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In this paper, we analyze the behavior of random polling systems. The polling systems we consider consist of N stations, 
each equipped with an infinite buffer and a single server who serves them in some order. In contrast to previously studied 
polling systems, where the order of service used by the server is periodic (and usually cyclic), in the systems we consider 
the next station to be served after station i is determined by probabilistic means. More specifically, according to the 
model we consider in this paper, after serving station i, the server will poll (i.e., serve) station j (j = 1, 2, . . , N) with 
probability pj. The main results of this paper are expressions for the expected response time in a random polling system 
operated under a variety of service disciplines. The results are compared to the response time in the equivalent cyclic 
polling systems. Also in this paper, we analyze the cycle time and the number of customers found in the system. 

T he queueing behavior of polling systems has been 
extensively investigated in the past. The "tradi- 

tional" polling scheme that appears in the literature is 
a method by which a single server serves N stations: 
each generates its own stream of work requests (or 
customers) and each is equipped with an infinite 
queue to store its requests. According to this scheme, 
the N stations are served in a cyclic order in which the 
station served after station i is station i + 1 (modulo 
N); this is called the cyclic polling scheme. 

In contrast to previous studies that dealt with 
(periodic and) cyclic polling schemes, our aim in this 
paper is to study the random polling scheme, where 
the polling order is not fixed. Rather, the next station 
polled is determined according to some random 
(memoryless) criterion. According to the specific 
scheme we investigate, the next station polled will be 
station j (j = 1, 2, . .. , N) with probability pj. 

The traditional cyclic polling schemes have been 
successfully used to model systems where a central 
controller polls and serves many stations. A typical 
example is a time shared system where a single com- 
puter serves many terminals. In contrast, our work 
has been motivated by the wish to model distributed 
systems. In many of these distributed systems the 
control moves from one station to another according 
to some random criterion. As an example, consider a 
shared broadcast channel where the decision regarding 
"who will transmit next" is made in a distributed 
manner, and is based on some randomly behaving 

algorithms, rather than on a fixed order. The random 
schemes analyzed in this paper are believed to be a 
natural model for such distributed systems. As an 
example, the results reported in this paper were used 
in Levy (1984) to predict the expected delay in a 
Slotted ALOHA system. 

The main objective of this paper is to analyze the 
response time (waiting time plus service time) observed 
in the random polling systems. Specifically, the ran- 
dom polling scheme is studied for three types of service 
policy: 1) exhaustive service, 2) gated service, and 
3) limited service. In the exhaustive policy, when 
queue i is selected for service, the server will continue 
to serve this queue until the queue becomes empty. 
Thus, all customers found in the queue at the begin- 
ning of the service period, and those who arrive during 
the service period, are served in that period. In the 
gated policy when queue i is selected for service, the 
server will serve in that service period, all (and only) 
those customers found in queue i at the beginning of 
the service period. Thus, none of the customers arriv- 
ing during the service period will be served during this 
period. In the limited service policy, the server will 
serve in a given service period exactly one customer 
(given that at least one customer is present at the 
polled station at the polling instant). The model is a 
discrete time model and the extension of the results 
to a continuous time model can be done in a similar 
way. As in the analysis of many cyclic polling systems, 
we allow the server to have a random length switchover 
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period between the service of one station and the next 
station. The length of a switchover period, in our 
model, is associated with the station served prior to 
the switchover period. 

The main results of this paper are delay expressions 
for the different service policies. Under the assump- 
tion of a fully symmetric system, we are able to derive 
a closed form expression of the expected response 
time for all three types of service policies. Under the 
assumption of a nonsymmetric system, we derive the 
expected response time for both the exhaustive and 
the gated systems. In this case, we form a set of N2 
linear equations, the solution of which yields the 
expected response time in the system. Other important 
measures such as the number of customers found in 
the system, the cycle time and the buffer utilization 
are also derived in this paper. The approach used to 
analyze the exhaustive and gated systems is similar to 
approaches previously used to analyze the equivalent 
cyclic systems. The approach we use to derive the 
expected response time in the limited service system 
is partially new. The analysis is based on the assump- 
tion that the switchover periods are not (all) zero 
length. Nevertheless, the results obtained can be ap- 
plied to systems with no switchover periods by consid- 
ering the limits of these results when the lengths of 
the switchover periods approach zero. 

The structure of this paper is as follows. After a 
detailed description of the system model (Section 2), 
the exhaustive scheme, the gated scheme and the 
limited service scheme are analyzed in Sections 3, 4 
and 5, respectively. In Section 6 we discuss the appli- 
cation of our results to systems with zero length 
switchover periods. Finally, in Section 7, the expres- 
sion for the expected response time of the three differ- 
ent policies are compared to each other and to the 
corresponding expressions in the cyclic polling sys- 
tems. A glossary of notation is given in the Appendix. 

1. Previous Work 

Since the amount of work done in the area of polling 
systems is tremendous, we will mention only those 
references which are closely related to this paper. The 
discrete time models of cyclic polling with N stations, 
independent arrivals and nonzero switchover periods 
(the models to which our model is similar in assump- 
tions) were studied first in the mid-1970s. Konheim 
and Meister (1974) analyzed the exhaustive service 
policy in the symmetric system; Swartz (1980), 
De Moraes (1981) and Rubin and De Moraes (1983) 
studied the nonsymmetric exhaustive system; and 

De Moraes (1981) and Rubin and De Moraes (1983) 
studied the nonsysmmetric gated system. Takagi 
(1985) studied the symmetric limited service system 
where, at most, one customer is served at a time. 

Many ideas used in the analysis of discrete time 
polling systems are similar to those used in the analysis 
of the continuous time polling systems with Poisson 
arrivals. Cooper and Murray (1969) and Cooper 
(1970) studied the exhaustive and the gated schemes 
in systems with zero length switchover period. Systems 
with non-zero switchover periods were analyzed by 
Eisenberg (1972) (the exhaustive scheme) and 
Hashida (1972) (both the gated and the exhaustive 
schemes). Common to these studies (and to the dis- 
crete time studies) is the approach of analyzing cus- 
tomers' delays by computing the number of customers 
present in the system at polling instants. In more 
recent studies, Humblet (1978) and Ferguson and 
Aminetzah (1985) suggested a different approach to 
study the continuous time gated and exhaustive sys- 
tems. Their approach is based on computing the 
length of the service period and results in an efficient 
method for calculating the delay in nonsymmetric 
systems. Nomura and Tsukamoto (1978) studied the 
symmetric limited service system where, at most, one 
customer is served at a time (the analysis is provided 
for systems with non-zero switchover periods). 

Lastly, a tutorial of polling systems was recently 
written by Takagi and Kleinrock (1 985a,b), which has 
since been published as a book by Takagi (1986). This 
tutorial summarizes the known results for polling 
systems and presents an organized derivation of most 
of the known results; it served as an excellent source 
for previous results, and guided us in the derivation 
of many of our results. Many of the references to 
polling systems not mentioned here (such as those 
which use different models or contain approxima- 
tions) can be found in that tutorial. More recent results 
appear in Takagi (1987). 

2. Model Description and General Notation 

We consider a system with N infinite-buffer queues 
and one roving server. Time is slotted with the slot 
size equal to the (constant) service time of a customer, 
and all time units are normalized to this slot size. The 
time interval (t - 1, t) is called the tth slot. Customers 
who arrive during the tth slot are assumed to arrive 
at the end of the slot (i.e., at time t - 0) and may first 
be served during the t + 1 st slot. 

