
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-25, NO. 1 , JANUARY 1977 95

[141 H. J. Payne and W. A. Thompson, “Traffic assignment on trans-
portation networks with capacity constraints and queueing,”
in Proc. 4 7th Nut. ORSA Meeting, 1975.

[15] R. G . Miller, “The jackknife-A review,” Biornefrica, vol. 61,
no. 1, pp. 1-15, 1974. *

Adrian Segall (S’71-M’74) was born in Bucharest, Romania, on March
15 , 1944. He received the B.Sc. and M.Sc. degrees from the Technion-
Israel Institute of Technology, Haifa, in 1965 and 1971, respectively,
both in electrical engineering, and the Ph.D. ,degree from Stanford
University, Stanford, CA, in 1973 also in electrical engineering, with a
minor in statistics.

From 1965 to 1968 he served in the Israel Defense Army as an
Electronics Engineer. From 1968 to 1971 he was a Research Engineer

in the Scientific Department, Israel Ministry of
Defence. From 1971 to 1973 he worked on his
Ph.D. dissertation at Stanford University, where
he held positions of Research Assistant and
Acting Instructor in Electrical Engineering.
From 1973 to 1974 he was a Research Engineer
at Systems Control, Inc., Palo Alto, CA, and a
Lecturer in Electrical Engineering at Stanford
University. In 1974 he joined the faculty of
the Massachusetts Institute of Technology,
Cambridge, where he was an Assistant Professor

of Electrical Engineering and ‘Computer Science and a consultant to
Codex Corporation. He is now with the Department of Electrical Engi-
neering, Technion IIT, Haifa, Israel. His research interests are in applica-
tions of the theory of stochastic processes and optimization to computer
communication networks, estimation, detection, and automatic control.

Throughput in the ARPANET-Protocols and Measurement
LEONARD KLEINROCK, FELLOW, IEEE, AND HOLGER OPDERBECK, MEMBER, IEEE

Abstract-The speed at which large files can travel across a computer
network is an important performance measure of that network. In this
paper we examine the achievable sustained throughput in the
ARPANET. Our point of departure is to describe the procedures used
for controlling the flow of long messages (multipacket messages) and to
identify the limitations that these procedures place on the throughput.
We then present the quantitative results of experiments which meas-
ured the maximum throughput as a function of topological distance in
the ARPANET. We observed B throughput of approximately 38 kbit/s
at short distances. This throughput falls off at longer distances in a
fashion which depends upon which particuiar version of the flow con-
trol procedure is in use; for example, at a distance of 9 hops, an Octo-
ber 1974 measurement gave 30 kbitjs, whereas a May 1975 experiment
gave 27 kbitls. The two different flow control procedures for these
experiments are described, and the sources of throughput degradation
at longer distances are identified, a major cause being due to a poor
movement of critical limiting resources around in the network (this we
call “phasing”). We conclude that flow control is a tricky business, but
in spite of this, the ARPANET throughput is respectably high.

I. INTRODUCTION

T HE ARPANET, which was the world’s first large-scale
experimental packet-switching network, needs little intro-

duction; it has been amply documented (see, for example,
[5] and the extensive references therein). Our interest in this
paper is to describe the message-handling protocols and some

Manuscript received May 11,1976; revised July 22, 1976. This paper
has been presented at the Fourth Data Communications Symposium,
Quebec City, P.Q., Canada, October 7-9, 1975. This work was sup-
ported by the Advanced Research Projects Agency of the Department
of Defense under Contract DAHC-15-73-C-0368.

L. Kleinrock is with the Department of Computer Science, Univer-
sity of California, Los Angeles, CA 90024.

H. Opderbeck was with the Department of Computer Science, Uni-
versity of California, Los Angeles, CA 90024. He is now with the Tele-
net Corporation, Washington, DC.

experimental results for the achievable throughput across the
ARPANET. These experiments were conducted at the UCLA
Network Measurement Center (NMC) and show that the net-
work can support roughly 38 kbit/sec between HOST com-
puters which are a few hops apart; .for more distant HOST
pairs, the throughput falls off to a level dependent upon the
particular version of message processing used, as discussed in
detail below.

An earlier NMC experiment reported upon the behavior of
actual user traffic in. the ARPANET (and also described the
NMC itself) [4] . More recent NMC experiments identified,
explained, and solved some deadlock and throughput-degrada-
tion phenomena in the ARPANET [l 11 and also measured the
effect of network protocols and control messages on line over-
head [4] . The experiments reported upon herein consisted of
throughput measurements of UCLA-generated traffic (using
our PDP 11/45 HOST in a dedicated mode) which was sent
through the ARPANET to “fake” HOST’S at various topo-
logical distances (hops) from UCLA. Each.experiment ran for
10 min during which time full (8-packet) multipacket traffic
was pumped into the ARPANET as fast as the network would
permit. Both throughput (from the UCLA HOST to the
destination HOST) and delay (as seen by the UCLA HOST)
were measured, along with some other statistics described
below.

This paper is organized as foll6ws. We describe the message-
handling procedure for multipacket messages in Section 11,
identify the limitations this procedure imposes ort the through-
put in Section 111, and then quantitatively report upon the
October 1974 throughput experiments in Section IV. The
issue of looping in the adaptive routing procedure and its
erratic effect on throughput is discussed in Section V. Some

96

recent changes to the message-processing procedure are de-
scribed’in Section VI, and in Section VI1 we describe some of
its faults; their correction, and the experimentally achieved
throughput as of May 1975, using this new procedure.

11. HANDLING OF MULTIPACKET MESSAGES

In this section, we describe the details for handling multi-
packet messages, in the ARPANET as of October 19741; it was
at this time that the initial set of throughput experiments
reported here was conducted. This discussion will permit us
to identify throughput limitations and to discuss system
bottlenecks.

