basically similar to that used in the proof of
Theorem 5. We consider the mean waiting time
in queue Wﬁ‘ of a unit entering the system at the
?ﬂl‘l;;rel and requiring service up to the kth level
P = k).

First, we shall indicate which units, in the
system at arrival, must 1{yraz-cede the tagged unit's
quantum-gservice at the k' level and how much
service they are entitled to. For the present we
shall assume k>p+1, From the description of
the priority FB,, service discipline we see that all
units at the jths pth level queues will be allocattid
service, as required, up to and including the k
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¢ the §tB (p<J=k-1) 1
and all units & Vel wi)y
1ﬂreiiocxa.f:et:l service up to and including the (kc-1)8t
= al Now the processing of new arrivalg gy
level. New arrivals at the jths

k will be as follows.
(vgl-’nst level will be given service up to and {nelug.

1s at levels
kth level and new arriva p
:nhgot::h (k-1) will be given service up to and inclug.

ing the (k-1)8t queue.

As in the proof of Theorem 5 we now cop.
gtruct a modified, two-level model which ig equiva-
lent to the original one in terms of the waiting ﬁm%
of a pth priority unit requiring service up to the it
level. The high priority queue of the two-leve]
model will consist of priority r units, where
1=rs<p, being allocated k-r+1 quanta of service,
and units of priorities (p +1) through (k-1) being
allocated (k-r) quanta of service. The low prio rity
queue of the two-level model will consist of all
priority r units, with 1=r=<p, that required in
excess of (k-r+1) quanta of service, all priority r
units, with p+1=rSk-1, that required in excess of
(k-r) quanta of service, and all units which arrive
at level k or above. Now the probability that a
unit requires greater than kq seconds of service is

simply e#kd, Thus, the total arrival rate of units
to the jth> kth level queue is given by,
]
A = Z A e-y(j-r)q (C.1)
i r
r=1

@0

We see that Z A, represents the contribution,

=k+1
based on e.rzglvals initially to all levels, to the low
priority queue from all levels beyond the kth, How-
ever, for the total low priority arrival rate we
must also take into account those units of priority
r (p<r<k) that require greater than (k-r) quanta of
service; these units will be behind the tagged unit
when the latter receives its last quantum of service
in the kP queue. This contribution (at the kth
level) to the low priority queue of the modified
model is given by

. 5 u(k-r)q
Ay L A (c.2)
r=p+l

We shall define Ajy= 0 for k=p or p+l, Finally,
therefore,
-]
A = A + A (c.3)
Pk TPk g

Recall that we need to consider only one low pri-
ority queue because all units arriving to the low
priority queue receive but one quantum of service
at a time. Clearly, the total arrival rate Ag to
the high priority queue will be simply,

k-1
Ag=) 2 (C.4)

r=]
In comparing Equations (C.3) and (C.4) note par-
ticularly that arrivals to the high priority queue
are units taking up to and including k or (k-1)
quanta, but that arrivals to the low priority queue
are units (irrespective of their original level of

]

Scanned by CamScanner



entrance) that take up to ang

geconds of service (see Figuinﬂ“dinx only q

re B.1),

We are now in poasitio
us first assume that k> p+;1.toN‘:>:vlc:;ate Wy
as in the proof of Theorem 5, the hy hnside *
queue of the modified (two-level) mo%elp ity
higher priority in a two-leve] convention?l i
model, we may again apply Cobham!g pu Bty
Accordingly, we divide the waiting tim:n%; o
two intervals T; and Tg. Ty is the time -
ess the high priority units in the System at thproc-
time of arrival and Tg is the time Trequired te
service the new arrivals occurring in w. +(1::p)q

Now for the expected value of T ham
result as given below, 1 We use Cob .

Let

Wo
E(T,) =
1 i- . (o
Pox (C.5)
where W, is the expected tim
o e to complete
unit in service at arrival and k is thpe uti]:}zl:..
tion factor for the high priority queue. To find
ka we first write the mean service time E k(1)
of a unit in the high Priority queue of the twg-level
model. From earlier definitions we have

P k-1
E M= | Y AE _m+ ¥ AE (1)
k - T
P AH yuy k-r+1 rap+l T k-r
(C.8)
From the above it is clear that
P
Pox™ B Bpi(T) = L A By rn ™
k-1
AE, (1) k>p+1 (c.m)

r=p+l
Since it is clear that the second term must be
omitted for k=p or p+1 we have established
Equation (32). For W, we take one-half the
weighted sum of the second moments of the high
and low priority service time distributions accord-
ing to the two-level model. Thus,

1 P 2
= +
Wo "2 Z lrEk-r+1(T )
r=1
k=1 2
2 8)
E (77) (C.
E ArEk-r(T )+Apk 1 ]
r=p+l
Here again, the second term must be omitted for

in conjunction with Equation

jon (33). Thus,
(C.3) we have established Equat

Equation (C.5) is determined. Now for ﬁ‘.l:Tz)r :;e-
reason as before to obtain, according to the p:

ent model

k=p or p+1, so that

p-1
E(TZ) = [W:-t-(k-p)q} [r§1 ArEk-r-i-l(T) +

k-1
Z ArEk-r(T)jI (C.9)
r=p

303

Substitutin
relation € Equations (C, 5) and (C.9) into the
k
W =
P E(Tl) +E(T2) (C.10)
we get
k w
W =
= 0

Pl k-1
(1-p_ )1- by
Pk r§1 +Eiep +1(-r)-r§p LE, ()
p-1 Y

k-1
Y A E
r=1 T k-r+1(7)+r§pArEk-r(ﬂ

+1-E

P:l k-1 (k-p)q

AE - .
et ® k-r+1¢7) r;p"rEk_r(f)

from which Equation (31) follows when we observe

p=1

R

r=]l

k-1
E__ 0+ )Y AE (1)2p . -5 ¢Hk-Pla

where

9.

10,

P =2 E_(r
P P 1( )
.E.D.
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