The arrival process to each queue consists of batches 
of customers. We denote by Xi(t) the number of 
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customers arriving at station i during the tth slot, i.e., 
this is the size of the batch arriving at station i during 
the tth slot. For each queue i, the arrival sequence, 
{Xi(t): t = 1, 2, . . .} is assumed to be an independent 
and identically distributed sequence of random vari- 
ables. The generating function, mean and variance of 
Xi(t) are given by 

Pj(z) -1Ezxl] 
PiZ) E[ZX(t)] = 

Ai A E[Xi(t)] = P +-)(I); 

= _ Var[Xi(t)] p2p(1) P _ [p( (1)]2 

where 

P(')(1) ~ - ()| ()(1) _ (z dz Z=1 I 
-dZ2 z=I' 

The polling policy is the following: after completing 
the service of queue i (the period during which the 
server continuously serves a queue is called a service 
period), the server incurs a switchover period. (If a 
selected queue contains no customers at its polling 
instant, the length of the service period is zero and a 
switchover period will still be incurred in moving to 
the next queue.) During this period, none of the 
queues is served, and it may be considered as the time 
required to switch from queue i to the next queue to 
be served. The length of the switchover period has a 
distribution that depends only on the queue previously 
served (in this case, i). At the end of the switchover 
period, the server picks, in a random fashion, the next 
queue to be served. The polling policy is memoryless 
such that queue j is selected to be served next with 
probability pj. As described in the Introduction, three 
types of service policies are considered in this paper: 
exhaustive, gated and limited service. 

Three types of epochs are of interest: the time at 
which the server starts serving queue i for the mth 
time, the time at which this service periods ends, and 
the time when the switchover period, succeeding this 
service period, terminates. The mth period at which 
queue i is served is called the mth service period of 
queue i. The switchover period succeeding the mth 
service period of queue i is called the mth switchover 
period of queue i. Let us use the following notation: 

Ai(m) _ the instant at which the mth service period of 
queue i starts. 

ri(m) _ the instant at which the mth service period of 
queue i terminates. 

ri(m)_ the instant at which the mth switchover period 
of queue i terminates. 

Similarly, the instant at which the server starts the 
nth service period (independent of the station polled), 
the instant at which the server finishes the nth service 
period, and the instant at which the server finishes the 
nth switchover period are, respectively, denoted by 
-(n), -r(n) and 1(n). Note that F(n) = z(n + 1). 

The length of the mth switchover period of queue i 
is ri(m) - -ri(m). For each queue, we assume that the 
sequence of switchover periods associated with it, 
r-i(m) - -ri(m): m = 1, 2, .. ., is a sequence of 

independent and identically distributed random vari- 
ables. The generating function, mean and variance of 
si(m) - ri(m) are given by: 

Rj(z) A E[z (m))-i(M)I 

r AE[7i(m) - -ri(m)] = (1) 

4? _ Var[i(m) - ri(m)] 

= R52)(1) + Rk1)(1) - [R i]2. 

It is assumed that not all the switchover periods are 
of zero length. This means that there exists i such that 
Ri(z) $ 1 (and thus ri > 0). 

The number of customers in the system is denoted 
as: 

Li(t) A number of customers at queue i at time t; 

L(t) _- [LI(t), L2(t)5 . . ., LN(t)]. 

Note that the process L embedded at the polling 
instants is Markovian (although the process L(t) by 
itself is not). 

The generating function of the number of customers 
found in the system at the mth polling instant is: 

Fmllz, z2, . ZN) -A E[ll zLJ(L(m))](1 

Assuming equilibrium conditions, we may define the 
limiting generating function as 

F(z1, z2, ZN) A lim Fm(zi, Z2, ..., ZN). 

Similarly, the limiting marginal generating function 
for Li(f(m)) when m approaches infinity is denoted 
by 

F1(z) A lim E[ZLz(t(m))] = F(1, . .., 1, z, 1, ... , 1). 

In addition, let Li be a random variable representing 
the number of customers at station i at an arbitrary 
instant when the system is in equilibrium. Similarly, 
let L* be a random variable representing the number 
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of customers at station i at an arbitrary polling instant 
when the system is in equilibrium. 

3. Analysis of the Exhaustive Service Policy 

3.1. Number of Customers at Polling Instants: 
Derivation of the Generating Function 

We start our study by analyzing the number of cus- 
tomers found in the exhaustive system at the polling 
instants. To calculate F(zi, z2, ..., ZN), we express 
Fm+l(Zl, Z2, ..., ZN) in terms of Fm(zi, Z2, ... , ZN). 

This is done by conditioning the calculation on the 
specific queue served during the mth service period. 
Let this queue be the ith queue. 

The time interval of interest is the interval 
[X(m), 1(m)] which consists of the concatenation of 
the mth service period, [X(m), -r(m)] and the mth 
switchover period, [X-(m), 1(m)]. Since station i is the 
station served in the mth service period, there exists 
some (unique) n such that ri(n) = E(m), ri(n) = r(m) 
and F(n) = 1(m). Thus, the periods of interest are the 
nth service period of station i and the nth switchover 
period of queue i. First, consider the service period of 
station i. The length of this period, given by ri(n) - 

ri(n), corresponds to the gambler's ruin time (i.e., the 
time from an initial capital to zero capital) in the well 
known gambler's ruin problem (a short description 
of this problem and its solution may be found in 
Konheim 1980). The generating function of this time 
is expressed in terms of the number of customers 
present at station i at the polling instant 

E[WTj(n)--j(n)] = E[UOi(w) Lij((n))] (2) 

where Oi(.) is the generating function of the ruin time 
when the gambler's initial capital is one unit, and 
where the moments of this ruin time are given by 

Oi(l) = 1, 

wi(I() = I 

1 -z 

052)(I) = j+ (1 I 

( AI i)2 (I li)3 

Now, to calculate the number of customers in the 
system we follow the analysis of the discrete time 
cyclic exhaustive system (Konheim and Meister; 
Swartz; Rubin and De Moraes; and Takagi). The 
approach (which was used by earlier authors, e.g., 
Cooper and Murray, for the continuous time system) 
is to express the generating function of the number of 

customers found in the system when station i + 1 is 
polled as a function of the generating function of the 
number of customers found in the system when sta- 
tion i is polled. It is easy to adapt this analysis to our 
system, yielding the corresponding expression (see 
Levy 1984): 

Fm+l(Zi, Z2, ..., ZNlIAi) 

/N \ 

= Ri H PJ(z1)) 

N 

*Fm ZI, Z2, .. * * Zi- I oit Pi (Zi), 

(joi) 

Zi+, ...ZN) (3) 

where Ai is the event that queue i was polled at the 
previous (in this case, the mth) service period. 

