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normalized queuing delay due to buffering is equal to 1.25
character-service times. Since each service time equals 1/u
= 1/240= 4.16 ms, the waiting time of each character is 5.06
ms. Now suppose the number of terminals increases from 48
to 96, so that the traffic intensity is less than unity, two trans-
mission lines are needed, and the traffic intensity is still equal
to 0.6. From Fig. 2, the buffer length corresponding to the
desired overflow probability for two transmission lines is
about 14 characters. The waiting time is about 0.8 character-
service times which is equal to 3.33 ms. Although the differ-
ence between 5.06 and 3.33 ms may not be detected by a
user at a terminal, a common buffer of the same size operat-
ing with two output lines can handle twice the number of
input lines as with one output line. Thus, the common buffer
approach permits handling a wide range of traffic without
substantial variation in buffer size.
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Swap-Time Considerations in Time-Shared Systems

LEONARD KLEINROCK, MEMBER, IEEE

Abstract-Solved for is the expected swap time expended for
those customers in the system of queues in general models of time-
shared systems. This quantity is expressed in terms of the expected
queueing time conditioned on required service time and is applied to
a number of examples of interest.

Index Terms-Modeling and analysis, processor-sharing, queue-
ing analysis, scheduling, swap time, time-shared.

INTRODUCTION'
NT UMEROUS authors have addressed themselves

to the problem of solving for the average re-
sponse time T in time-shared computer systems

[1]-[11] and an excellent summary of such investiga-
tions is available [9]. Many of these studies condition T
on the required service time (i.e., the required processing
time) t which we denote by T(t). Some go further and
introduce an external priority system, solving for Tp(t)
which is the average response.time for a customer from
priority group p who requires t seconds of processing
time [4 ].

Recently a new quantity, the distribution of attained
service time NP(T) was calculated [6] for any priority
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feedback queueing system which satisfies Little's result
(which states that the average number to be found in
the system is equal to the average arrival rate of cus-
tomers times the average time spent in that system).
N,(r) is defined as the expectation of the number of
customers in the system of queues from priority group p
who have so far received exactly r seconds of useful
processing. A customer is said to be in the system of
queues whenever he is waiting for his next quantum of
service time during his request for t seconds of total
service. We assume that on his nth visit to service, a
customer from priority group p will receive the atten-
tion of the processinig a-nit for g,n(Q seconds.

RESULTS

In this paper, we are interested in swap-time con-
siderations. (Swap time is the time spent in removing
the old customer from and bringing the new customer
into service, as well as any other cost in time directly
related to this operation.) Our main result is that a
measure of this quantity is simply expressed in terms of
N,(r) as follows. We direct our attention to the cus-
tomers in the system of queues and we inquire as to the
expected time S, which has been expended in swapping
for this set of customers. The answer comes directly
from N,(,r). First we note that all customers from group
p who have visited the service facility exactly n times
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must so far have received useful processing in an amount
equal to

n

n =2 (gpiQ - O,) seconds
i=l

(1)

where Opn=(wasted) swap time used for a customer
from group p on his nth visit to service.2 Thus only rn
will appear as a meaningful argument for N,(T). Clearly,
then, the expected swap time expended for all customers
from group p who are in the system of queues must be

00

Sp = E 7YpnNpA(r,n)
n=l

(2)

where
n

'Ypn = E OJp
i=l

But from Theorem 1 of [6] we have that

Np(rn) = Xp[1 - Bp(r7n)][Wp(r0+l) - Wp(r7n)]

where

Wp= average arrival rate of customers from gr
PI

Bp(t) =P(required processing time for custom
from pth priority group < t), and

Wp(t) =expected wait in queues for customers fr
group p who require a total of t seconds
processing.

Finally, to solve for S (the expected swap time expen(
on all customers in the systemn of queues) we have
following.

Theorem 1: For time-shared systems (Q> 0)

P P oo

S Sp = E yzpnXp[i -Bp(7n)
p=l p=l p=l

*[Wp('n+l) Wp(rn)]
where
P = total number of priority groups.

(3)

where

bP(Trn+l) = Bp(T.+1)-Bp(rn)
=P [customer from group p has required
service time t such that Tn < t .< n+l I

=P [customer from group p requires exactly
n+1 visits to the service facility].

Proof: We have Ypn = nOp. Substituting this in
(5) and using 1-Bp(rn) = [1-Bp(rn+l)] + [Bp(rn+1)
-Bp(rn)] we get (6).