We are interested in the transmission of a long data stream
which the ARPANET accepts as a sequence of messages (each
with a maximum length of 8063 data bits). Each such message
in this sequence will be a “multipacket” message (a multipacket
message is one ‘consisting of more than one 1008-bit packet).
To describe the sequence of events in handling each multipacket
message we refer to Fig. 1 (which gives the details for a data
stream requiring only onehll multipacket messageforsimplicity).
A message is treated as a multipacket message if.the HOST-IMP
interface has not received an end-of-message, indication after
the inptit of the first packet is completed (shown as point a
in Fig. 1) . At this time, transmission of the remaining packets
of this message from the HOST to the IMP is temporarily
halted until the message acquires some network resources as
we now describe. First, the multipacket message must acquire
a message number (from the IMP) which is used for message
sequencing (point;b); ali messages originating at this IMP and
heading to the same destination IMP share a common number

- space. Next, an entry in the pending leader table (PLT) must

the leader of all multipacket messages that are currently being
handled by the source IMP. Among other things, the function
of the PLT is to construct the packet headers for the succes-
sive packets of the multipacket message. Such an entry is
deleted and released when the RFNM (the end-to-end acknow-
ledgment whose acronym comes from “ready-for-next-
message”) is received from the destination IMP. The PLT is
shared by messages from all HOST’S attached to the same IMP
and used for all possible destinations.

After the PLT entry has been obtained by the multipacket
message, a table is interrogated to find out whether there are
eight reassembly buffers reserved for this source IMP at the
desired destination IMP. If this is not the case, a control
message REQALL (request for allocation) is generated and sent
from the source IMP (also shown at point c) to the destination
IMP which requests an allocation ,of these buffers. The protocol
is such that this REQALL. steals the acquired message number
and the PLT entry for its own use at this time. This request is
honored by the destination IMP as soon as it has eight buffers
avaiiable (point d) . To report this fact a subnet control
message ALL (allocate) is returned to the source IMP, thus
delivering the 8-buffer :,llocation. Since the previously acquired

. . be obtained as shown at point c. The PLT contains a copy of

‘This is the message-handling procedure referred to as “version
2” in [5] .

IEEE TRANSACTIONS ON COMMUNICATIONS, JANUARY 1977

SOURCE DESTINATION
IMP IMP

MSG NUMBER --h - ACOUIRE PKTm --m

ACClUIRE /-
PLT ENTRY
ACOUIRE
MSG NO & PLT Y.

PKT 3 . - . -
- 4

P K T m

250 MSEC {

+d
- 8 REASSEMBLY

BUFFERS FREED

<1 SEC

8 REASSEMBLY
BUFFERS FREED

8 REASSEMBLY
BUFFERS FREED

TIME

Fig. 1. The sequence of events for one multipacket transmission.

message number and PLT entry have been used, a new message
number and a new PLT entry will have to be obtained for the
multipacket message itself. (Had 8 reassembly buffers been
reserved in the first place, this would have shown at the source
IMP by the presence of an unassigned ALL and the steps from
c to e would not have occurred). Only when all these events
have taken place can the first packet begin its journey to the
destination IMP and can the input of the remaining packets be
initiated, as shown at point e.

When all packets of the multipacket message have been
received by the destination IMP (point f), the message is put
on the IMP-to-HOST output queue. After the transmission of
the first packet to the HOST (point g), the RFNM for this
message is generated at the destination IMP (also point g) to
be returned to the source IMP. This RFNM prefers to carry a
“piggy-backed’’ ALL (an implicit reservation of 8 buffers for
the next multipacket message) if the necessary buffer space is
available. If not, the RFNM will wait for at most 1 s for this
buffer space. In case the necessary 8 reassembly buffers do not
become available within this second, the RFNM is then sent
without a piggy-backed ALL. (We show the case where the
buffers do become available in time and so the ALL returns
piggy-backed on the RFNM).

After the reception of the RFNM at the source IMP (point
h) , the message number. and the PLT entryfor this message are
freed and the source HOST is informed of the correct message
delivery. In case the RFNM carries a piggy-backed ALL, the
allocate counter for the proper destination IMP is incremented.
This implicit reservation of buffer space is returned to the
destination IMP if some HOST attached to the source IMP
does not make use of it within the next 250 ms (shown at
point i); the cancellation is implemented as a control message

KLEINROCK AND OPDERBECK: THROUGHPUT IN ARPANET 97

GVB (giveback) which is generated at the source IMP. If,
however, the next multipacket message to the same destina-
tion IMP is received from any source HOST within 250 ms,
this message need only acquire a message number and a PLT
entry before it can be sent to the destination IMP, and need
not await an ALL.

Thus we see that three separate resources must be obtained
by each multipacket message prior to its transmission through
the net: a message number, a PLT entry, and an ALL.^

111. THROUGHPUT LIMITATIONS

Let us now identify the limitations to the throughput that
can be achieved between a pair of HOST’s in the ARPANET.
First we consider the limitations that are imposed by the hard-
ware. The line capacity represents the most obvious and
important throughput limitation. Since a HOST is connected
to an IMP via a single lOO-kbit/s transmission line, the
throughput can never exceed lOO-kbit/s. If there is no alter-
nate routing in the subnet, the throughput is further limited
by the 50-kbit/s line capacity of the subnet communication
channels. (The issue of alternate routing is discussed later.)