Now, unconditioning (3), letting m approach infin- 
ity and assuming that the system reaches equilibrium 
we obtain: 

F(zI, Z2, . .. , ZN) 

=P' R(fl PJ(ZJ)) 

* F(O-R II Pj(zj)), Z2, Z3,***X ZN) 

+P2 R(ll PJ(Zi)) 

* F(z,, 02 (1 Pj(zJ)), Z3, ..., ZN) 

+ + +PN RN( II PJ(Z)) 

(J2N) 

3.2. Number of Customers at Polling Instants: 
Mean and Variance 

Next, we compute from (4) the mean and variance 
of the number of customers found in the system 
at polling instants. Let the partial derivatives of 
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Fm(zi, Z2, ..., ZN) be denoted as follows: 

f(i) it. 9Fm(zi, . . ., ZN) 

fi 2Fm(Zi, ZN) ij =l2,...,N fm(il j) aziazi 

where z _ (z Z2, ..., ZN) and i corresponds to the 
vector (1, 1, . . ., 1). Similarly, we define fm(i I k) and 
fm(i, i I k) to be the corresponding derivatives, condi- 
tioned on station k being served during the previous 
service period. We also define f(i), f(i, j), f(i I k) and 
f(i, j I k) to be, respectively, the limits of these deriv- 
atives (when the limits exist) when m approaches 
infinity. Using this notation, 

E[L*] = f(i), 

Var[Li*] = f(i, i) + f(i) - i f(i)}2. (5) 

Differentiating (4) with respect to the z1's, to calcu- 
late the terms f(i),i = 1, 2, . . ., N, yields a set of N 
linear equations of the form 

Aj N 
~N p1f(i) f(j * pir, + E -_ 

Pji= i=1 I1-H 
isJ 

The solution of this equation set (see Levy 1984) is 

E[Lj*] - =j (1 I pir, (6) 
pj(l - Zi=' I i)(6 

which is the expected length of queue j at polling 
instants. 

For the special case pi = 1/N for each i, we find that 
(6) is equal to the equivalent expression in the ex- 
haustive service cyclic polling system (Swartz). In the 
case of a fully symmetric system, i.e., where , = 

2~ = =2 r2 = =2 = , r == r, =2 and pi 1/N for each i, the 
expected queue length is given by 

E[Lj*] = if(j ) = NrA( I - tt) 

Note that this result for the random polling system is 
exactly the same as the well known result (Konheim 
and Meister; Swartz) for the cyclic polling exhaustive 
system. 

Next, to derive Var[L*] we must calculate f(i, i). 
Differentiation of (4) twice with respect to the zi's (see 
Levy 1984) yields a set of N2 linear equations that 
may be solved by numerical methods. Note that the 
equivalent equation set for the cyclic polling systems 

(e.g., Rubin and De Moraes) consists of N3 linear 
equations, and thus, for some numerical techniques it 
will be easier to solve the random polling system. 
However, it seems that the efficient techniques for 
solving these equation sets are iterative ones (see e.g., 
Levy 1986 for an analysis of the successive substitu- 
tion method when applied to these sets). This specific 
reduction from N3 to N2 does not reduce the com- 
putational complexity for these techniques. The rea- 
son is that to solve the larger set of equations, a vector 
of N3 components is computed in each iteration, with 
each component requiring 0(1) operations, while in 
the smaller set, a vector of N2 components is com- 
puted in each iteration, however each component 
requires O(N) operations per iteration (see the sum- 
mations in 7a and 7b); therefore, the overall compu- 
tation per iteration required in both cases is O(N3). 

When the switchover period and the arrival process 
are assumed to be identical for all stations, this set 
becomes 

f(j, k) 
N 

= > (a + b[f(j) +f(k)] + cf(i) 
i=1 

(is]) 
(i?k) 

+ d[f(i,j) +f(i, k)] +f(j, k) + d2f(i, i)) pi 

+(a+b[f(j)+df(k)]) - Pk 

+ (a + b[f(k) + df(j)]) -pj j $ k (7a) 
N 

f(j, j) 2 a{+ r(o2 - ,u) + 2bf(j) 
i=l 
i=j) 

+ + c)f(i) +f(j,j) 

+2 df(i,j) + d2f(i, i)} -Pi 

+ pj[a + r(o2 -_ )] (7b) 

where 

a 2(62 + r2), b rAu 

F2r 12__ 
C - (2[ )2 (1 F)3J 

i1 - 

In the case of fully symmetric stations, (7a) and (7b) 
can be solved analytically (see Levy 1984). This yields 
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the following solution forf(i, i), i = 1, ... , N: 

f(i i) = 6 2A2N( I- H 

2rN[I - (N+ l),i + (2N-1),12] 

(I 1N,)2 

_Nri(I 1- t)N 2r2A2( 1 _ A)2 

+ -N,u (I-_N,)2 

Nr2Au2(N -1)(1 -, 

(I (1-N,u2 (8) 

From (5) and (8) we can now calculate the second 
moment and the variance of the number of customers 
at polling instants: 

E[Ui* 2] =- 62AN(1 - ) 
1 -Ni 

+f2N1(N + 1),u +(2N -1) 
+ 

~~(I -NA)2 

+ N2r2A2(l _A )2 

(I -NA)2 

+NrA 2u(N -1)(1 -u) 

Var[Li*] = 6 2LN(1 -) 

u2rN[ I- (N+ 1),u +(2N- 1 
),2] 

+ 
( 1-N/N)2 

Nr2p2(N- 1)(1 -i) 
+ 

+-(I -NA)2 

3.3. Service Time, Intervisit Time and Cycle Time 

Let Si be a random variable denoting the length of the 
service period of queue i. The intervisit period of 
queue i is defined to be the period between two 
consecutive services of queue i. A cycle of queue i, 
consists of a service period followed by an intervisit 
period. Let Ii and Ci be random variables representing 
the length of the intervisit period and the length of the 
cycle, respectively. The length of a service period is 
given by ri(m) - Ti(m), the length of an intervisit 
period is given by Ei(m + 1) - ri(m), and the length 
of the cycle is given by ri(m + 1) - ri(m). These 
measures are called the service time, the intervisit time, 
and the cycle time of station i, respectively. In addition 

we define 

Si (z) - E [zri(m)-zi(M) 1 

Ii(Z) A E[z!i(m+1)-Ti(m)b 

Qiz) -_ E[z-L1(m+1)--Li(m)1] 

It is easy to see that the behavior of these periods in 
our system is very similar to their behavior in the 
system where the queues are served in cyclic fashion 
(polling system). In both systems, a service period of 
queue i is followed by an intervisit period of queue i, 
and this is followed by another service period of queue 
i, etc. Thus, the relation between the variables repre- 
senting the service time, the intervisit time, the cycle 
time and the number of customers present at the 
polling instants are identical for both systems. The 
relevant expressions (see (2) in this paper and (3.36a), 
(3.36b), (3.39b), (3.40a) and (3.40b) in Takagi 1986) 
are 

E[wTi(n)-ji(n)] = E[ (W)I Lj(n))] 

E[Sj] = E[Li*] - W)(I), 

(1-/~2(Var[Li*] + iE[L*'] Va[iVar[S, l. + r,[L 

E[zLi(ri(m))] = E[ {P(z)} Ti(m)-ri(m)] 

E[L*] = AjE[Ij, 

Var[LP'] = ,4Var[I] + 
u?E[Ii] 

Ci(Z) =L (z)], 

E[CL] = E[Ij] * '() 

Var[C1] = Var 11 [I& 
VrC]=( I _ Aij)2 (I - AF)3 

Using these relations and (6) we get the expected value 
and variance of the cycle time (the expressions for the 
expected value and variance of the service time and 
of the intervist time can similarly be derived and may 
be found in (4.32) and (4.36) of Levy 1984): 

E[Cj] p(1 I pr 
[ 

]PiO E_jNI k) 

Var[C1] = It2(1 - 
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In the fully symmetric system these expressions be- 
come 

E[i] _Nr 
I- N/' 

Var[Ci] = 

-N62 (N - l)Nr2 +N 2U2r 

+1)2 IN )2]. 