Corollary 2: For 9pn =Op and P = 1 (i.e., no priorities
and so we drop the subscript p) we have
SO

S =XOt E nb(rn+l)W(Tn+l)
n=l

00

- XOE [ 1- B (Tr) ]W (r)).
n=l

(7)

Proof here is immediate from Corollary 1.
We now consider Theorem 1 plus its corollaries for

the processor-shared systems [4]. These systems are
time-shared systems in which the quantum size Q is
allowed to shrink to zero. In this limit for Q-+O, we
must obviously contain the swap time 6,fl in a meaning-
ful way such that g,nQ>O,G. This we do in the (theo-
retically) natural way, namely, defining

ffipn -= P

(8)gpnQ
where we require O.<¢p.<1. Thus 4pn is that fraction
of the nth quantum given to a customer from group p
which is wasted due to swap time. In the limit as Q -0,
we must then define

cp (T) = limmp,
Q-o

(9)

where for a given p and r, we consider an n = n(Q) in-
creasing as Q decreases such that

(5)n(Q) n(Q)
(5) r = lim E (gp,Q - opi) = lim E gpiQ(l-pi).Q-0o i= Q-o i=i

(10)

As discussed in [4], this Q->O limit has useful character-
istics in our analysis of time-shared systems. Developing
the analogous equations here, we have

Observe that S is expressed in terms of known quanti-
ties (7y AX, Bp(T70)) and a function Wp(,r7) which is
the average conditional waiting time; this last measure
is the usual one solved for in the analysis of time-shared
systems.

Corollary 1: For , = f9, independent of n,

P 00

S = XPP E nbp(rn+l)Wp(rn+l)
p=l n=l (6)

- E [1- Bp(n)]Wp(n)
n=1

2 We assume the obvious condition that g,nQ> ,, for all n.

S,Sp = J yp(r)N,(r)dr
IL

where

}yp(T) = Ofp(t)dt.

(11)

(12)

Note that 'yp(r) is the time wasted in providing T
seconds of useful service to a customer from group p.
But, from Theorem 2 of [6], we have that

NP(r) = Xp [1 - BP(Tr)] dr
dT

(13)

where XI, B,(t), and Wp(t) are as defined above and
NP(T) is now an expected density function.
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We thus have S for this case as follows.
Theorem 2: For processor-shared systems (Q-+0)

the discrete round robin infinite-input population sys-
tem [5] where

P P , 00

s = ESP = EJp (T) P[I
p=l p=l O

(14)

This last may be interpreted as a Stieltjes integral in
the case that WP(r) is discontinuous.

Corollary 1: For kp(T) =0, independent of r, we have

KS=Apfp 0dr[1 - B (T) dWp(T) )d
P=l odT

(15)

Proof here is immediate since y,(r) =-r by (12).
Corollary 2: For 4,(r) = p,=k (i.e., no dependence on

r and P= 1 giving no priorities thus allowing us to drop
all subscripts) we have

(16)S = 0 r[1 - B(r)] d(r) dr.

(Observe that (11) through (16) for the processor-
sharing case are analogous to (2) through (7) for the
time-sharing case.) It is important to note in this last
(simplest) case that ratio of S to F (the average attained
service) is given simply as follows: T is defined by

rX
J TX(Tr)dr

7. = (17)
N(r)dr

where the denominator is merely N =expected number
of customers in the system of queues. Since, from (11)
and for P = 1, we have

S = OrN(,r)dr,

b(r+l) = (1 -o)onn n = 0, 1, 2, * * -; 0 < a < 1 (19)
P[1 arrival in interval of length Q] = XQ;

0 < XQ < 1

P[O arrival in interval of length Q] = - XQ

gpn = 1; P = 1

where P[x] is read "probability of x." This system has
an exact solution for W(7-n), (for 0 = 0), and also a simple
approximation to W(rn) given below (see [5]):

pnQaW(rn) = W(nQ) Q

I-p
(20)

where
p = XQ/(1 -O) (21)

When we consider 6>0, a number of considerations
enter. The major question is now to keep the discrete
model intact since, for example, if 0= Q/3, then a
customer requiring Q seconds of useful processing (one
quantum for 0= 0) now requires a noninteger number of
quanta. No satisfactory way appears to resolve this,
and so we will take two approaches. We begin with a
continuous distribution of service time, namely the
exponential, where P [service time < t] = 1-e-i. We
then recognize that all customers with n(Q-0) <t
.<(n+1)(Q-0) will need exactly (n+1) visits to the
service facility (we make the simplifying, but serious
assumption that unused portions of quanta are lost)
and the probability that a new arrival satisfies such a
condition is

we then obtain

S
_ = OgN (18)

which clearly represents the ratio of average (wasted)
swap time to average (useful) attained service time for
the set of customers still in the system of queues. The
simplicity and intuitive appeal of this last equation
further supports the utility of using processor-shared
models.