The processing bandwidth of the IMP allows for a through-
put of about 700 and 850 kbit/s for the 316 and 516 IMP’s,
respectively [6] . Therefore the IMP’s can easily handle several
50-kbit/s lines simultaneously. The processing bandwidth of
the HOST computers represents a more serious problem.
Severe throughput degradations due to a lack of CPU time
have been reported in the past [l] , [2] , [12] . However, these
reports also indicate that the degradations are in many cases
caused by inefficient implementations of higher level pro-
tocols [4] . Therefore, changes in these implementations have
frequently resulted in enormous performance improvements
[13] . To avoid throughput degradations due to a CPU-limited
HOST computer for our throughput experiments, we used a
PDP 11/45 minicomputer at UCLA whose only task was to
generate 8-packet messages as fast as the network would
accept them.

Let us now discuss what throughput limitations are im-
posed on the system by the subnet flow control procedure. As
discussed above, there are two kinds of resources a message
must acquire for transmission: buffers and control blocks
(specifically message numbers and table entries). Naturally,
there is only a finite number of each of these resources avail-
able. Moreover, most of the buffers and control blocks must
be shared with messages from other HOST’s. The lack of any
one of the resources can create a bottleneck which limits the
throughput for a single HOST. Let us now discuss how many
units of each resource are available and comment on the likeli-
hood that it becomes a bottleneck. This discussion refers to
the ARPANET as of October 1974.

‘The procedure just described extracts a price for the implementa-
tion of its control functions. This price is paid for in the form of over-
head in the packets as they are transmitted over the communication

’ channels, in the packets as they are stored in IMP buffers, in control
messages (IMP-IMP, IMP-HOST, HOST-HOST), in measurement and
monitoring, etc. We refer the reader to [4] for the effect of this over-
head on the line efficiency.

In October 1974, a packet was allowed to enter the source
IMP only if that IMP had at least four free buffers available. At
that time, the total number of packet buffers in an IMP with
and without the very distant HOST (VDH) software was,
respectively, 30 and 51. This meant that an interruption of
message input due to buffer shortage could occur only in the
unlikely event that the source IMP was heavily engaged in
handling store-and-forward as well as reassembly traffic.

The next resource the message had to obtain was the
message number. There was a limitation of only four message
sequence numbers allocated per source IMP-destination IMP
pair. This meant that all source HOST’s at some source IMPA
which communicated with any of the destination HOST’s at
some destination IMP B shared the same stream of message
numbers from IMP A to IMP B. This possible interference
between HOST’s and the fact that there were only four
message numbers which could be used in parallel meant that
the message number allocation could become a serious bottle-
neck in cases where the source and destination IMP were
several hops apart. (This was the major reason for the recent
change to the message processing procedure which has recently
been implemented; see Section VI).

After a message number was obtained, the multipacket
message had to acquire one of the PLT entries of which there
was a shared pool of six. Since the PLT is shared by all HOST’s
which are attached to the source IMP and used for all possible
destinations, it also represents a potential bottleneck. This
bottleneck can easily be removed by increasing the number of
entries permitted in the PLT. However, the PLT also serves as
a flow control device whch limits the total number of multi-
packet messages that can be handled by the subnet simultane-
ously. Therefore, removal of the throttling effect due to the
small size PLT may introduce other congestion or stability
problems. A corresponding consideration applies to the
message number allocation.

The number of simultaneously unacknowledged 8-packet
messages is further limited by the finite reassembly space in
the destination IMP. In October 1974, a maximum of 34
buffers was available for reassembly (for IMP’s without the
VDH software). This meant that at most four 8-packet
messages could be reassembled at the same time (leaving space
for at least two single-packet messages). (The reassembly space
must of course be shared with all other HOST’s that are
sending messages to the same destination IMP.) It may there-
fore become another serious throughput bottleneck.

From the above discussion, we know that even if there is no
interference from other HOST’s there cannot be more than
four messages in transmission between any pair of HOST’s due
to the message number limitation. This restriction decreases
the achievable throughput in the event that the line bandwidth
times the round trip time is larger than four times the maxi-
mum message length. Fig. 2 depicts this situation. The input
of the first packet of message i is initiated at time a after the
last packet of message i - 1 has been processed in the source
IMP. After the input of this first packet is complete, the
source IMP waits until time b when the RFNM for message i -
4 arrives. Shortly after this RFNM has been processed (at time
c) the transmission of the first packet over the first hop and

98 IEEE TRANSACTIONS ON COMMUNICATIONS, JANUARY 1977

DESTI.
, RFNM FOR MSG. i.4

SOURCE NATION
IMP IMP

FNM FOR MSG. i-2

DESTI-

RFNM FOR MSG, i

I
TIME

Fig. 2. The normal sequence of multipacket messages.

the input of the remaining packets from the HOST'is initiated.
At time d, all packets have been reassembled in the destination
IMP, the first packet has been transmitted to the destination
HOST and 8 reassembly buffers have been acquired by the
RFNM which is then sent (with a piggy-backed ALL) to the
source IMP. The RFNM reaches the source IMP at time e and
thereby allows the transmission of message i + 4 to proceed.
In this figure we also show a snapshot of the net at the time
slice indicated by the dashed arrow. We show four messages
(each with ,their own ALL and PLT): i + 2 is leaving the
source IMP, both i + 1 and i are in flight, and i - 1 is entering
the destination IMP. We also see the two uriiised PLT entries in
the source IMP. The possible gaps in successive message trans-
missions represent a loss in throughput and can be caused by
the limitation of four messages outstanding per IMP pair;
this manifests itself in the next (fifth) message awaiting the
return of a RFNM which releases one of the message numbers.