3.4. The Waiting Times and the Number of 
Customers at Arbitrary Times 

Let Qi(z) denote the generating function of the num- 
ber of customers found at queue i at an arbitrary time, 
when the system is in equilibrium: Qi(z) A E[zL]. This 
generating function can be related to the generating 
functions F1(z) and Pi(z) as follows (for details see 
(3.51) in Takagi 1986 regarding the derivation of a 
similar relation for the cyclic system); 

Qi(z) = PiO(1 - X, ,,=) 

F Z( (z) 1I+ 1- F_(z)] (11) 

From ( 11) one may get: 

E[Li]_ EL?1 = -EL). (12) 

In the case of fully symmetric stations, we use (6) and 
(9) to get 

1 [62 e' 
[ r 1 - N1i 

Nrpi(1-ut) (N -1)r,i 
+ I N + I - N)r (13) 

Next we calculate the waiting times (in queue) and 
response times observed in the system. Let cj be an 
arbitrary customer. Recalling that customers arrive at 
the system in batches, we realize that the waiting time 
of cj consists of the sum of two independent random 
variables: 

1. The waiting time of the first customer in the batch 
in which cj arrives. 

2. The service time of all the customers which arrive 
together with cj (the same batch) and are served 
ahead of cj. Recall that all service times are equal 
to the slot size. 

Let Wi denote the waiting time of the first customer 
served in a batch (for a batch that arrives to queue i) 
and let WJ(z) be the generating function of Wi. Let V 
be the number of customers who arrive together with 
cj to queue i (in the same batch) and who are served 
before cj, and let VJ(z) be the generating function of 
Vi. Let Wi denote the waiting time of an arbitrary 
customer served in station i, and WJ(z) denote the 
generating function of Wi. Let Ti denote the response 
time (waiting plus service time) of an arbitrary cus- 
tomer served in station i and Tj(z) be the correspond- 
ing generating function. 

The generating function of the waiting time ob- 
served by an arbitrary customer can be calculated 
from WJ(z) and VJ(z): WJ(z) = Wi(z) J Vi(z). 

It is straightforward to calculate VJ(z) from the 
generating function of the batch size, Pi(z), and from 
its first moment, p,i (see Takagi 1986, Equation 3.8a): 

1-Pi(z) 
pHi(l - Z) 

The generating function of the waiting time for a 
first customer in a batch, WJ(z), can be calculated 
from the generating function of the idle period length, 
Ii(z), and from the expected cycle length, E[Cj], as 
follows: 

- 1 11(z)-1I 
-E[Cj] z -P;(z) 

The derivation of this expression can be found in 
Takagi (1986) (Equations 3.57a and 3.57b) for the 
cyclic system and can be shown to hold for our system 
as well. Using (10), we get WJ(z) in terms of Ii(z) and 
the system parameters 

J(z) - Pi(l - '= ,) I (z) - 1 
E j= I pjrjzPi) 

Since Ii(z) can be calculated from Fj(z), this equation 
actually expresses WJ(z) in terms of F1(z). 

Next, to calculate the expected value of the response 
time observed by an arbitrary customer in queue i we 
apply Little's result to (12) and (13). This yields 

E[Li] E[{L*}2] f ( - - 

Ai, 2AiE[Li*] 2Mui -1Ai i 

which in the case of fully symmetric stations becomes 

1 ^,2 
aT2 Nr(-1M) (N-1)r 

2 r (i - N,A)t I -N,, I -N,, 
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3.5. Conditions for Steady State 

The scope of this paper is too limited to supply a 
detailed analysis for the convergence of the system 
variables to steady state. Nevertheless, since our main 
results regard the system moments (first and second) 
at steady state, we now substantiate the conditions 
under which these results hold. The steady state mo- 
ments derived in this section are all expressed in terms 
of f(i) and f(i, j). Therefore, it is sufficient to find 
conditions under which fi(i) and fi(i, j) are guaran- 
teed to reach steady state. 

The expressions forfm(i) can be obtained by uncon- 
ditioning (3) and differentiating it with respect to zi. 
This yields 

(i N 
N'im 

fm+'(j) = - * E piri + E 

i$j 

This relation, which transforms fm(i) to fm+,(i), is 
shown in Levy (1986) to be a contraction mapping 
provided that A 1ui < 1. Thus, under these condi- 
tions, fm(i) is guaranteed to converge independently 
of the initial values fo(i) and the first moments of 
the number of customers present in the system at 
polling instants are guaranteed to reach equilibrium. 

The expressions forfm(i, j) are obtained in a similar 
manner (unconditioning (3) and twice differentiating 
it). The resulting relation which transforms fm(i, j) to 
fm+i(i, j) is also a contraction mapping under the 
condition A 1ui < 1. This condition provides that 
fm(i, j) will reach steady state. We may therefore 
conclude that all our results regarding the system 
moments at steady state hold if E =1I i < 1. 

4. Analysis of the Gated Service Policy 

As in the exhaustive system, the key to this analysis is 
the generating function of the number of customers 
found in the system at the end of a switchover period. 
This is Fm(Zi, Z2, . . ., ZN), as defined in (1). 

For the gated policy, the length of the service period 
of station i is simply the number of customers found 
in queue i at the polling instant 

ri(m) -Ei(m) = L&Ej(m)). 

Thus, the generating function of the number of cus- 
tomers arriving during this period is given by 

E[N ~P(1~r(m-~ EH z)N 

fE I {Pj(zj) jTi(rI-,:(rn) = E j) {Pj(z:j).(,n)). 

Thus, (3) is replaced by 

Fm+i(zi, z2, ..., ZN Ai) 

N 

*Fm(Zi, z2, * * H i1I PV(Z1), z1+1, * , ZN) 
1=1 

and (4) is replaced by 

F(z, z2, ,ZN) 

N 

= pi *F(zj, *.. zN X Ai) (14a) 
i=l1 

where 

F(zi, . . . ZN IAi) 

/N 

j=1 ~ j=1 

F Fzi, z2,.. *** zi-19 fI Pj(zj), Zi+1,,* * , ZN) (I14b) 

Defining the moments of L* (f(i), f(i, j), f(i I k) and 
f(i, j I k)) as in the exhaustive model and differentiat- 
ing (1 4b), we get the following set of equations: 

f(i I i) = riM + 1ulf(i) 

f(i Ii) = ri,ut + 1.tf(i) + f(j) i $ 1. 

The solution of these equations (see Levy 1984) is 

E[Lj*] = f(i) = i 1r1 

When pi = 1/N for every i this is identical to the 
equivalent expression in the gated system where 
the polling is done in a cyclic fashion (Rubin and 
De Moraes). In the case of fully symmetric stations 
E[L3*] is 

E[Lj*] =f(j) = -Nr* (15) 

To find the variance of LP we differentiate (14b) 
twice. This gives the following set of equations: 

f(j, k I i) 

= /jAk(bi + r?) + riAukf(j) + riujf(k) 

+ f (i),jk(2r1 + 1) + f(j, k) 

+ Mjf(i, k) + Akf(i, j) + AjAkf(i, i) 

i?j,i?k,j?k (16a) 
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f(j, i I i) 
= Aj(b52 + ri) + ri(?j - Mj) + 2riMjf(j) 

? f(i)[Uj2- MUj + Au](ri + 1)] 

+f(j,j) + 2,jf(i, j) + Mj2f(i, i) ij $ (16b) 

f(i, k Ij) 

= IjAUkQ6 + rj2) + rjtjf(k) + f(Ij),jk(2rj + 1) 

+ MJf(j, k) + Mj/kf(i,j) jik (16c) 

f(i, ilj) 

= M](^,5 + rj2) + rj(]j2 _ A 

ft(j)[a - Aj + M](2rj + 1)] 

+ Aj2f (j j). (I16d) 

These equations, together with the relation f(j, k) = 
E=1 Pi p* f(j, k I i), form a set of N2 linear equations 
that can be solved by numerical methods (Levy 1986) 
to yield the solution off(i, i) for i = 1, 2, .. . , N. 