EXAMPLES

In order to apply the results obtained above, we must
find in the published literature solutions for Wp(t)
(the expected wait conditioned on a service requirement
of t seconds) for time-shared systems which account
for swap time. Such results are not especially numerous.
We do, however, find some useful examples.
Example 1: Let us apply Corollary 2 of Theorem 1 to

r (n+ 1) (Q-0)
b(rn+D=, J Q=,Ae-lPtdt = (1 e- (Q-°) [e- (Q-0)3n.

n(Q-g )

Comparing this to (19), we make the correspondence
(22)

We then apply (20) and (22) to Corollary 2 of Theorem
1 to give for this example,

S = XE, n(1 - o-)onpnQOa(j - p)
n=1

- XO E un+lpnQcy/(l- p).
n=1

This gives

(23)XOpQO2
(1 - p)(1 -a)2

where p and o- are given by (21) and (22), respectively.
Note that for S < oo, we require p <1 which requires
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dWp(,r)
dr.

d,r

vr= e-,u(Q-0)
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Fig. 1. Allowable values for Q shown as that region for which the
curve 0+(l/,g) log 1/(1 -XQ) lies below Q. (X= 1, ,u =3) for Example 1.

1
Q > 0 ± -log 11/(l - XQ). (24)

Equation (24) places lower and upper bounds on Q. The
lower bound is due to the restriction that the maximum
effective service rate must exceed the average arrival
rate. The upper bound is due to the wasted excess
quantum and also due to the constraint that the arrival
probability XQ < 1.

In Fig. 1 we show the allowed range of Q as deter-
mined from (24) for X = 1, ,u=3, and 6 as parameter.
Fig. 2 gives S as a function of Q (in its allowed range)
with 0 as parameter again and for the same values of X
and ,u. Here we also plot the locus of optimum Q over the
family of 0 curves to give minimum S.
The second approach to handling the 0> 0 case in the

first example is to allow the exponential distribution of
required service time to remain, but not force it into the
discrete form of (19). We then get an equivalent system
with 0=0 if we segment this distribution into pieces of
width Q-0, each separated by a gap of size 0 as shown in
Fig. 3. This results in a mean service time E(t) and a
second moment E(t2) given by

1 0
E(t) = -+

A 1-e-A(Q-0

/2\

0( ---)±Q2 A )
Q

e-A Q-0)
E(P) ± 1 +A(2)= 2 +1e-A(Q-0) + 1_e-,(Q-0)]2

One may now use this service-time distribution in the
continuous round robin model studied in [2], as well as
in other models of time-shared systems, with additional
care to replace Q by Q-0 in the appropriate places.
We do not carry out this exercise here.

0.00I
0 0.2 0.4 0.6 0.8 1.0

a

Fig. 2. Average swap time S as a function of quantum size Q with
swap time (per quantum) 0 as a parameter for Example 1 (X = 1,
,u =3).

1.

QO 1/5
9 a 1/la

U0 0.2 0.4 0.6 0.8
t

Fig. 3. Segmented exponential service-time distribution to
account for swap time 0.

The following examples apply only to the processor-
sharing case.
Example 2: Consider the continuous (processor-

sharing) round robin infinite-population system [4].
Again we assume gpn= 1, P = 1. Here we have Poisson
arrivals at rate X and exponential service of average
duration 1/A. For this system we know from 14] that
for =0,

W(r) = Pr/(I - P) (25)

where
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p = X/M.
The original exponential distribution of service time
with parameter, for this system must now be replaced
with another exponential distribution with parameter
/u(1-4) where O= fraction of service time wasted (as
above).
We now apply Corollary 2 of Theorem 2 to give

0x

s= X)fJ re-.(1-T[p/(1 - p)]dr.

This results in

(26)
p24

s-=
IA( - P)(l- )

where

p = X/I (1- 4). (27)

The average swap time S is plotted in Fig. 4 versus 4
with X/, as parameter for this example.

It is interesting to note the application of (18) here.
From [4] we have

N = p2/(l - p)

and from [6] we have (with the new value ,(1-4))
r =1l/,u(l-f

Thus

S =+N7
p2q6

1- p)(l -4))
which is (26) again.

Further, we can calculate this by considering the
average swap time per customer, S'. S' is the product of
average service time (= 1/,u(l -4)) and the fraction of
wasted (swap) time (=4)). Thus, S'=l/Mu(l -). This
multiplied by N must also give S, as is obvious.
We now show that the result of Example 1 can be

taken to the limit of Q = 0 with fixed 4) =O/Q to give the
result of Example 2. From Example 1, we get as Q- O

p = XQ/(1 - 7)
= XQ/(1 -e-y(Q-)
= XQ/(1-1 + (Q - )-))
= XhtA(I - c).

s
4.0-

3.5-

3.0-

2.5-

2.0

1.5-

1.0

0.5-

0
0 0.2 0.4 0.6 0.8 1.0

Fig. 4. Average swap time S as a function of percentage swap time 4)
with X/,1 as parameter for Example 2 (,= 3).