We have not yet mentioned the .interference due to other
store-and-forward packets which can significantly decrease
the HOST-to-HOST throughput. This interference causes larger
queueing times and possibly rejection by a neighbor IMP. Such
a rejection occurs if either there are 20 store-and-forward
packets in the neighbor IMP or if the output queue for the
next hop is full. (There is an allowed maximum of 20 store-
and-forward packets per IMP and of 8 ,packets for each output
queue.) A rejected packet is retransmitted if no IMP-to-IMP
acknowledgment has been received after a 125 ms timeout.

We now turn to a brief discussion of alternate routing and
its impact on our throughput experiments. By alternate
routing we refer to the possibility of sending data over two (or
more) completely independent paths from source to destina-
tion. The shorter (shortest) path (in terms of number of hops)
is usually called the primary path, and the longer path(s) are
called secondary (tertiary, etc.) or alternate paths. For
reliability reasons there should always be at least one alternate
path available in a properly operating network. It turns out in
the ARPANET that alternate paths are rarely used if they are
longer than the primary paih by more than two hops. The
reason for this comes from the way the delay estimate is cal-
culated, updated, and used by the routing procedure and from

the way the output queues are managed. Each hop on the path
from source to destination contributes four (arbitrary) units to
the delay estimate. Each packet in an output queue between
source and destination contributes one additional delay unit
to the delay estimate. Since the length of the output queues
is limited to 8 packets, one hop can therefore increase the
delay estimate by at least 4, and at most, 12 units. Thus the
minimum and maximum delay estimates over a path of n hops
are, respectively, 4n and 1211 delay units. Packets are always
sent over the path with the smallest current delay estimate.
From this, it follows that an alternate path is never used if it is
more than three times longer (in terms of hops) than the
primary path. Thus, for a primary path of length n , alternate
routing is possible only over paths of length less than 3n hops.
Let us assume that all the channels along the primary and
alternate secondary path have the same capacity and that there
is no interfering traffic. If we send as many packets as possible
over the primary path, these packets usually will not encounter
large queueing delays because this stream is fairly deterministic
as it proceeds down the chain. This means that the delay
estimate increases only slightly, although all of the bandwidth
is used up. Therefore a switch to an alternate path occurs only
if that path is slightly longer than the primary path. In the case
of interfering traffic, the output queues will grow in size, and
therefore a switch is more likely to occur. Such a switch to an
alternate path may therefore help to regain some of the band-
width that is lost to the interfering traffic. It has already been
pointed out in [7] that, even if primary and secondary paths
are equally long, at most a 30 percent increase in throughput
can be achieved. This is due to the restriction of a maximum
of 8 packets on an output queue and the fact that the fre-
quency of switching between lines is limited to once every
640 ms (for heavily loaded: 50-kbit/s lines). Thus the back-
logged queue of 8 packets on the old path will provide over-
lapped transmission for only 8 X 23.5 = 188 ms of the total of
640 ms between updates (the only times when alternate paths
may be selected). The relatively slow propagation of routing
information further reduces the frequency of switching between
the primary and secondary path. This discussion shows that
alternate paths have only a small effect on the maximum
throughput that can be achieved. However, the alternate paths
are of great importance for the reliability of the network.

IV. THROUGHPUT EXPERIMENTS

The October 1974 throughput experiments produced the
results shown in Fig. 3. Here we show the throughput (in
kilobits/second) as a function of the number of hops between
source and destination. Curve A is for the throughput averaged
over the entire 10-min experiment; curve B is the throughput
for the best block of 150 successive messages. Note that we are
able to pump an average of roughly 37-38.5 kbit/s out to 5
Hops3; it drops beyond that, falling to 30 kbit/s at 9 hops due
largely to transmission gaps caused by the 4-message limita-
tion. Also, the best 150-message throughput is not much

'This indicates an approximate efficiency of 75 percent on the 50-
kbit/s lines. See [4] for a detailed description of line efficiency.

KLEINROCK AND OPDERBECK: THROUGHPUT IN ARPANET 99

0 1 2 3 4 5 6 7 8 9 1 0 1 1
N U M B E R OF HOPS

Fig. 3. ARPANET throughput (October 1974).

I

1 2 3 4 5 6 7 8 9 1 0 1 1
N U M B E R OF HOPS

Fig. 4. Average round-trip delay in the ARPANET (October 1974).

better than the overall average, indicating that we are almost
achieving the maximal performance most of the time. In
Fig. 4 , we show the corresponding curves for the average
round-trip delays (as seen by the UCLA PDP 11/45 HOST)
as a function of source-destination hop distance; that is,
curve A’ is for the average and curve B’ is for the best 150
successive messages. Note that the average delay for n hops
may be approximated by 200 + 90(n - 1) ms. The measured
histogram for delay is given in Fig. 5 for hop distances of 1, 5,
and 9. Some of the large delays shown in this figure are caused
by looping as explained in the next section. Of further interest
is the autocorrelation coefficient of round-trip delay for suc-
cessive messages in the network; this is shown in Fig. 6. Note

R O U N D - T R I P T I M E (MSEC)

Fig. 5. Histogram of round-trip delay.

1.0,

-0.40 I I I I 1 I I L
0 1 2 3 4 5 6 7 6

N U M B E R OF MESSAGES

Fig. 6 . Correlation coefficient for message delay.

that message delay is correlated out to about 3 or 4 successive
messages.

V. LOOPING

The observation of occasional very long network delays
recently led to an investigation of this phenomenon. The
results showed that at times there was extensive looping in the
subnet, i.e., packets were tossed back and forth between neigh-
boring nodes many times and thus did not reach their destina-

100 IEEE TRANSACTIONS ON COMMUNICATIONS, JANUARY 1977

tion until the loop was removed through the adaptive routing TABLE I
procedure. In what follows we describe how the ARPANET
tries to avoid loops and why this procedure may fail in certain
cases.

Let’us consider a net with the following linear topology.