In the case of fully symmetric stations this set of 
equations can be solved analytically (see Levy 1984) 
to yield 

. ._2rN[I - (N- I)Au] 
(i, i)- (1 + p)(1 -N)2 

(62 - r2)N,M2 

(1 + M)(1 - NM) 

(M + 2r)N2r12 
+(1 + ,u)(1 -NM)2 

,uNr 

(1 + 8)(1 - NM) 

M2Nr 
(1 +,)(1 -NM)2 17) 

Now, using (15) and (17) we get 

Var_L* _ 62A2N a 2rN[ - (N- I)M] 
V(1 +M)(1 -N) (1 + /)(1 -N)2 

+ (N- I)N,u r 
(1 + M)(1 - 

This is the variance of the number of customers found 
in queue i at polling instants. 

To calculate the cycle time, note that in a gated 
system the generating function of the cycle length is 
related to the generating function of the number of 
customers found in queue i at polling instants as 

Fj(z) = C4[Pi(z)]. (18) 

From (18) the mean and the variance of the cycle time 
can be easily calculated: 

E[Lf*] I I piri 
E[C1]= EL E 1 

Mi Pi -~M 

_ Var[L*] _ E[i]3 
Var[C71]- 

In the fully symmetric case these become 

E[C1 = Nr 

1 -NA' 

Nv2 + N2of2r 

ar[ij] (1 + ,u)(l - NA) (1 + M)(l -NM)2 

(N- I)Nr2 
(1 + I,)(I - )2 

Next the generating function of the number of 
customers found in queue i at arbitrary moments may 
be calculated. This is done by using expressions that 
relate the number of customers found in the system 
at arbitrary moments to the cycle time and to the 
number of customers found in the system at polling 
instants. These expressions have been derived for the 
cyclic polling system (see, for example, (5.14) and 
(5.15a) in Takagi 1986) and can be easily shown to 
hold for our system too. These relations are 

Q, (Z) 1 Fi[Pi(z)] - F1(z) (I - z)P,(z) 
QI(z)=E[Cj] Pi(z)-z 1 -P1(z) 

E[L1] - (1 + 
/i)E[IL*2] 

_ ? 

iU - 2E[L*] 2Ai. 

From these, we can now calculate the expected value 
of the number of customers found in queue i at 
arbitrary moments. For a fully symmetric system this 
value is 

2A 2 

E[LJ= - + 
2r 2(1- N) 

+NrM(1 +,t)+ (N- l)rM (19) 
2(1-NMu) 2(1-NM) ( 

To calculate the waiting time in the system, we 
again recall a relation from the analysis of the cylic 
polling, gated service system (5.18 in Takagi 1986): 

= () z[Ci(z) - F1(z)] 
E[C.] - (z - P1(z)) 
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which is also valid for our system. From this expres- 
sion the expected waiting time of a first customer in a 
batch can be calculated. 

Lastly, application of Little's result to (19) yields 
the expected response time for an arbitrary customer 
in a symmetric system: 

^52 
a_2 

Nr(1 +,) (N-l)r 

_ 2r 2A(l 1-N,u) 2(l1-N,u) 2(l1-N,u)'- 

The conditions under which the moments of the 
system variables reach equilibrium are identical to 
those of the exhaustive system (namely, ZN= Ai < 1). 
The arguments supporting this claim are identical to 
those provided in Section 3.5. 

5. Analysis of the Limited Service Policy 

5.1. The Expected Response Time in a 
Symmetric System 

As in the previous analysis, the key to this analysis is 
the generating function of the number of custom- 
ers found in the system at polling instants. This is 
Fm(zi, Z2, . . ., ZN), as defined in (1). 

To express Fm+i(zi, Z2, ..., ZN) in terms of 
Fm(Zi, Z2, . .. , ZN), we condition Fm+i(zi, Z2, ..., ZN) 

on the station polled during the mth cycle: 

Fm+i(Zi, Z2, *.. ZN IAj) 

- (J Pi (z)) I (h i PD) 

=1 = 

* -[Fm(Z I, Z2, * * *, ZN) 
Zi 

-Fm(zi , ... X 0X ... * ZN)] 

/N \ 

+ Ri 1J Pj(zj) ) Fm(Z .(.z . , 0, .. , ZN) (20) 
\j=l 

where Fm(zi,. . . , 0.... ZN) iS Fm(Zi, Z2, . . .,ZN) where 
the ith element equals zero. The first term of this 
expression represents the situation where queue i is 
not empty when polled, so queue j "builds up" during 
the service slot by a factor of Pj(zj) and one customer 
is removed from the ith buffer. The second term 
represents the situation where queue i is empty when 
polled, so no service period follows this polling instant. 
In both terms, the factor Ri( jl=1 Pj(zj)) represents the 
queueing build up during the switchover period prior 
to the m + 1 st polling instant. 

From (20), and under equilibrium conditions, we 
get the following relation 

F(zl,..., ZN) 

=Pi R( nl Pj(Zj)) 

lull Pj(zj) ( Z2 z2, ... , - 

+ (1 - H Pj(zj))F(O, Z2, ... ZN)] 

+ P2 R2(H Pi(Zi)) 

f *F(jlz) F(, .,zN) 

L HP J ZJ))F(zl * ZN Z2 j=I 

+.+ PN .RN( JPj(Zj)) 

[(J-1 )Z(N9 * X ZN 1 

( fI PJ(zj) F(z1, *, ZN-i, 
) (21) 

ZN j= 

In the following, we analyze the fully symmetric 
system. The analysis approach partially follows the 
approach used in the analysis of the limited ser- 
vice cycle system (originally reported in Takagi and 
Kleinrock 1983); here we extend it to derive the 
expected response time in the system (this extension 
was later used by Takagi (1985) to derive the expected 
response time in the cyclic system). Assuming sym- 
metry and substituting Z1 = Z2 = ... = ZN = Z in (21) 
we get 

F(z, z, ..,Z) 

I-R( jp(z)}N) * P(z) NF(zX, z ... ., Z) 

Z ~ 
+ R (p(Z)j N) .I( - jp_Z___ 

*F(O, z, z,..., z) (22) 

where we have used the observation that F(O, Z, Z, 
... I z) _ F(z 0,z .,z . (,Z . , 
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due to symmetry. From (22) we have 

F(z, z, . . , z) 

R({P(Z)}N1) (Z - P(z)I) 1)-F(O, ,z Z Z Z) 
z-R({P(z)jN) N pP(Z)IN 

Next, we substitute z1 = z and z2 = Z3= .-- 

ZN = 1 into (21). This yields 

F(Z, 1, 1,1..., 

[R(P(z)) * P(z) * F(z, 1, 1, ..., 1)- 
L Z 

+ R(P(z)) (I P(Z)) F(O, 1, 1 1) 

+ N 1 R(P(z)) * P(z) F(z, 1, 1, ..., 1) 

+ R(P(z)) (1- P(z)) * F(z, 0, 1, 1, .. ., 1)] (24) 

where we have used the symmetry observations: 