X2,OQ2

[,U(1-4)-][1-1+g(Q-0) 2

=~~~~~~~~~~~~~
[11(1 - 4) -][y(1 -)]

p24)

41-4 )(1 -p)

Thus (23) limits to (26).
Furthermore, if we wish to find the average swap

time ST for all customers still in system (queues plus
service), we merely replace N=p2/(1 -p) with NTOTAL
= p/(l-p) which then gives ST =P)/ [,4(1-P)( 1-))].
Example 3: Here we consider the priority processor-

shared case studied in [4]. We have gpn =gp, Bp(t)
=1- e-pt, and Poisson arrivals at rate Xp for group p,

p-1, 2, , P. Allowing swap time of form Op.=Op,
we recognize that we must modify the service time
distribution to take the form Bp(t) = 1-e-AP('-P)t.

From [4] we get

Thus (21) limits to (27). Also, as QO

s= ( pQ2(1-p)(1 - o.)2

0,(e)( X )Q2e-2M (Q-0)

Q IA(1 - 0)

{1 A( - e-ii(Q-0))21

t(1 - 0)

Wp(r) = - gipi
gp(1 - p) i=1

where

pp = Xp/1P(1 - 4p).
Applying Corollary 1 of Theorem 2 we get

s = E J Te--P(ls-P)T ( E gipi)dr
p=l gp(l - p) oi=l

(28)

(29)
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p

ppk1p E gipi
i=l

s = (
p=l gp(l - p)MP (1 - p)

(30)

where

p

P= Zpp.
p=1

In order to plot S, we must choose values for {gp},
1¾'}, {Xp,}, and {4q5}. For the case Xp=X/P, /Ikp=/i.,

op = al/gp (where 0<a< 1) one obtains from (30),

P 1 P gi2

a2 f 1
E

( ) p=l (gp -a)2 i=l gi - a

P32 X P gj
1- E

,uP j=l gj-a

s

(31)

This last is plotted in Fig. 5 versus a with ,u = 3, X = 1,
P =5, and for the following eight cases: gp = 1, g,
= (1.01)P, gp= (1.1)P, g = 1092 (p+j), gp= p, gp= p3/2,7
gp=p2, gp=p5/2. Note the interesting effect where S
decreases as we progress through the first four cases and
then increases as we progress through the last four cases.
These- cases have been arranged in order of increasing
discrimination between classes.
We note here only one of other additional methods

for obtaining S. From [4] we have that the expected
number Np of customers in the system of queues from
group p is

Ppp
P

Np = E giPi.
gp(l- p) i=i

(32)

Fig. 5. Average swap time as a function of swap loss for
the priority processor-shared system.

M/I 1
T=- (35)

1 - ro y

where

7r = [ E (M ) (-)mi (36)

Also, for a job of average length (1/,up(1 -h,)), we
spend Op/,up(l -4p) seconds swapping. Thus we must
have

s1 =

pt1pPp E gipi
i=l

Ap(I -P)gp(I - p)

(33)

Since S= EP,=i S, we sum and obtain (30).
Example 4: For our last example, we consider the

finite-pppulation case with M consoles, exponential
service with mean II/, and exponentially distributed
think-time with mean 1/'y as studied in [1], [7], and
[10]. From the curves given by Adiri and Avi-Itzhak
Ill, we may approximate T(r) (the average total
response time) by a linear function of r. We take this as
the solution form for T(r) in the processor-shared case
(Q-*0). Thus we have (for zero swap time, 4 = 0)

T(r) _ Kr (34)

where K is some constant. To solve for this constant, we
use the well-known result for T = average (over r) of
T(r) (see [7]).

But
.00

T = T(r)dB(r)

where

B(r) = 1 -e-;T.

From (34) and (37) we obtain

K = gT.

Thus, for the zero swap-time case

T(r) _ 1iTr

1 - r f]r.

(37)

(38)

Now for 4 >0, we merely use ,u(I -4) rather than ,u
to obtain

(39)

where
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Fig. 6. Average swap time as a function of percentage swap

time for the finite console processor-shared case.

[m=O (M-m) ! [A(i )

Applying Corollary 2 of Theorem 2, we obtain for the
average system (queue plus service) swap time ST,

00

ST X(4xJ - q)Tdr

where X, the average input and output rate, is clearly
X =MA(l -4)(1 -ro). Thus

ST- (1- ro)oT

[ (1-)

where 7ro is given by (40). ST is plotted versus c/ for
various M in Fig. 6 for 1/,u=0.88 and 1/"y=35.2.

CONCLUSION
We have shown how to solve for the expected swap

time expended on all customers in the system of queues.
This we have done for the time-sharing systems (Q> 0)
in Theorem 1 and for the processor-sharing systems
(Q--0) in Theorem 2. The examples given show the ease
of obtaining results for the processor-sharing case.
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