The exact topology between nodes D and A is immaterial for
our discussion; node X is that node in the “rest of the net-
work” which sends routing updates to node A. In this kind of
configuration, nodes B and C should always send packets for
node D to their left-hand neighbor (nodes A and B, respec-
tively). We adopt the following notation to be used in the
three following examples.

B + Cmeans that node B sends a routing message to node C.
d/l/A means that the overall delay estimate to node D is d
units, the local delay over the best delay line to a neighbor
is 1 unit, and A is the name of the best delay neighbor.

Table I describes an example of how loops can occur if no
,loop prevention procedure is used. The reader should review
the earlier discussion which describes how delay estimates are
formed.

Initially, the local delays in IMP’s A, B, and C are zero, and
the delay estimates to IMP D are, respectively, d - 4, d, and
d + 4 delay units (row 0). Assume now that a sudden increase
in traffic between node A and node D causes the delay esti-
mate in A to be increased by 9 units (row 1). This fact is
reported to B (row 2). Since C has not yet been informed of
the sudden increase in traffic, it sends the old delay estimate
to B. This causes B to consider C its best delay neighbor for
IMP D (row 3); a loop between IMP’s B and C has now been
created! Tlvs loop remains effective until B tells C about the
new situation (row 4), C reports back to B (row 7), and finally
A’s routing message causes B to switch back to A as its best
delay neighbor (row 10). Since routing messages are sent every
640 ms, the loop persists for 640 to 1280 ms in this example.

To prevent the occurrence of this kind of loop in the
ARPANET, a line hold-down mechanism was implemented
[8]. The function of this mechanism was to continue using the
best delay path for up to 2 s (ignoring the estimated delay
from nonbest delay neighbors) whenever the delay estimate on
this path increased by more than 8 delay units. The argument
put forth in favor of this hold-down strategy was that, at times
of sudden change, a node cannot be sure that its neighbors
have already been informed of this change. Therefore, it
should ignore the delay estimates from all but the best delay
neighbor for some time until the information on the sudden
change has propagated through the net.

Table I1 shows how this hold-down mechanism prevents
the loop in the previous example. The hold-down of a line
is indicated by an exclamation mark (!). Note that IMP’s A
and B start holding down their line to the best delay neigh-
bor since their delay estimate gets worse by more than 8

Routing IMP A IMP B IMP C

0
1
2
3
4
5
6
7
8
9

10

initially d - 4/O/X
X + A d + 5 / 4 / X
A + B
C ’ B
B - t C
X -+ A d + 5 / 4 / X
A + B
C + B
B + C
X -+ A d + 5 / 4 / X
A ’ B

d / O h d + 4/O/B

d + 9/O/A
d + 8/O/C

d + 13/1/B

d + 8/O/C
d + 17/O/C

d + 21/O/C

d + 9/O/A

TABLE I1

Routing IMP A IMP B IMP C

0 initially d - 4/O/X
1 X + A d + 5 / 4 / X !
2 A 4 B
3 C + B
4 B + C
5 X -t A d + 5 / 4 / X !
6 A 4 B
7 C + B
8 B + C
9 X + A d + 5 / 4 / X !

10 A + B

dlO/A d + 4,’O/B

d + 9/O/A!
d + 9/O/A!

d + 14/1/B!

d + 9/O/A!
d + 9/O/A!

d + 13/O/B!

d + 9/O/A!

TABLE I11

Routing IMP A IMP B IMP C

0 initially
1 X - t A
2 A + B
3 X + A
4 A + B
5 C + B
6 B + C
I X + A
8 A + B
9 X + A

10 A - t B
1 1 C + B

d - 4/O/X dlOIA d + 4/O/B
d + 1/2 /X

d + 5/O/A
d + 5 / 4 / X

d + 9/OIA
d + 8/O/C

d + 13/1 /B!
d + 5 / 4 / X

d + 5 / 4 / X
d + 8/O/C

d + 8/O/C
d + 17/O/C!

delay units (rows 1 and 2). This causes IMP B to ignore the
lower delay estimate received from IMP C and the loop is
thereby prevented.

Since the decision of whether or not to initiate a line hold-
down depends solely on the delay difference between consecu-
tive routing messages, the hold-down mechanism is sensitive to
the frequency at which routing messages are sent. The routing
message frequency, however, is a function of line speed and
line utilization. Therefore it is quite possible, for example,
that A sends two routing messages to B before B sends one
routing message to C. Table 111 gives an example of the occur-
rence of a loop which is due to the fact that routing messages
on different lines are sent at different frequencies. In this
case B does not initiate a line hold-down when it receives the
routing information from A since the delay difference is
always smaller than 8 (rows 2 and 4). Therefore, B switches
the best delay path from A to C when it receives C s routing
message (row 5), i.e., a loop has again been created! In row 6

KLEINROCK AND OPDERBECK: THROUGHPUT IN ARPANET 101

we see a hold-down at C. The situation becomes even worse
when B receives the next routing message from C (row 11).
Now B initiates a line hold-down in the wrong direction! This
means that the B-C loop cannot be removed for almost 2 s
because B ignores further delay estimates if received from A.

We call the occurrence of a loop whose existence is extended
because of line hold-down a “loop trap.” These loop traps
have been observed repeatedly by the UCLA Network Meas-
urement Center [9] . When such a loop trap occurs, packets are
exchanged between neighbors up to 50 times before they can
continue their travel to the destination IMP. We believe that
these loop traps represent a major reason for the observation
of occasional very long network delays during our throughput
experiments.

Recently, the criterion for initiation of a hold-down was
changed in such a way that it is now independent of the
frequency at which routing messages are sent. As a result,
we have not been able to detect loop traps in this modified
system. Naylor has studied the problem of eliminating loops
completely, and he presents a loop-free routing algorithm in
P O I .