F(O, 1, 1, . .. S 1) 

=F(1,0, 1,..., 1) 

... = F(1, 1, 1,..., 1, ), 

F(Z, 0, 1, 1, ..., 1) 

=F(z, 1,0, 1,..., 1,1) 

= v F(Z, 1, 15..., 1, 1, 0), 

PI P2 = PN= 

From (24) get 

F(z, 1, 1, .., 1) 

(N- 1)zR(P(z)) . (1 -P(z)F(z, O, 1,1,... ,1) 
Nz-R(P(z)) - P(z) . (1 + (N- 1)z) 

+R(P(z)) * (z-P(z)) * F(O, 1, 1,..., 1) (25) 
Nz-R(P(z)) * P(z) (1 +(N-1)z) 

The next step is to calculate the probability that an 
arbitrary queue is empty at polling instants. This 
probability is given byfo A F(O, 1, 1, .. ., 1). From 
(23) we may calculate fo (see Appendix C. 1 in Levy 
1984): 

1 -NA - Nr,i 
fo 

I-NA 
(26) 

Next the expected queue length at polling instants 
is calculated using two simple relations; the first is 

dF(z, z, ..., Z) 

az Z=I 

=N dF(z 1, 1, .. ., 1) (27) az Z=l 

This relation simply states that (at polling instants) 
the expected number of customers in the whole system 
is N times the expected number of customers in queue 
i (i = 1, 2, ..., N). This observation is true due to 
symmetry. The second relation is 

dF(O, z, z, ..., z) 

dZ z=1 

=(N-1) - F(z,O,1, 1, ... , 1) (28) 

which is also true due to symmetry. 
For convenience let us introduce the additional 

notation: f _ dF(z, 0, 1, 1, .. ., 1 )/az I z=l . 
Differentiating (23) and using (28) we show (see 

Appendix C.2 in Levy 1984) 

dF(z, z, ..., z) 

az Z=I 

_(N -I)(I - N)fi 
1 - Nu - Nr,u 

Nra 2 

+ 2(1 - Nu)(l - NA - Nr,u) 

+ N2A262 + Nru (29) 
~2(1-NA -NrAL) + 2 (29 

Differentiating (25) and using (28) we show (see Ap- 
pendix C.3 in Levy 1984) 

N. dF(z, 1, 1, ...,5 1) 
daz Z=I 

-(N- I)N-f, 

1 - Ng - Nr, 

+ .-( 30 ) 2(1 - N)(l - NA - Nr,) 

where v = N * [N2rM3 + N,2(1 -Nuj(52 - r2) - 

2NrM2 + (ff2 + M)NrI. 
Now, using (27) we equate (29) to (30) and solve 

(see Appendix CA. of Levy 1984) forf: 

(q2 + M)Nr 

2(1 -NM) (31) 
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Substituting (31) back into (30) we finally get an 
expression for the expected queue length at polling 
instants 

dF(z, 1, 1,..., 1) 

(N- 1)(o2 + M)r 

2(1 - NM - NrM) 

rU2 
+ 2(1 - Nu)(l - Nu - NrMu) 

+ NM262 r1-t 

2(1-Nu-NrM) + (32) 

Having calculated the expected queue length of 
queue i at polling instants, we next calculate the 
expected queue length of queue i right after an arbi- 
trary customer leaves this queue. Let us denote 

Gi _ E[L(t I t is a service completion time 
at queue i)]. 

First, since the queue chosen to be polled at a given 
polling instant is independent of the system status, it 
is clear that 

E[Lj(t I is a service starting time at queue i)] 

1 aF(z, 1,1,..., 1) 
I-fo az Z= 

Second, we have 

Gi = E[Lj(t I t is a service starting time at queue i)] 
+ M- 1. 

Thus, from these two relations and from (26) and (32) 
we get 

(N- 1)(o2 + M)( 1-Nu) 
2N,u(l-NMu-NrMu) 

ar2 
+ 2NM(1 - Nu - Nr,u) 

NM5262 Ma2 

2(1-NMu-NrMu) 2r 

+ 2N + 1. (33) 

This is the expected queue length at station i right 
after an arbitrary customer leaves this station. 

Next, using Gi, the expected response time (waiting 
time plus service time) of an arbitrary customer is 
calculated. To calculate E[Ti] we investigate the num- 
ber of customers left in queue i behind an arbitrary 

tagged customer, say cj. These customers are of two 
types: 

1. Customers who arrive together with cj (in the same 
batch) but who are queued behind cj. 

2. Customers who arrive to queue i during the re- 
sponse time of cj. 

Let Pi be the number of customers arriving to queue 
i together with cj (the same batch) but queued behind 
cj; then, the following relation is a direct result of the 
above observation: 

Gi= E[Vr] + . * E[Ti]. (34) 

To find E[Vi], we assume that cj arrives at slot t and 
condition on the number of customers arriving during 
that slot: E[Vi I Xi(t) = k] = (k - 1)/2. The probability 
that cj arrives in a batch of size k is given by: 

k* Pr[Xi(t) = k] 

, l-Pr[Xi(t) =l 

Thus, unconditioning E[ V1] yields 

00 
k- k Pr[Xi(t)= k] 

k=V 1 2 k Pr[Xi(t) = l] 
(2 + M2 2 M 

(35) 2,u 

Substituting (35) and (33) into (34) we finally get the 
expected response time of an arbitrary customer in 
the system 

E[T]-_ +2 2 

2r 2u(I - Nu - Nr,) 

NrU2 
+ 2,(i - Nu - Nr,u) 

(N- l)r N32M 

2(1-N,u-Nr,u) 2(1-N,u-Nr,u) 

5.2. The Probability of an Empty Buffer 

An important measure of a queueing system is the 
fraction of time that the system is empty. In this 
subsection we are interested in calculating the proba- 
bility that a buffer is empty at some specific instants. 

The probability that a buffer is empty at polling 
instants was calculated above as: 

Pr[queue i is empty at polling instants] 

=F(05 1, 1, ... ., 1) =I- 1NA 
- Nr 

1I N - Nr1i 

From this measure it is now easy to calculate the 
probability that a buffer is empty at switchover times. 
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A switchover time is the instant at which a switchover 
period starts. Thus, the mth switchover time is de- 
noted by r(m). Let so denote the probability that buffer 
i is empty at switchover times: 

so _ lim Pr[Li(i-(m)) = 0]; i = 1, 2, . . ., N. 

Since every polling instant is the end of a switch- 
over period, the probability that buffer i is empty at a 
polling instant is related to the probability that this 
buffer is empty at the beginning of the preceding 
switchover period as follows: 

Pr[L&(r(m)) 

= 0 l v(m), r(m)] 
T(m) 

= Pr[L&(E(m)) = o] E Pr[X1(t) = O] (36) 
t =(m)+1 

Now, since the arrival process at station i is inde- 
pendent of t, and since in the symmetric case it is also 
independent of i, the following notation can be used: 

xo A Pr[Xi(t) = 0]; i= 1, 2, ..., N. 

Letting m -- oo in (36), substituting so and uncondi- 
tioning (36) yields 

lim Pr[L{r(m)) = 01 

-lim Pr[L&(r(m)) =] 0 R(xo) (37) 

and finally, from (37) and (26) we have the probability 
that a buffer is empty at an arbitrary switchover 
instant; 

Pr[queue i is empty at switchover instants] 

1 - NA - Nr1 
(1 -NA) . R(xo) 

6. Systems with Zero Length Switchover Periods 

The analysis provided above is based on the assump- 
tion that at least one of the switchover periods is not 
deterministically of zero length. A natural question to 
ask is how our results relate to systems where all the 
switchover periods are of zero length (which we denote 
below as systems with zero reply intervals). The prob- 
lem of relating cyclic polling systems with zero reply 
intervals to systems with non-zero reply intervals has 
been raised by several authors (e.g., Eisenberg, pp. 
441, Humblet, pp. 166 and Takagi 1986, pp. 142). 
Nevertheless, the problem was not addressed in any 

of those references in much detail, and thus, we discuss 
it below. 

At first observation it seems that the analysis 
method used in our paper does not apply for systems 
with zero reply intervals. The reason is that when such 
a system empties, the server polls the queues infinitely 
many times in zero time. The expressions for the 
moments of the number of customers in the system 
at polling instants (e.g., (6) and (8) for the exhaustive 
system) shrink to zero and the use of these expressions 
for calculating the expected delay (e.g., (12) and (13)) 
is not feasible. 

Nevertheless, a more careful examination shows 
that by properly taking limits on the distribution of 
the reply interval one can analyze systems with zero 
reply intervals using our analysis. The main idea is 
that the analysis approach is valid for any reply inter- 
val distribution which is not completely concentrated 
at zero. This is true since under such conditions the 
server will not poll the queues infinitely many times 
at a certain epoch t; rather, eventually it will "depart" 
from time t and poll the system again at time t + k 
(for some k > 0). 

Proper limits for the reply interval distribution 
should be taken so as to guarantee that in the limit 
the system will behave as a system with zero reply 
intervals. The crucial properties of the system with 
zero reply intervals are: 1) the server does not go 
idle unless the (whole) system becomes empty, and 
2) when the system is empty and the server is idle, the 
server will be ready to start serving as soon as any 
customers arrive to the system. This behavior may be 
achieved by reply intervals which are of length 0 and 
1 with probabilities (1 - p) and p, respectively, and 
where p approaches zero. Under this distribution we 
have r = p and 62 = p(1 - p), and thus the limit of 
32/2r (which is a term in the expressions for the 
expected delay in all symmetric systems) exists and 
satisfies limp,o 62/2 = 1/2. 

Note that the use of other distributions for deriving 
the limits may be improper. For example, consider 
the case where the reply interval takes on the values 0 
and k with probabilities (1 - p) and p, respectively. 
The limiting behavior of this system will be such that 
after the system completely empties, the server takes 
a "'vacation" whose length is k slots, and thus, is not 
always ready to serve customers as soon as they arrive 
at the empty system. The expected delay in this system 
(which behaves like a system with vacation periods) is 
obviously higher than that in the system with zero 
reply intervals. In the case of symmetric stations this 
difference is expressed in the term 32/2r, which under 
these conditions, satisfies limpo0 62/2r = k/2. 
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The numerical stability of this procedure does not 
seem to be a problem. This is true although we deal 
with computing the values of two variables (namely, 
f(i) and f(i, i) in the exhaustive and gated systems) 
that vanish to zero. The reason is that in the compu- 
tation of the expected delay only their ratio appears 
(see, e.g., (12)), which should not lead to numerical 
difficulties provided that the relative error in comput- 
ing each of them is small enough. To examine this 
issue, we used the proposed procedure (namely, ri = p 
and V = p(l - p) and letting p approach zero) for 
several fully symmetric systems and found good agree- 
ment between the expected delay values computed 
numerically to the ones derived by taking limits 
on (13). 

It is important to mention that, to the best of our 
knowledge, cyclic polling systems with zero reply in- 
tervals have not been analyzed previously under the 
discrete time model (in contrast, such a treatment was 
given to the continuous time models, e.g., Cooper and 
Murray 1969, and Cooper). Thus the method sug- 
gested here is the only one currently available for 
analyzing these systems. A more detailed analysis of 
systems with zero length switchover periods may be 
found in Levy and Kleinrock (1987). 

7. Comparison of the Results and Discussion 

In this section, we compare the expected response 
time in the random polling systems. These results are 
also compared to the expected response time observed 
in the corresponding cyclic polling systems. 

For the (discrete time) cyclic polling system, we 
assume the same arrival process as for the random 
system. The expected response time in the cyclic sys- 
tem was derived by Konheim and Meister for the 
exhaustive service policy, by Rubin and De Moraes 
for the gated service policy and by Takagi (1985) for 
the limited service policy. (Note that the original 
expressions derived by Konheim and Meister and 
extended by Swartz differ from our expressions in two 
aspects: First, those models assume that arrivals occur 
at the beginning of a slot while we assume that the 
arrivals occur at the end of the slot. Second, Konheim 
and Meister calculate the expected waiting time of the 
first customer in a batch, while we calculate the ex- 
pected response time of an arbitrary customer. Note 
also that the results derived by Takagi (1986) are 
smaller than ours by one unit because our expressions 
include the customer service time while his expres- 
sions do not.) The expressions for the expected 
response time in the exhaustive, gated and limited 
service systems can be found in a unified form in 
Takagi (1986) in Equations 3.61b, 5.21b and 6.64, 
respectively. These results and the results derived in 
this paper are summarized in Table I. 

Looking at the stability conditions, we see that both 
the gated and the exhaustive system are stable (under 
both types of polling methods) as long as NA < 1. On 
the other hand, the limited service scheme is stable 
only as long as N,(1 + r) < 1. This result is intuitive 
since at least one switchover period (whose expected 
length is r) is associated with every customer served. 

Comparison of polling methods shows that for all 

Table I 
Expected Response Time in the Different Systems 

Service Polling Method 
Method Cyclic Random 

Exhaustive a 2 

2r 2Mu(1-NM) 2r 2M(l - NM) 

+ Nr( 1-,) + Nr(l - M) (N- 1)r 
2(1-Nii) 2(1-N,u) 2(1-NMN) 

Gated 62 2 62 2 _ + , + 
2r 2,(2-NMN) 2r 2,u(1--N+) 

+ Nr(l + ,) + Nr(1 + ) + (N- 1)r 
2(1-NM) 2(1 - NM) 2(1 -Ng) 

Limited 62 (1 + Nr)o2 62 (1 + Nr)cT2 

2r 2M(N1 - NrM) 2r 2,(1 - N - Nr,u) 

+_ NN62M + N62M + (N- l)r 
+2(1 - N, -Nr,u) +2(1- N,u -Nrii) +2(1 - Ngu-Nr,u) 



730 / KLEINROCK AND LEVY 

three service policies the expected response time of 
the random polling scheme is greater than the ex- 
pected response time of the corresponding cyclic poll- 
ing scheme. This observation is quite intuitive due to 
the random behavior of the server in the random 
polling system. Note also that when the number of 
stations is N= 1, then the response time in the random 
system is identical to the response time in the cyclic 
system. 