VI. RECENT CHANGES TO MESSAGE PROCESSING

Some of the problems with the subnet control procedures
described in Section 111 have recently led to a revision of
message processing in the ~ u b n e t . ~ In particular, message
sequencing is now done on the basis of HOST-to-HOST pairs
and the maximum number of messages that can be transmitted
simultaneously in parallel between a pair of HOST’s was
increased from 4 to 8. Let us now describe the details of this
new scheme.

Before a source HOST A at source IMP S can send a mes-
sage to some destination HOST B at destination IMP D, a
message control block must now be obtained in IMP S and
IMP D. This message control block is used to control the trans-
fer of messages. It is called a transmit block in IMP S and a
receive block in IMP D. The creation of a transmit block-
receive block pair is similar to establishing a (simplex) connec-
tion in the HOST-to-HOST protocol. It requires an exchange
of subnet control messages that is always initiated by the
source IMP. The message control blocks contain, among other
things, the set of message numbers in use and the set of
available message numbers.

After the first packet has been received from a HOST, the
source IMP checks whether or not a transmit block-receive
block pair exists for the transfer of messages from HOST A to
HOST B. If HOST A has not sent any messages to HOST B for
quite some time, it is likely that no such message control block
pair exists. Therefore, source IMP S creates a transmit block
and sends a subnet control message to destination IMP D to
request the creation of a receive block. When IMP D receives
this control message, it creates the matching receive block and
returns a subnet control message to IMP S to report this fact.
When IMP S receives this control message, the message control

?

’ block pair is established.

4This is the “version 3” procedure in [SI.

A shortage of transmit and/or receive blocks will normally
cause only an initial setup delay. Currently,there are 64 trans-
mit and 64 receive blocks available in each IMP. This means,
for example, that a HOST can transmit-data to 64 different
HOST’s simultaneously, or that two HOST’s, attached to the
same destination IMP, can each receive messages from 32
different HOST’s simultaneously, etc. Since 64 message blocks
is a rather large number, it is unlikely that this is a limiting
resource.

The remaining resources are acquired in the following
sequence: message number, reassembly buffers, and PLT
entry. Since there are now 8 message sequence numbers which
are allocated on a sending HOST-receiving HOST pair basis,
a HOST is allowed to send up to 8 messages to some receiving
HOST without having received an acknowledgment for the
first message. For multipacket traffic this is more than enough
because there are still only 6 entries in the PLT. Suddenly,
therefore, the PLT has become a more prominent bottleneck
than it used to be in the old message processing procedure
when only four messages per IMP pair could exist.

Note that a multipacket message tries to obtain the
reassembly buffers before it asks for the PLT entry. (This
sequence for resource allocation can lead to difficulties as is
described in Section VII.) In case there is no reassembly buffer
allocation waiting at the source IMP, then as before, the mes-
sage number and the PLT entry are used to send a REQALL to
the destination IMP,

VII. THROUGHPUT FOR THE NEW
MESSAGE PROCESSING

In February 1975, we repeated the throughput measure-
ments of October 1974 to determine what effect the new mes-
sage processing procedure had on the maximum throughput.
Since the subnet had grown in size, we were able to measure
the throughput as a function of hop distance up to 12 hops.
The measured throughput in February 1975 with the new
message processing procedure was significantly less than the
throughput that was achieved in October 1974. For paths with
many hops, the decrease in throughput was almost 50 percent.
The observed throughput degradation was not due to a sudden
surge of interfering traffic. Investigation of this performance
degradation revealed the following two causes which explain
in part the observed decrease in throughput: processing delays
in 316 IMP’s and an effect which we refer to as “phasing.”
Recent measurements show that the 316 IMP’s in the
ARPANET are becoming a major bottleneck. For the 316
IMP’s, the queueing delays in the input or processing queue
are, on the average, larger than the queueing delays in the out-
put queue. The average queueing delay in the processing queue
is about 10 ms. This is more than 5 times as much as the corre-
sponding queueing delays in the 516 IMP. The cause for this
increase in processing delay can be found in the more exten-
sive processing which is done at a higher priority level.

A processing delay of 10 ms appears to be within acceptable
limits. However, this is only an average number. In particular
cases, we observed queueing delays in the input queue of
several hundred milliseconds. In addition, it is not clear what

102 IEEE TRANSACTIONS ON COMMUNICATIONS. JANUARY 1977

second-order effects these long processing delays have on a
system that was originally designed to be limited by line band-
width.

Phasing, the second (and more subtle) cause for the through-
put degradation, is due to the sending of superfluous
REQALL’S! A REQALL is called superfluous if it is sent while a
previous REQALL is still outstanding. This situation can arise
if message i sends a REQALL but does not use the ALL
returned by this REQALL because it obtainedits reassembly
buffer allocation piggy-backed on a RFNM for an earlier mes-
sage (which reached the source IMP before its requested ALL).
The sending of superfluous REQALL’S is undesirable because it
unnecessarily uses up resources. In particular, each REQALL
claims one PLT entry. Intuitively, it appears to be impossible
that more than four 8-packet messages could be outstanding at
any time since there is reassembly-buffer space for only four
such messages (34 reassembly buffers). If, however, the buffer
space that is freed when message i is reassembled causes an
ALL to piggy-back on an RFNM of message i - j (j 2 l), then
the RFNM for message i may queue up in the destination IMP
behind j - 1 other RFNM’S! Thus only four messages really
have buffer space allocated. In addition to these four, there
are other outstanding messages which have already reached
the destination IMP and which have RFNM’S waiting for
buffer space (i.e., waiting for piggy-backed ALL’S).

The sending of more than four 8-packet messages is initially
caused by the sending of superfluous REQALL’S. The PLT
entries which were obtained by these REQALL’S are later used
by regular messages. When the PLT is full, further input from
the source HOST is stopped until a PLT entry becomes avail-
able (this results in the inefficient use of transmission facili-
ties). Thus we have a situation where our HOST uses all six
entries in the PLT for the transmission to a destination HOST.

Fig. 7 graphically depicts the kind of phasing we observed
for almost all transmissions over more than 4 hops. Let us
briefly explain the transmission of message i. At time a the last
packet of message i - 1 has been accepted and input of the
first packet of message i is initiated. This first packet is re-
ceived by the source IMP at time b. Since there is a buffer
allocation available (which came in piggy-backed on.the RFNM

for message i - 7) no REQALL is sent. However, the PLT is full
at time b. Therefore, message i must wait until time c when
the RFNM for message i - 6 frees.a PLT entry and message i
may then proceed. At time d all 8 packets have been accepted
by the source IMP. The first and eighth packet are received by
the destination IMP at times e and J; respectively. The sending
of the RFNM for message i is delayed until the RFNM’S for
messages i - 3, i - 2, and i - 1 are sent. The buffer space that
is freed when message i + 3 reaches the destination at time g is
piggy-backed on the RFNM for message i which reaches the
source IMP at time h. This effect may be seen in Fig. 7 by
observing the time slice picture while message i is in flight.
Here we show messages as rectangles and RFNM’S as ovals.
Attached to RFNM’S and messages are the ALL and PLT
resources they own. We see the four ALL’S owned by messages
i - 1, i, i + 1 and by the RFNM for message i - 5 ; we see the
six PLT’s owned by messages i - 1, i and by the RFNM’S for

REST OF NATION
DESTI-

MESSAGE i

RFNM FOR MESSAGE i

t
TIME

Fig. 7. Phasing and its degradation to throughput.

messages i - 5 , i .- 84, i - 3, i - 2. Message i + .l cannot leave
the source IMP since it is missing a PLT; most of the PLT’s
are owned by RFNM’S who are foolishly waiting for piggy-
backed ALL’S which are not critical resources at the source
IMP (message i + 1 has its ALL!). The trouble is clearly due to
a poor phasing between PLT’s and ALL’S.

The phasing described above was observed for destination
IMP’s without., the VDH software. For VDH IMP‘s, which can
only reassemble one message at a time (10 reassembly buffers),
a different kind of phasing was observed which resulted in
even more serious throughput degradations! In this case, a
situation is created in which a REQALL control message is sent
for every data message. The 6 PLT’s are assigned to 3 REQALL’S

and 3 data messages. Fig. 8 depicts this situation. The first
packet of message i is transmitted from the source HOST to
the source IMP between times a and b. Since there is no buffer
allocation available, the source IMP decides to send a REQALL.

However, all the PLT’s are assigned and therefore the sending
of the REQALL message is delayed until time c when the reply
to an old REQALL (for message i - 3) delivers an ALL and a
PLT. At this time, the PLT entry is immediately stolen by the

KLEINROCK AND OPDERBECK: THROUGHPUT IN ARPANET 103

40 I SOURCE DESTINATION

iMp IMP

I

DESTI.
NATION

1

MESSAGE,

I

1 SEC 0 RFNM FOR MESSAGE i

9 REOALL GENERATED
BY MESSAGE i

TIME

Fig. 8. Phasing when only one multipacket message can be assembled.

delayed REQALL (generated for message i). Note that at this
point, message i gets the necessary buffer allocation but it
cannot be sent to the destination because the PLT is once
again full! Only when the RFNM for message i - 3 times-out
after 1 s (time d) and is received by the source IMP (time e)
without a piggy-backed ALL does a PLT entry become free
for use by message i. At timef, all 8 packets have been received
by the destination IMP. The sending of the RFNM for message
i is now delayed by several seconds because the replies for mes-
sages i - 2, i - 1 and for two previous REQALL’S must be sent
first (see the time-siice given by the dashed line in Fig. 8 which
shows REQALL’S as diamonds and is taken during the 1-s time-
out when nothing is moving in the net). At time g, the ALL

control message responding to REQALL (i) is sent to the
source IMP, and 1 s later at time h the RFNM for message i
times-out. The RFNM is finally received for message i by the
source IMP at time j.

The phasing in the case of destination IMP’S with VDH soft-
ware results in throughput degradations by a factor of 3 . This
large decrease is due to the fact that the system is stalled for
almost 1 s while the source IMP has the buffer allocation but
no PLT entry; during this delay, the destination IMP, which
can free a PLT entry by sending an RFNM, is waiting fdr the
buffer allocation to use as a piggy-back. There are two obvious
ways to avoid this undesirable phasing of messages. First,
one can avoid sending superfluous REQALL’s which are the
underlying causes of the phasing. Secondly, one can avoid the
piggy-backing of allocates on RFNM’S as long as there are other

35-

E 30
-

m
Y
I-

$ 25
c)

-

4
E 20 -

0 1 2 3 4 5 6 7 8 9 1 0 1 1
NUMBER OF HOPS

Fig. 9. ARPANET throughput (May 1975).

replies to be sent. This second method was suggested and im-
plemented by BBN.

In Fig. 9 we show some more recent throughput measure-
ments made in May 1975 (after the phasing fix). As in Fig. 3 ,
we show the throughput as a function of hop distance, with
curve A” displaying the, throughput averaged over the 10-min
experiment and curve B” displaying the throughput for the
best (maximum throughput) 150 consecutive messages. Curve
A from Fig. 3 (October 1974) is included for a comparison of
the two throughput experiments. We note that the throughput
with the new message processing procedure is inferior to that
in October 1974, although it is far better than that which we
observed in February 1975 prior to the phasing fix.