The difference between the mean response time of 
the random polling system and that of the correspond- 
ing cyclic system is (N - 1)r/2(1 - Nq) for the ex- 
haustive and gated schemes, and (N - 1)r/2(1 - NA 
- Nr,) for the limited service scheme. In the cases of 
the exhaustive and the gated systems this difference is 
exactly the expected length of a period consisting of 
(N - 1)/2 service periods plus (N - 1)/2 switch- 
over periods. This difference can be explained as 
follows. Let to be the time of an arbitrary arrival 
to queue i. Let t, be the time when the server first 
starts polling after to. Let t2 be the first time the server 
polls queue i after to. The period between t1 and t2 
consists, on average, of (N - 1)/2 service periods and 
(N - 1)/2 switchover periods in the cyclic system. On 
the other hand, this period consists, on average, of 
N - 1 service periods and N - 1 switchover periods 
in the random system (this value can be easily calcu- 
lated by noticing that the number of times the server 
polls the system unit it hits queue i has a geometrically- 
shifted distribution with parameter 1/N). Thus, the 
difference between the expected length of this period 
in the random system, and the corresponding period 
in the cyclic system consists of (N - 1)/2 service and 
switchover periods. Therefore, in the exhaustive and 
gated schemes the difference in the expected response 
time between the cyclic and the random systems can 
be attributed to the period between t, and t2. 

Comparing the exhaustive service to the gated 
service (in both types of polling methods) we see that 
the expected response time in the gated system is 
higher. The difference in performance between the 
exhaustive and the gated schemes is the same for both 
types of polling methods. 

A more difficult task is to compare the limited 
service to the gated system. In Theorem 1, it is shown 
that the expected response time observed in the lim- 
ited service system is greater than or equal to the 
expected response time in the gated system. 

Theorem 1. In the stable random polling system, the 
expected response time in the limited service scheme 
is greater than or equal to the expected response time 
in the gated service scheme. 

Proof. Let A be a function representing the difference 
between the expected response time in the limited 
service system to the expected response time in the 
gated system, namely: 

A _ TRANDOM; LIMITED- TRANDOM;GATED 

(I +Nr)of2 + N__2_ A 

2,u(I1-N,u -Nr,u) 2(I1- N,u-Nr,u) 

(N-l )r 
2(1 -NA2-NrNu) 

aCT2 Nr(1 +,u) (N- I)r 

L2M(l-NA) 2(1-NA) 2(1 -Nu)_ 

To prove the theorem, one has to show that A >, 0 for 
any arbitrary distribution of the switchover period and 
for any arrival process. By observing that the moments 
of any discrete nonnegative random variable X (i.e., a 
variable that takes on the values 0, 1, 2, ...) obey 
Var(X) > E[X](1 - E[X]) (because E[X2) > E[X]), 
we have: oU2 > ,(l - A) and 62 - r(I - r). Also, a 
sufficient condition for stability is easily shown to be 
Nr,u + N1q < 1. Thus, it is only required to show 
that A >- 0 for N, r, 62, A and q2 such that: N > 1, 
Nr1u + NA < 1, a 2 >- (1 - A) and 62 , r(I - r). 

First we prove the claim for CT2 = ,(l - ,U) and 62 = 

r(1 - r). Rewriting Av we have 

(N-2 )r I 
2 I -N,u-Nr 1I-Nu- 

+- 
Nr 2 

_+ 
N6 

2,u [1-N,u-Nr,u 1-N2 

+ Nr2 + ^ 
2,(I -NAu-Nru) 2(1 -N,u-Nr,u) 

Nr(1+A) (38) 
2(I1-N)'( 

Using simple inequalities and substituting 2 = 
,u(l - ,) and 62 = r(I - r) into (38) we have 

>Nr O (-,u),u 
2 JI -NA) * (1-N,u-Nr,) 

+ 1-Mu + (l-r) I _ +u1 
1-N,u-Nr,u 1-N,-Nr, 1-N,J 

Nr 1 1-j 
2 (1-N,-Nr, 1 -N,u-Nr,u 

(I (1r);z _I+ 

+1-N,u-Nr,u 1-N,u 

_Nr (N-1)r1u+2NrAu2 12 O 
2 [(I-NA) * (1 -NA-NrA)_ 
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Once the claim A >, 0 is proven for a2 = A(l - A) 
and 32 = r(l - r), it is now easy to prove it also for 
2a , - u) and 62 3 r(l - r). This can be shown 
by observing that A is monotonically nondecreasing 
both in U2 and in 62. 

Note that the proof of the above result implies an 
equivalent inequality for the cyclic polling system, 
namely 

TCYCLIC;LIMITED 1TCYCLIC;GATED. 

While the expected response time in the cyclic polling 
systems was derived in Takagi (1985), this inequality 
for discrete time systems has not been proven previ- 
ously (note, however, that the inequality was estab- 
lished for continuous time systems; see for example, 
Fuhrmann 1985 and Takagi 1985). 

We can therefore conclude that for both polling 
schemes the mean response time increases as we go 
down the table, i.e., 

TRANDOM;EXHAUSTIVE < TRANDOM;GATED 

S TRANDOM;LIMITED 

TCYCLIC; EXHAUSTIVE S TCYCLIC;GATED S TCYCLIC; LIMITED 

and the mean response time increases as we go across 
the table, that is, 

TCYCLIC;X S TRANDOM;X 

where x is any of the service policies. 

8. Summary 

We have analyzed the performance of random polling 
systems under three service policies: exhaustive, gated 
and limited. We derived closed form expressions for 
the expected response time in all three systems under 
the assumption of full symmetry. For the nonsym- 
metric exhaustive and gated systems our analysis 
yields a set of N2 linear equations the solution of 
which directly gives the expected response time in the 
system. Also derived in this paper are expressions for 
the number of customers in the system, cycle time, 
intervisit time and buffer utilization. 

Appendix: Glossary of Notation 

(All time units are measured in slots rather than 
seconds). 

Ai The event that queue i was polled in the previous 
service period. 

c, The ith customer. 

Ci, C1(z) The length of a cycle (for a system in equi- 
librium) and its generating function, respectively. 

F(z1, z2, ..., ZN) The generating function of the 
number of customers found in the system at 
polling instants. 

F1(z) The generating function of the number of cus- 
tomers found at queue i at polling instants. 

Ii, Ii(z) The length of an idle period (in equilibrium) 
and its generating function, respectively. 

L* The number of customers found in queue i at 
polling instants (system in equilibrium.) 

Li(t), Li The number of customers in queue i at time 
t and in equilibrium, respectively. 

pi The probability that station i is polled at a given 
polling instant. 

Pi(z) The generating function of X1(t). 
Qi(z) The generating function of the number of cus- 

tomers found in queue i at arbitrary moments (in 
equilibrium). 

ri The expected length of the switchover period as- 
sociated with station i. 

Ri(z) The generating function of the length of the 
switchover period associated with station i. 

Si, S1(z) The length of a service period (system in 
equilibrium) and its generating function, respec- 
tively. 

Ti, T1(z) The response time of an arbitrary customer 
arriving to station i (system in equilibrium) and 
its generating function, respectively. 

VJ The number of customers arriving together (in 
the same batch) with a tagged customer to queue 
i and which are served in front of the tagged 
customer. 

VI(z) The generating function of Vi. 
WV, WJ(z) The waiting time of an arbitrary customer 

arriving to station i (in equilibrium) and its gen- 
erating function, respectively. 

xo The probability that no customer arrives at queue 
i at time t (symmetric system). 

Xi(t) The number of arrivals to queue i at time t. 
6? The variance of the length of the switchover 

period associated with station i. 

Ai E[Xi(t)]. 
a?* Var[Xi(t)]. 

r(m), r(m), 1(m) The instants at which the mth 
service period of the system starts, the mth service 
period of the system terminates, and the mth 
switchover period of the system terminates, 
respectively. 

ri(m), r-(m), 1i(m) The instants at which the 
mth service period of queue i starts, the mth 
service period of queue i terminates, and the 
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mth switchover period of queue i terminates, 
respectively. 
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