VIII. CONCLUSIONS

In this paper we have described procedures for, limitations
to, and measurement of throughput in the ARPANET. We
identified some sources of throughput degradation due to the
latest message processing procedure and displayed performance
measurements after some of these problems were corrected.
Here, as with many other deadlocks and degradations, it is
rather easy to find solutions once the fault has been uncovered;
the challenge is to identify and remove these problems at the
design stage.

The ARPANET experience has shown that the building of a
modern data communications network is an evolving process
which requires careful observation and evaluation at each step
along the way. Although the ARPANET was the first large-
scale experimental packet-switched net and therefore under-
went regular changes (as one would expect in any pioneering
experiment) we foresee a continuing need for system evaluation.

The function of network measurements should not only be
to test the initial configuration and make sure that it behaves
according to specification. Indeed the rapid growth of these
networks and the necessary changes in hardware and software
make it extremely important to constantly reevaluate the total
system design by means of analysis and measurements. This is
the only guarantee for detecting performance problems as they
arise and for acting accordingly before users experience de-
graded service.

104 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-25, NO. 1, JANUARY 1977

[31

[41

REFERENCES
G . Hicks and B. Wessler, “Measurement of HOST costs for trans-
mitting network data,” ARPA Network Information Center,
Stanford Research Institute, Menlo Park, CA, Request for Com-
ments 392, Sept. 1972.
R. Kanodia, “Performance improvements in ARPANET tele-
transfer from multics,” ARPA Network Information Center,
Stanford Research ,Institute, Menlo Park, CA, Request for Com-
ments 662, Nov. 1974.
L. Kleinrock and W. E. Naylor, “On measured behavior of the
ARPA network,” in AFIPS Conf. Proc., vol. 43, pp. 767-780,
1974.
L. Kleinrock, W. E. Naylor, and H. Opderbeck, “A study of line
overhead in the ARPANET,” Commun. Ass. Computing Machin-
ery, vol. 19, pp. 3-13, Jan. 1976.
L. Kleimock, Queueing Systems, Vol. II: Computer Applica-
tions. New York: Wiley, 1976.
J. M. McQuillan, W. R.Crowther, B. P. Cosell, D. C. Walden,’and
R. E. Heart, “Improvements in the design and performance of
the ARPA Network,” in AFIPS Conf. Proc., vol. 41, pp. 741-
754,1972.
J. M. McQuillan, “Throughput in the ARPA network-Analysis
and measurements,” ,Bolt, Beranek and Newman, Inc., Cam-
bridge, MA, Rep. 2491.

works,” Rep. 2831, Bolt, Beranek and Newman, Inc., Cam-
bridge, MA, 1974.
W. E. Naylor, “A status report on the real-time speech transmis-
sion work at UCLA,” Network Speech Compression Note 52,
Dec. 1974.

networks,” in Proc. 4th Data Communications Symp., Quebec
City, P.Q., Canada, Oct. 1975, pp. 6-1-6-11.
H. Opderbeck and L. Kleinrock, “The influence of control pro-
cedures on the performance of packet-switched networks,”
Nat. Telecommurlications Conf.. San Diego, CA, Dec. 1974.

- , “Adaptive routing algorithms for distributed computer net-

- , “A loop-free adaptive routing algorithm for packet switched

[12] B. Wessler, “Revelations in network HOST measurements,”
ARPA Network Information Center, Stanford Research Insti-
tute, Menlo Park, CA, -Request for Comments 557, Aug. 1973.

[13] D. C. Wood, “Measurement of the user traffic characteristics,”
ARPA Network Information Center, Stanford Research Insti-
tute, Menlo :Park, CA, Network Measurement Note 28, May
1975.

*
Leonard Kleinrock (S’55-M’64-SM’71-F’73), for a photograph and
biography, see this issue, page 60.

*

Network Services in Systems Network Architecture
JAMES P. GRAY. MEMBER, IEEE ’

Absrmct-This paper discusses the services provided by a systems
network architecture (SNA) network and design aspects related to these
services. Both the basic transmission services and higher level network
services are discussed.

The first section describes the structure of SNA. The second section
describes SNA’s transmission services and sketches in the other aspects
of SNA’s structure. The next section describes services provided to
users and managers of the network and the distribution of these services
throughout the various nodes of the network. A concluding section
discusses several potential extensions.

S
INTRODUCTION

YSTEMS network architecture (SNA) is a system structure
defined by message formats and protocols; it permits the

design of products which can be connected together to form a
unified communication-based data processing system. The
architecture defines the appearance of each node in the net-
work as seen by the network and the end users; that is, the

Manuscript received April 12, 1976;revised July 16, 1976.
The author is with the IBM Corporation, Research Triangle Park,

NC 27709.

external behavior of the network nodes is specified by SNA.
Actual implementations realize this architected appearance in
a variety of designs and utilize a variety of technologies. Famil-
iarity with previous IBM communication products and software
packages is ‘assumed in explaining the reasoning behind SNA.
References [I] - [131 contain other descriptions of SNA and
implementations of SNA. SNA is an architecture; for details
of implementation, including subsets of SNA that have been
implemented, consult the product specifications.

SNA was developed to satisfy a specific set of requirements,
the most important of which was the need to support dis-
tributed processing within a single application. This derived
from. a difficulty (communication facilities with reliability
below that required of many major applications) and an
opportunity (the price/performance improvements in micro-
coded controllers as a result of the successful development of
LSI technologies). Since distributed processing implies the
existence of distributed data and distributed application pro-
grams, this requirement became: develop a general solution for
program to program communication through a network.

